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The partition function for SU(n) is given in terms of that for SU(n — 1) through a recursion formula
which is derived using the method of generating series. The usefulness of the expression is demonstrated

in the cases of specific values of the rank.

L INTRODUCTION

It is well known that the multiplicity of a weight
in an irreducible representation (IR) of a complex
semisimple Lie algebra is calculable using Kostant’s
formula.! This involves the explicit knowledge of a
certain partition function, the connection of which
with Diophantine equations has been established.?
In Sec. II, the corresponding set of equations is
written down for the algebra A4, [~ SU(! 4 1)] and
the solution by the method of generating series is
indicated. In Sec. III, an expression is derived for
the partition functions for A4; in terms of that for
A, ;. The usefulness of this recursion formula is
demonstrated in the Appendix in the cases of specific
values of the rank.

II. METHOD OF GENERATING SERIES

Let G be a complex semisimple Lie algebra and
let the set of positive roots, with respect to a given
Cartan subalgebra and fixed lexicographic ordering,
be A= {«, -, a,}. The subset of simple roots
is {oey,++, o}, with / < m. The multiplicity of a
weight » in a finite-dimensional IR D(2) of G with
highest weight 4 is given by Kostant’s formula*

m;(») = 3 wgPIS(B + 2) — (B + »)].

Sew

€Y

Here, W is the Weyl group and =g = +1 according
to whether S is an even or odd reflection, respectively.
Also, £ is half the sum of the positive roots. The
partition function P(u) is the number of ways® of
writing the weight u as a linear combination over A
with nonnegative integral coefficients. Also, P(0) = 1,
and P(u) = O unless u = >'_, k,x,, where the k; are

nonnegative integers. In short, the function is given

1 B. Kostant, Trans. Am. Math. Soc. 93, 53 (1959).

? D. Radhakrishnan and T. S. Santhanam, J. Math. Phys. 8, 2206
(1967).

3 N. Jacobson, Lie Algebras (Interscience Publishers, Inc., New
York, 1962), p. 260.

by the number of ways of writing

1 m
2 ko =3 am, 0]
i=1 i=1
where the a; are nonnegative integers.
It is known that
1]
aJ':zCJ'iai’ j=l+ls“'9m9 (3)

i=1
the C;; being nonnegative integers. From (2) and (3),
we see that P(u) = P(k,, -, k;) is given by the
number of solutions in nonnegative integers of the
Diophantine equations
k,=a‘+zalcn, i=1,"‘,l. (4)
i=1+1

In the case of the algebra A4, the positive roots are

of the form
e‘ - ek,

i<k=1,---,14+1,
and are 3/(/ 4+ 1) in number. The simple roots are
i=1,-+,1,

where the e; are unit vectors in a (/ + 1)-dimensional
real linear space. The roots (and weights) are con-
sidered to lie in a hyperplane X't x, =0 of this
space.
Expression (2) in the case of 4, can be written as
i

!
2 ko, = z E Qg Z g1

i=1 r=1 s=1 t=1

€ — €15

®

where a double-index notation for the a’s has been
chosen for convenience. Then, Eq. (4) for 4, becomes

i I—itr
ki=3 2 @y pa, i=1--,1L (6)

r=1 j=r
In the case of 4, [~ SU(4)], for example, we have
ki =ay; + ay + a;,
ky = ay3 + a5 + az, + ay,,
ks = a4 + a3 + ay .

(6)
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The number of solutions of (6) is given by the-method
of generating series* as follows: Let x;,- -+, x; be
I real variables and define a generating function F,;
for A, as

Fl(xl >

---,xl)=ﬁ[lﬁ1( Hx,+k)_l]. ™

i=1 j=1

Then the partition function P(k,, * -+ , k;) is given by
the coefficient of H,_l x¥ in the power-series
expansion in Xy, * * -, x; of F;. (The convergence of
the series is assured by a suitable choice of values for
the x-variables.)

The expression (7) in the case of 4, is of the form

Fy(xy, x5) = {(1 = x)(1 — x9)(1 — xyx9)} ™%
III. RECURSION FORMULA
Obviously,
Fy(xy, 05 x) = DiFfy 4(xy, 0 o ®)

where F,_, is the generating function corresponding
to the algebra 4, , and

1 1 —1
D,=H(1— TI x,~) .
i=1—3+1

j=1

’ xl—‘l)s

®

We split D, into partial fractions as follows:

=(1- x,)‘lﬁ (1 - ﬁx)_

i=]—k

+ZT,(1— I xi)“l, (10)

i=2 t=1-j+1

—kglxl_k)_j

-3 -3 -1
x T] (1 - 11 x,) .
r=l—j—s+1

where

T,= (- ] EXC

i=1

s=1

(By convention, those x-variables with undefined
indices are ignored. Thus the product involving s
does not occur in 7;.)

Now, the coefficient of x¥ in D, is

I, = ﬁ (1 - ﬁxi)_l

k=1 i=l—k

+3 (= 1y H [x';':;*(

j—2

Z—J' —1
X H (1 - 11 x,) .
=1 r=]—j—s+1
Noting that the first term on the right of (11) is
D,_,, we substitute for it from (10) and, after simpli-

i -1
- H xl—k) ]
k=i—1

(1n

4 P. A. MacMahon, Combinatory Analysis {(Chelsea Publ. Co.,
New York, 1960), Vol. II.
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fication, obtain the recurrence relation

kp
_ t
I, = Z.xz_JH »

(12)
where we have used =
11——x’:’1 =t§]x’, x # 1.
1t follows from (12) with ¢t = i,_,, that
2 xjgt ”zl xjigpe -%xil. (13)

11_1—0 i1=0

The coefficient of xJ* in F, is then given by I,F, ,.

Let the coefficient of TT2 xk in F,_; be P(ky, -
k;,_,), the partition function corresponding to A,,.

It follows that the coefficient of T_, x* in F, is
P(ky, -+, ky)

17-9=0

ki i
Z z ZP(k1—l1a ky—ig, ce, ks —ipa),
f1—1=0 i} =0 41=0
(14

which is the required partition function.

Thus, knowing the function for a given /, that for
I 4 1 can be calculated recursively. Knowing P, one
can calculate the multiplicity of a weight for 4, using
Kostant’s formula (1). We demonstrate the usefulness
of (14) in the Appendix.
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APPENDIX

The usefulness of the recursion formula (14) can
be demonstrated vividly in the cases of A, and A,.
For the former, (14) takes the form

ks
P(ky, ks) = Z;)P(kl — i), (A1

where P(k) on the right is the partition function
corresponding to 4, given by the coefficient of x*
in the expansion in power series of F(x) = (1 — x)7,
and is always unity.

It is not difficult to see that

P(ky, ky) = 1 + min (ky, k), (A2)
which is a well-known result.®
In the case of A5, Eq. (14) becomes
ks §
P(ky, ks, ky) =2 EP(kl — i, ky —j)a (A3)

i=0i=0
% B. Gruber, J. Math. Phys. 7, 1797 (1966).
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where P(k, k') on the right is given by (A2). Since
ko —j <k, —i when k; > k,, we find that, for

kl 2 k2 Z k8’

Plkys ky, ke = 3G+ DL+ ky — )

Jj=0

= 5(1 + kg)(2 + ka)(3 + k)
+ $(ks — ks)(I + ka}2 + k).

Since P vanishes for negative arguments, the sum
over j in (A3) is only up to k, when k; > k,. Thus,
for k; > kg > k, and k3 > k; > ki,

P(ky, ko, ks) = ¥(1 + k)2 + kg)(3 + ko).
When k, > ky > k3, we have that

(A4)

(AS)

Plky, k3, ks)
= (1 + k)1 + ky — ky) + #(k2 — ky)
X (kg — ky + D2k + k3 + 2)
+ 3k, — ko + ky)fky + ks + 2 — (kg — ko))
+ kolky — Ky + kg)(1 — &y + Ky + k3)
— tks(1 + k3)(1 + 2k5)], when k3 >k, — ky,
= (1 + k(1 + kg) + #ks(1 + ka)(3ky — k3 + 1),
when ks <k, — k. (A6)

> SUQ) 2131
When k, > k3 > k;, we have that
Pl Ko, ks)
ky 3 ks k
- (2 S+ 3 Z)P(kl — ik —J). (AD)
7=0i=0  j=py+1i=0

The first part on the right is given by Eq. (A6) with
kg — k;.Fork, > k3 > k;, the second partis given by
P'lky, ke, ks)
= Jks — kD2 + ko + Ka(ky + 2) — (ky — kp)?
+ 3Qky — 2k, — DA + ky + ky)}
+ velki(ky + 1D)(2ky + 1) — kg(ks + 1)
X (2ks + 1)}, when kg >k, — ky,
=31 + k)2 + k) (ks — ko),
when k&, <k, —k;. (A8)

Finally, when kg > k; > k;, the sum over j in
(A3) is only up to k,. Splitting (A3) as in (A7), the
first part is known, while the second part is obtained
from (A8) with k; — k,.

It has been correctly pointed out that the case
ky > ky > ky can be derived from (A4) with k; <> k;.
Also, (A7) is given by (A6) under the same exchange.
This is seen from the symmetry of the Diophantine
equations (6’). However, the purpose of this Appendix
is only to demonstrate the usefulness of Eq. (14). See,
however, Ref. 6.

% B. Gruber, Nuovo Cimento 484, 23 (1967).



JOURNAL OF MATHEMATICAL PHYSICS VOLUME 10, NUMBER 12 DECEMBER 19%969%

Wavefunctions on Homogeneous Spaces

HEeNRI BACRY
Centre de Physique Théorique, Marseille, France

AND
ARNE KIHLBERG
Institute of Theoretical Physics, Géteborg, Sweden

(Received 24 February 1969)

The properties of a class of homogeneous spaces of the Poincaré group are discussed. An 8-dimensional
space appears especially promising and the explicit unitary irreducible representations corresponding to
physical particles are given using scalar wavefunctions on this space.

INTRODUCTION

The concept of wavefunction has played a para-
mount role in particle physics since the advent of
quantum mechanics. A wavefunction is first of all a
representative of the state of the physical system.
Thus it is an element of the Hilbert space of state
vectors. But it has not only this abstract property. It
is an explicit function on coordinate space obeying
certain differential equations. These equations often
form the starting point for the introduction of inter-
actions. The best known example in relativistic
quantum mechanics is the Dirac wavefunction obeying
the Dirac equation. It gives an explicit realization of
the state vector in the Hilbert space defined by spin-{
mass-m (> 0) unitary irreducible representation of the
Poincaré group. The great importance of the Dirac
equation lies in the ease by which the electromagnetic
interaction is introduced.

The impact of the Dirac theory on the research on
wave equations and wavefunctions for free relativistic
particles has been enormous. Thus almost all work in
this field has started from the assumption that a
wavefunction is a spinor- (tensor-) valued function
on the Minkowski space.™2 All this work on relativ-
istic wave equations has, despite its elegance and
beauty, so far not contributed in a significant way
to the solution of the theoretical problems of under-
standing elementary-particle interactions other than
the electromagnetic ones. It is, therefore, natural to
ask whether one could widen the concept of wave-
function. Two generalizations are close at hand.

1 P. A. M. Dirac, Proc. Roy. Soc. (London) A155, 447 (1936); G.
Petiau, thése (Masson & Cie., Paris, 1936); R. G. Duffin, Phys. Reyv.
54, 1114 (1938); N. Kemmer, Proc. Roy. Soc. (London) A173, 91
(1939); M. Fierz, Helv. Phys. Acta 12, 3 (1939); M. Fierz and W.
Pauli, Proc. Roy. Soc. (London) A173, 211 (1939); W. Rarita and J.
Schwinger, Phys. Rev. 60, 61 (1941); L. de Broglie, Théorie générale
des particules a spin (Gauthier-Villars, Paris, 1943); H. J. Bhabha,
Rev. Mod. Phys. 17, 300 (1945); 21, 451 (1949); S. N. Gupta, Phys.
Rev, 95, 1334 (1954); H. Umezawa and A. Visconti, Nucl. Phys. 1,
%{)92356); S. Weinberg, Phys. Rev. 133, B1318 (1964); 134, B882

2 V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci. U.S. 34,
211 (1948).

The first one consists in considering so-called infinite-
component wavefunctions., Then we are concerned
with functions on Minkowski space with values in an
infinite-dimensional representation space of the homo-
geneous Lorentz group. During the last few years this
possibility has been the subject of many investiga-
tions.? The second generalization consists in replacing
the Minkowski space by a larger space on which the
Poincaré group acts. If this action is to be transitive,
one is lead to consider the homogeneous spaces of the
Poincaré group. Such a generalization has been
proposed by Finkelstein and others.*-® Of course,
there is nothing preventing us from considering both
generalizations at the same time, i.e., infinite-compo-
nent functions on a homogeneous space. However, as
we shall see in Sec. 1, the spin degree of freedom is
naturally connected to certain coordinates in the
homogeneous space and therefore we may completely
avoid components or indices as long as we deal with
one single particle. This possibility of having con-
tinuous variables describing the spin has been already
touched upon by Bargmann and Wigner.? It may help
to give the spin a dynamical role.®7*1° A more far-
reaching generalization of the concept of wavefunction

3 E. Majorana, Nuovo Cimento 9, 335 (1932); Harish-Chandra,
Phys. Rev. 71, 793 (1947); Proc. Roy. Soc. (London) A192, 195
(1948); I. M. Gel’fand and A. M. Yaglom, Zh. Eksp. Teor. Fiz. 18,
703 (1948); G. Feldman and P. T. Matthews, Phys. Rev. 154, §
(1967); Y. Nambu, ibid. 160, 1171 (1967); Proceedings of the Eighth
Nobel Symposium, 1968 (Almqvist & Wilksell boktryckeri, Stock-
holm, 1968), p. 105; C. Fronsdal, Phys. Rev. 156, 1653 (1967);
Proceedings of the Eighth Nobel Symposium, 1968 (Almqvist &
Wiksell boktryckeri, Stockholm, 1968), p. 119; T. Takabayasi,
Progr. Theoret. Phys. Suppl., 339 (1965); Proceedings of the Eighth
Nobel Symposium, 1968, (Almqvist & Wiksell boktryckeri, Stock-
holm, 1968), p. 157; 1. T. Todorov, Proceedings of the Eighth Nobel
Symposium, 1968 (Almqvist & Wiksell boktryckeri, Stockholm,
1968), p. 133.

4 D. Finkelstein, Phys. Rev. 100, 924 (1955).

5 A. Kihlberg, Arkiv Fysik 28, 121 (1964); Nuovo Cimento 53A,
592 (1968).

¢ H. Bacry and J. Nuyts, Phys. Rev. 157, 1471 (1967).

7 F. Lurgat, Phys. 1, 95 (1964).

8 J. Nilsson and A. Beskow, Arkiv Fysik 34, 307 (1967).

? A, Kihlberg, Arkiv Fysik 39, 77 (1969).

10 A. Kihlberg, “On a New Field Theory,” Report No. 68-9,
Institute of Theoretical Physics, Goteborg (1968).

2132



WAVEFUNCTIONS ON HOMOGENEOUS SPACES

has been recently proposed by Finkelstein,! but we
shall not consider it here.

The construction of wavefunctions for free rela-
tivistic particles is only the first step towards a particle
theory. Interactions have to be defined. Since particles
are created and destroyed, one has to perform second
quantization and define fields using creation and
annihilation operators in a Fock space. An example
of such a field theory has been constructed and shown
to lead to many unconventional features such as loss
of the spin-statistics connection, nonlocality, and
unusual analytic properties of the scattering ampli-
tudes.’® On the other hand, it seems promising for
hadron physics since it has built-in decreasing form
factors.

In Ref. 6 a homogeneous space is used to build
wavefunctions for particles with nonzero mass and
spin. These wavefunctions satisfy two differential
equations corresponding to the two invariant oper-
ators of the Poij-caré group. In other words, they
satisfy one equa. »n for the mass and one for the
spin. A combination of the two equations is derived
from a Lagrangian theory which leads to a mass—spin
relation.

This paper contains two parts. The first one is
general in character. We classify all homogeneous
spaces of the Poincaré group P which “contain” the
Minkowski space and which have continuous sta-
bilizer groups. The natural action of P on these spaces
is given. It is shown that the generators of P can always
be split into an orbital part and a spin part which are
mutually commuting. We examine which spaces
admit an invariant measure and which admit half-
integral-spin wavefunctions. The homogeneous space
of lowest dimension having these properties is of dimen-
sion 8 and it is therefore natural to consider this space
first. This is done in Sec. 2. After a description of the
space with the aid of the coset variables defined in
Sec. 1, an equivalent description is given in a spinor
formalism. The generators and the fundamental
invariants of the Poincaré group are calculated. After
these general features, the different physical cases are
discussed, namely massive spinning particles, massive
spinless particles, and massless particles. In each case,
a complete set of wavefunctions is explicitly given and
a scalar product defined.

The so defined unitary irreducible representation
of P can be extended to representations of the full
Poincaré group including space and time reflections
We do not discuss this extension here but refer to
Refs. 5 and 6.

11 D, Finkelstein, J. Math. Phys. 7, 1218 (1966).
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1. CLASSIFICATION OF HOMOGENEOUS
SPACES

A homogeneous space E of a group G has the
following properties:

(a) It is a topological space on which the group G
acts (continuously), i.e., let y be a point in E, then gy
is defined and is again a point in E (g € G).

(b) This action is transitive, i.e., if given any two
points y, and y, in the space, it is always possible to
find a group element g € G such that

Vo = gY;. (1.1)

There is a one-to-one correspondence between the
homogeneous spaces of G and the coset spaces of G.
Denote by S, the maximal subgroup of G which leaves
the point y, invariant,

(1.2)

S, is called the stabilizer of y,. Now by writing any
group element of G in the form g = g.g,, where
g0 € S, and g, € G/S,, we see that, by virtue of the
transitivity property (b), any point y € E can be
given by

gVo = yo, for ge S,

Y = &&oYo = &:)o- (1.3)

Thus the elements g, of the coset space give a param-
etrization of E. The mapping E <> G/S, is, of course,
continuous since the group multiplication is con-
tinuous and the action on E by definition is continuous.
Now the stabilizers S and S, of two different points y
and y, are conjugate, since from

SoYo = JYos
Yo=2g7", (1.4)
it follows that
8587y =y, (1.5)
ie.,
S =gSg. (1.6)

Therefore the enumeration of the different E of the
Poincaré group P amounts to an enumeration of the
subgroups of P up to a conjugation.

We shall now make an important restriction on the
class of homogeneous spaces we are going to consider
in this paper. We require that E always contains the
Minkowski space M which means that four parameters
of E can be denoted by x(x*). P must also act on x in
the usual way. This means that the stabilizer of a
given point in E can never contain an element of the
translation subgroup of P. The point x =0, for
instance, is invariant under all homogeneous Lorentz
transformations, but not under any combination of
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translations and Lorentz transformations. The sta-
bilizer must therefore be a subgroup of the homo-
geneous Lorentz group L.

The restriction to homogeneous spaces containing
the Minkowski space is done for physical reasons.
We think that it would be very difficult to make an
interpretation if the Minkowski space is not present.
In this way we are also led to the starting point of
Finkelstein.* Thus we can use his classification of
homogeneous spaces. However, he considers only
stabilizers which are generated from the Lie algebra
and therefore, for instance, those spaces which have
discrete stabilizers are missing. These spaces may be
interesting since they can have finite invariant meas-
ures.1? We hope to be able to consider these spaces in
the near future.

It is also of interest to consider the homogeneous
spaces of both P and P, the covering group of P. If
E = P/[S, then we write £ = P/S, where S'is the corre-
sponding subgroup of P. £ may or may not be topo-
logically isomorphic to E.

Let us now consider the action of P on the homo-
geneous space P/S. If we parametrize P in the form

8 = 8.8x @7
where g, is a translation x* and g; is a homogeneous
Lorentz transformation, then the points of E are
parametrized by x and £ modulo an element of S.
The action of P is given by left multiplication
mod S.

8a8A8:8: = Ba+Az8Az> (1.8)

Denoting a point in L/S by z we, therefore, have

(a,A)

(x,2)—> (a + Ax, A2) (1.9

and the action splits into an orbital part on x and an
“internal” part on z. For the infinitesimal generators of

A l:e-%s cos %He_ih'ﬁw _ eé”(t + i) sin %oe—iiw—w); —e¥esin %oeiﬂ}w—w)

e—%s sin %ee&w—w) + e}s(t + iu) cos %6ei1}(¢+w); e&s cos %oeii(ww)

One sees that ¢ + y and ¢ — y are defined only up to
a multiple of 4=. It is, therefore, natural to require the
ranges
0<¢+y<im
“2rLp—p< 27 (1.16)
for L = SL(2,¢). By similar arguments it can be
shown that, if (1.13) is considered to be a parametriza-

12 1., Michel (private communication).

H. BACRY AND A. KIHLBERG

P this means that they can be written as

P, =i—
# ox+’

M,, = ixu-a—)a; —ix, 24 S,,  (110)

ox*
where the S,, are differential operators only in the
variables z. The explicit expression for S,y » of course,
depends on the homogeneous space at hand.

We now introduce a parametrization of L(L) which
serves to induce suitable parametrizations of all the
homogeneous spaces L/S or L/S. To this end we use
the Iwasawa decomposition of L. It says that L can be
written as a product of three subgroups's

L = KAN, (L.11)

where K is the maximal compact subgroup SO(3)
[SU(2) for L}, A is an Abelian one-parameter sub-
group generated by an acceleration and N is a nilpotent
(in fact, also Abelian in our case) 2-dimensional
subgroup. Let the Lie algebra of L be spanned by
L,, with the commutation relations

[Luv ’ Lpa] = i{gvpLuo + g/vap - gupr - gvaLyp}'
(1.12)

Then we can let L,,, Ly, and Ly, generate K, Lo,
generate A, and Ly, — Ly, Ly + Ly, generate N.
Introduce now parameters (@, 0,y,s,¢,u) in L
through the formula

A= —"‘PLue—iOLa1e—iwL1:ei8Lo:

x e #tlLovtLalp—tullos—Lul (1 13)

According to the foregoing,p, 0, and y are parameters
of K, s is the parameter of 4,and ¢, u those of N. By
putting
Li; = }€i0%,
Ly, = }icy, (1.14)
A becomes an SL(2, ¢) matrix parametrized by
(9,90, - - -, u). Explicitly, we have

}. (1.15)

tion of L = SO(1, 3), the g and y can be chosen in the
interval [0, 27]. The ranges of the other parameters
are in both cases

0£L0Lm,

-0 <5, tu< o, (1.17)

Notice that topologically the group space of L(L) is
the product of a Euclidean space in three dimensions

13 K. Iwasawa, Ann. Math. 50, 507 (1949).
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and the group space of SO(3) [SU(2)]. The param-
etrization (1.13) is, of course, also a parametrization
of the homogeneous space belonging to the trivial
stabilizer consisting only of the unit element. Let us
calculate the action of L on this space. As an example,
we choose an acceleration along the z axis. Then from

eLoN(p, 0, -, u) = Ag, 0, -+, u), (1.18)

one gets

¥ =9
v =19,
=¥ sin 16

sin %0' = . 3°
(cosh € + cos 8 sinh €)

e* = e’[cosh € + cos 0 sinh €], (1.19)
e smf)coswsm'he ’
cosh e + cos Bsinh e
, _s sin 0 sin p sinh e
U =u-—e - .
cosh € 4 cos 6 sinh €
The infinitesimal generators are
cos 0 0 . 0 cosp 0
Sy =il——cCos@p—+sinp———F—|,
” (sin 6 %ag T %20 Sing azp)
Sg = i(cos 6 sin 9 — Cos 2 _Sing (Pi)
31 snf o P9  sino oy/)’
9
Sy = —i—,
12 a(P
Sa = i(—m— 4 cos cose-a—
o sin 6 d¢ ¢ 20

s———-m(pcosg—a-+sinﬂcos qvg-

sinf dy s

+ e~*(sin @ sin  — cos ¢ cos 8 cos y))g-
t

+ e7*(sin @ cos p + cos ¢ cos 6 sin y) ai),
u

.{cos @ O . 0
Soz = - 0—
02 l(sin 8 79 + sin ¢ Cos %

__ cos @ cos 69
sinf Ody

— e*(cos ¢ sin ¢ + sin ¢ cos 0§ cos w)-aa—t

+sin6sin<p§—
s

s . . d
— ¢7*(cos @ cos p — sin @ cos § sin y;)a— ,
U

So3 = i(—sin 08—80 + cos Ba% + ¢~ sin 0 cos w%

e . 0
— ¢~*sin 0 sin 1p5—)
u

(1.20)
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They are defined through the equation

SufIA(p, 6, - )] = lim (if){f(e“L»A) — f(A)},
0 (1.21)

where L,, is the corresponding SL(2, ¢) generator and
fis an arbitrary differentiable function of A.

Now the parametrization (1.13) also induces a
parametrization of other homogeneous spaces. Let,
for instance, the stabilizer be generated by Ly; — Lys.
Then we simply have to ignore the parameter # since
we consider A only up to a right multiplication by
exp [—iu(Loy ~ Ly)]. A parametrization of E is de-
fined by (¢, 0, y,s,t). The action of the group is
given by (1.19), omitting the last equation. The
infinitesimal generators are given by (1.20), putting
0/0u = 0. In the same way, one gets a parametrization
of the homogeneous spaces with the stabilizers N,
K3N, AN, KzAN, where K, = {exp (—ipL,,)}. Notice
that KgN and AN form groups with N as an invariant
subgroup. Also Ky and 4 commute. In this way, one
finds the spaces [5], [4], [3,], [3,], and [2] in the
Finkelstein classification. In Table I, all spaces are
enumerated and we have also indicated the param-
etrization. The above procedure needs only a slight
modification to cover also the other cases of Table I.
Define new parameters # and # through

A = —i¢L1’e-—iaLue-—ﬂ(Loﬁ-Lu)e *ia(Log—Lga)e—iWLue isLos .

(1.22)

Notice that 9 and s are unchanged, since N is an
invariant subgroup of K3AN. Comparing Eqs. (1.13)
and (1.22), we find

i =e*[tcosy — usiny),

i = e*lucosy + tsinyl. (1.23)

Equations (1.19) and (1.20) can be rewritten intro-
ducing 7 and # instead of ¢ and u. The cases [5,] and
[4"] are now obtained by omitting v or y and s. The
cases [5,] and [3,] need perhaps some further com-
ments. Take first [5,]. We want to single out a subgroup
exp a[cos 3fL, + sin }fLg]. Using the identity

exp (—i[yLyz — sLgs))
= ¢ #Lluexp (—iafcos } fLyy + sin 3 fLg]), (1.24)
where
o = —gfsin if,
g =1y —scotif, (1.25)
we find that ¢ is defined up to an angle 4= or 2, as is
. Therefore, we may choose the same range for ¢ as

for y and the space [5,] is in fact parametrized by
three Euler angles and two real parameters # and &.
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TaBLE L. Homogeneous spaces of P and P belonging to continuous stabilizers of L and L. The ranges of the parameters are — o <
xt, s, L, Lt <0,0K0<7m0<@+y<4n, ~2n<9p—y < 2nfor Pand 0 < ¢, v < 27 for P.

Notation
Stabilizer Half-integral of
generated by Dimension Parameters spin Invariant measure Finkelstein
0 10 xb, @, 0,9, 5, tu Yes d*xe* ds dt du ded cos 0 dy {61
Lyg ~ Ly 9 xu, @, 8, Y, 5.t Yes dxe® ds dt dod cos 6 dy I5)
Lys 9 x#, @,0,s,7, u No d*x ds df du depd cos 0 (5]
coS 4fLys + sin 4fLos 9 xx, @, 0,9, 1,0 Yes dx df du dod cos 9 dip (5,1
0<f<L~
Lyy — Ly 8 xi,0,0,9,s Yes d*xe® ds dpd cos 0 dy 4]
Ly + Ly .
Log — Lgg, Loy 8 xk, @, 0, 9,1 Yes No [4]
Lys, Los 8 xe, 90,10 No d*x df du dod cos 0 {47
Lya, Las, Ly, 7 Xb, gk, ‘}"“]“ =1 No dx (d°qlqo) {31
Lyg, Loy, Loy 7 xe, gr, qrg, = —1 No d*x (dg° dg* dq*|q®) 3}
Lyg, Loy — Lgg 7 xp, @, 0,5 No d*xe* ds dpd cos 0 [3,)
Loy + Lgy
08 3Ly, + sin §fLos 7 xs, 9,0, Yes No 13,1
02 — Las
Loy + Ly
0<f<m
Ly, Log 6 xn, @, 0 No No [2)
02 = Las
Ly + Ly
L, 4 x# No dix {o1

Similar arguments lead to the parameters of [3,] in
Table 1. The cases [3] and [3'] are perhaps not so
conveniently treated using the Iwasawa decomposition,
but it is well known that the homogeneous spaces
corresponding to the stabilizer SU(2) [SO(3)] is the
timelike hyperboloid and that belonging to SU(1, 1)
[SO(1, 2)] is a spacelike hyperboloid (cf. momentum
space and Wigner’s little groups).

When the stabilizer contains a subgroup of SU(2) it
also contains the two-element group Z, of matrices
+1. This means that points in the SL(2,c) group
space differing by the element —1 must be identified
so that one is lead to the SO(1, 3) group space and
further on to a homogeneous space of L = SO(1, 3).
Therefore, these spaces cannot carry half-integral-
spin representations. In Table I, we have denoted those
spaces which admit half-integral-spin representations.

Besides the topological properties, a homogeneous
space is characterized by its invariant measure if it
exists, Since we know explicitly how the group acts on
the space through equations similar to (1.18), finding
the explicit form of the measure is straightforward.
They are given in Table I. The existence of such a
measure may be important for the possibility of
defining interactions in a field theory based on a
homogeneous space.1®

If we now choose to work with scalar wavefunctions
on the homogeneous spaces, the number of param-
eters is related to the number of wave equations and

the type of particle.* Call the dimension of the space
d and the number of wave equations e. Thend — e = 4
for a massive particle with spin and d — e =3 for a
massive particle without spin and a massless particle.
Looking at the table we then see that the case [4]
requires a minimum number of wave equations if we
insist on the existence of an invariant measure and
half-integral-spin representations. This space is ex-
actly the one which has been suggested by us®¢ and
which will be treated in more detail in the next section.

2. MODELS BASED ON THE 8-DIMENSIONAL
HOMOGENEOQOUS SPACE (4]

As it has already been emphasized, the homogeneous
space [4] is the smallest one which satisfies the two
following conditions:

(a) it possesses an invariant measure,
(b) it can be used to describe half-integral spins by
means of scalar wavefunctions.

Hereafter we will refer to this space as the space #,
each point of which is parametrized by the vector x
and the set {s, @, 0, y}. The bar on H is to recall that
we are concerned with a homogeneous space of P, the
covering group of the Poincaré group P. The corre-
sponding homogeneous space H of P is obtained by
identifying points of H pairwise. {s, ¢, 6,9} and
{s, ¢’, 6, '} are considered as identical when ¢" ~ ¢
and v’ — y are multiples of 2.

¢ H. Bacry, Commun. Math. Phys. 5§, 95 (1967).
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Besides the above parametrization of the space H,
another one appears to be very useful.® It consists in
labeling each point of H by a two-dimensional spinor
£ = (&) # 0 in the following way:

£ = eeitv cos 10ete,
£2 = ebeetv sin 19eite, @.1)

Our four variables are now &£, £, £!, and &2, where
&* denotes the complex conjugate of §*. The param-
etrization of the Minkowski space is made in an
analogous way, using spinor indices

XO + x3 xl

x4 ix2 x® — X3

¥ xié

21 x22 :

— ix?
X =

(2.2)

X

The action of P is simple. Let [a, A] be an element of
P. Then

[a, Al(x, &) = (AxAt + a, A§) 23
or, in making use of spinor indices, we have
X% = AN 4 g,
&% = Aj¢E. 2.4

The invariant measure is the volume element d%x d*&,
where d4£ stands for d&! d&2 dE dé2,
Any function f(x, &) is transformed as follows:

la, A}f(x, &) = fla, AT (x, §)). (2.5)

It is very easy to derive the following generators of
SL(2, c)5:

1 2 ___18_ _)
<§a£2+£ o0& : 08 585

31 _ _ = 1a 2 la _ éa
S (5 o2 Eas*”% o0& 585‘)
1a 2 1a 29
(Eafl 5 - ¢ 0&! 5652)
0 9 2
Slo= 1 2 i V] )
(Eae2+§agl+§ 52+§as

Kl 3
S20 =S 1 2 YU 2 )
°= (5 a8 g a; Tt

g 2 0 10 s 0
Sos z(E T Ry R as‘)
(2.6)

Two other operators, induced by linear transforma-
tions on the spinor space, can be defined. They are

1 20 40 s 0
_- = —_— '7
(éasl + ¢ Py Eas 3 5) Q.7

15 H. Bacry and A. Kihlberg, Commun. Math. Phys. 1, 150 (1965).
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and
0 0
= = 51 2
( o T 08
the latter is the generator of dilatations in the spinor
space. A and D commute with SL(2, ¢) and with each
other. They form together with the S** the Lie algebra
of GL(2, ¢), the group of all linear transformations on
the spinor space. Using transformations (2.1), the
generators (2.6)-(2.8) become

+ & Yl g agﬁ)' (2.8)

0 0 cos 6 0
§P= i 227 4 ising 2 +icos
sing oy T M7 5 Psin6dg’
Sm=—im—a——tcos<p—a—+tsan1cosea
sin 6 dyp 06 sin 6 0
L
o’
N —:smqocosei+icosq)cosﬂi
sin 6 oy 06
2.9)
sin ¢ 0
—i—~—+icosgsind—,
sin 6 do Os
§* = —icos (p;osga—ay—)-i-zsmgvcoseé%
+ic?sq)—a—+isin(psin0—,
sin § do s
S""’=—zsm0—a—+zcost9a
L] os’
A=—il, (2.10)
dy
0
D=_—. 2.11
Os 1)

The relations (2.19) were already obtained in Sec. 1:
Replace the terms 0/0¢ and 0/du by zero in Egs. (1.20).
The generators of the Poincaré group are

d
P, =i—, 2.12
Pl (2.12)
M, =xP,—xP,+8S,,. (2.13)
The Pauli~Lubanski vector W*, defined as
WH = }e"P*M P, = }"*P3S,,P,,  (2.14)

is easily computed in a spinor basis.!> One gets
W = (E2 — }0°E3)PY

where

+ (E2 — J0PEHPT, (2.15)

, Eb=g¢,

Do
o

(2.16)
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[To be more precise, one should write E* = £%(9/0&?),
which cannot be confused with Ef® = §(0/0¢,).] One
readily obtains

0 i 0
Wli = SI2P11 1 Y P21 _ gl Y Pl2
+ ¢ T & PN
W22 = _SIZP22 + 521 P12 — 52__3_ le
o o 2.17
W12 = isO3P12 + 51_3_ P22 _ 52__6__1_)11 @ )
98? o8 7
W21 —_ __iso3P21 + 52__6_ Pll _ 51_2_ P22.
o8 o€

A somewhat tedious calculation leads to the following
expression for the invariant W,W* = }W,,W*:

_ aghy(prs 0. 0
VV”W“ o —P”P“D(D + 1) + (Paﬂé 5 )(Pﬁa_é.' af")

(2.18)

Note that this invariant is expressed in terms of four
invariant operators, namely P,P*, D, P,,£*€%, and
P3(9/9&7)(0/0&%). Note also that £2£ are the com-
ponents of a lightlike vector k in the future half-cone.
The components of k are, according to Egs. (2.1) and
(2.2),

k = 1e*(1, sin 6 cos ¢, —sin 0 sin @, cos 6). (2.19)

The angle y is not involved and, taking into account
the range of ¢, one can say that “a spinor up to a
phase” is a double-valued function of a future lightlike
vector. In other words, {x, k, ¢} is a parametrization
of the homogeneous space H which is covered twice
by H.

The fact that W,W* is built with many invariants is
not surprising: The number of degrees of freedom is
larger than the one which is required for a single
elementary particle. If we want our wavefunction to
describe an elementary field, it is necessary to have an
irreducible representation of the Poincaré group. This
is obtained by having the wavefunction satisfy some
differential equations. According to Ref. 14, it is
necessary to require four equations for the general
case (nonzero mass and nonzero spin) and five
equations in the case of a massless or a spinless
particle. These three cases are now discussed succes-
sively.

Case A: Mass and Spin Different from Zero. Even if
mass and spin are fixed, that is to say even if the
wavefunction f'is an eigenfunction of P, P* and W, W*,

P,Pf(x, &) = m’f(x, &), (2.20)
W W (x, £) = —m%i(j + Df(x, &), (2.21)

H. BACRY AND A. KIHLBERG

one is left with “internal” degrees of freedom. This
means that the representation is reducible. One needs
two extra conditions to get a specific particle in the
Wigner sense. We require f to be an eigenfunction of
D and A which both commute with the Poincaré

group
(2.22)

(2.23)

Therefore, an elementary particle is labeled in this
way by its mass m, its spin j, and the two quantum
numbers « and n. The parameter «, which is related to
a noncompact group, can take any complex value.
The number n can only take integral or half-integral
values because of the periodicity condition in the
angle y. A complete set of solutions of Egs. (2.20)-
(2.23) can be written in the form |m, j, n, a; p, o),
where p and o are eigenvalues of momentum and the
third component of spin, respectively,

Two models have been built on such a scheme. In
the first one,®? a field describes a particle with a given
mass and spin, but the field functions also depend on
the new quantum numbers « and n. These may turn
out to be connected to known elementary-particle
quantum numbers or merely to be phenomenological
parameters.

In Ref. 6, a slightly different aspect is discussed:
One thinks of « and » not as arbitrary numbers but
fixed by some natural condition. In fact, the wave-
function is required to be analytic in the & variables.
In other words, (2.22) and (2.23) are replaced by

S _9_

ogt 98
Using (2.18) and (2.21), one readily sees that D
coincides with the spin operator. Equations (2.24) are
equivalently written as

(2.24)

(2.25)

where j is the spin of the particle described by the
wavefunction. Consequently, this theory appears as a
particular case of the first one, choosing n = a = j.
The fundamental physical difference between the two
models is that there is no place for internal quantum
numbers in the second one.

As far as we are concerned with free particles, we
must explicitly build the complete set of kets |m, j, «,
n; p, o) as functions of x and £ and define an invariant
scalar product. Any wavefunction f(x, &) of a single
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particle in the Wigner sense is a solution of the four
Eqgs. (2.20)-(2.23):

(a) f(x, &) satisfies the Klein-Gordon equation. It
is, therefore, convenient to introduce the Fourier
transform f(p, &). The Klein-Gordon equation re-
quires f to have its support on the mass shell. [Note
that f(p, &) is not a scalar function under the Poincaré
group since under a translation it is multiplied by a
phase factor. Moreover it is not a function on a
homogeneous space since the quantity paﬂf“éﬁ is an
invariant. The homogeneous space defined by the
couples (p, &) with the restriction pmHE“Eﬂ = m’,
where y is a positive constant, is isomorphic to the
group SL(2, ¢).]

(b) Consider now the equation involving the W, W*
operator. It is convenient to *“‘boost the £’s to the rest
frame.” Let A, be any transformation which maps a
given four momentum p of mass m on the vector
(m, 0) and let A act on §,

£ = (A58 (2.26)

Since A, acts linearly on the spinor space and is a
unimodular transformation, the operator D is un-
changed. On the other hand, after this transformation,
only p,; and p,, are nonvanishing. Consequently, the
operator W,W* of Eq. (2.18) becomes

W = —mz[D(D + 1) — (1€ + 1€

& o 2.27
X (85/13511 + 851285/2)} ( : )

or, equivalently, making use of the other parametriza-
tion,

1 9. 0 1

W WH = m? —|(sin §’ —
W= [sin o ae'( ’ ao') t oty
2 2 2
x (_3_2 + 2 2coser —a—)jl (2.28)

oy’ d¢’ og'dy’
Equation (2.21) then shows that f(p, s', ¢’, 8, v') is a
linear combination of Wigner functions DJ (y', ¢’,

@").2¢ They also satisfy

i pi —op (2.29)
aq), an an
.0 i

—iz= D}, = nDl,. (2.30)

(¢) The wavefunction f must be an eigenfunction
of the operator A = —i(9/dy). This operator com-
mutes with the Lorentz group and, consequently, it

18 See, for instance, A. R. Edmonds, Angular Momentum in
Quantum Mechanics (Princeton University Press, Princeton, N.J.,
1957), Chap. 4.
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is not affected by the transformation (2.26). Therefore
the equation Af = nf'is given by (2.30).

(d) The wavefunction must be an eigenfunction of
the dilatation operator D. Therefore, finally, one is led
to the following expression for the kets (not yet
normalized):

Im, j, o n; p, 0) = (p — QD;,(y', 0, ¢). (2.31)

Let us look for a scalar product of two wavefunc-
tions corresponding to the same mass. It must involve
an integration over the p and & variables. The trans-
formation (2.26) being unimodular, one has d*¢ =
d*¢’. In order to get a nondivergent scalar product,
one can choose, as was done both in Refs. 5 and 6, the
following definition:

/8 = f f DD peo(pee? — m¥) ¥, O30, )
Do
2.32)

or, equivalently, using the coset variables (s, 8, , ¢),

d’p s 2
(9 =[[ L e ds asp -k~ my)

Do

'f*(P, s, v, 0, 9)8(p, s, », 6, @), (2.33)
where k is the vector (2.19) and dQ is the measure
sin 0 df do dy. Since k is a future lightlike vector and p
a future timelike one, the scalar product (p- k) is
positive. Consequently, the constant y must be positive.
If we introduce the following vector « collinear to k,

« = (1, sin 0 cos @, —sin 0 sin @, cos 0)

= 2e%, (2.34)

and if we perform the integration in s, we obtain

d’p  dQ e
, 8) = _— . 2.35
o= T 39

a formula which can be used to normalize the states
(2.37).

Case B: Spinless Particles. This case is very close to
the preceding one. The Eqs. (2.20)~(2.23) are kept
(with j = 0). The Wigner functions D! for j = 0 are
constants and ¢ = n = 0. This means that the W, W*
equation implies

The only extra quantum number left is «. For a more
detailed discussion, see Refs. 5 and 9.

Case C: Massless Particles. We are interested only in
the physical case where W, W* = 0. Looking at Eq.
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(2.8), one immediately sees that this equality is
satisfied if one imposes the analyticity condition. This
means that the wavefunctions do not depend on
&l or £2. However, this property is in itself not sufficient
to guarantee that we have the physical case, since the
requirement of having normalizable vectors may put
further restrictions on the wavefunctions. Instead we
shall start from the equation

Wh = SP*, (2.36)

where X is the helicity operator which has a given
eigenvalue A in an irreducible representation. In the
special frame where p? = pt =p' =0 (p' =p? =
p° — p* = 0), the helicity operator coincides with S,
as can be seen from Eq. (2.17). It is always possible by
performing a Lorentz transformation A (for instance,
a rotation) to make the momentum satisfy the con-
ditions p? = p'* = p* = 0. Such a transformation
maps the spinor £ into another spinor &'.

The little group associated with a massless particle
is isomorphic to the 2-dimensional Euclidean group
E(2). The generators of E(2) corresponding to our
particular momentum are

Z = Sl2 _ %(511% —- 5/28_2,5 _ C.C.),
A= _i(g'zé + c.c.), (2.37)
Al = (5’28—?; - c.c.).

In the physical case, A' and 4% vanish. Therefore our
wavefunctions do not depend on the &* and &'
variables and the helicity operator X becomes

}: = :l(f’zi‘ — C.C.),

P Gl (2.38)

which coincides with the operator —A. Since X is an
invariant operator, the quantum number —n coincides
with the helicity A.

Any wavefunction which is an eigenfunction of D
must be of degree « in £'2and &% As an eigenfunction
of X, it must be of the form

Fp, &) = a(p)(& ) HEH+

Therefore a complete set of states will be given by the
kets |A, «; p). Only one value for the helicity is per-
mitted for an irreducible representation since we are
not interested in parity transformations. Before looking
for a scalar product for our wavefunctions, it is
natural to write them in terms of the coset variables

(2.39)
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(s, 9, 0, ). One finds, up to a normalization factor,
|12, 2; p) = (1 — cos 0")% 2 ~¥)5(p — ¢). (2.40)

As inCase A, the analyticity condition requires the
equality « = — 4.

In building the scalar product of two wavefunctions,
we cannot introduce the ¢ function already used in the
massive case, namely

O(ps€iEf — miy) = 0(p - k — m¥),

since p - k is now a product of two lightlike vectors
which vanishes when p becomes parallel to k. For-
tunately, there exists another invariant  function,
namely é*(p — k), and we define the following scalar
product:

f o) = f f d'p d*E8%(p — K)T*(p, D)3(p, £). (2.41)

The use of this d function suggests to us a new kind
of model for the wavefunction of a massless particle,
which does not satisfy our basic requirement but
which seems to be interesting enough to be mentioned
with some details in this paper. Let us consider
functions on a spinor space. Such a function can
always be expanded in terms of Wigner functions as
follows:

f(E) = Z fil(S)Diz('P, 0’ (P)

i,0,4

(2.42)

Now let us make the Poincaré group act on these
functions as follows. We describe the action for the
infinitesimal generators. Put first

P = g%, (2.43)
i.e., the momenta are multiplicative operators. The
M*”’s are chosen to be the S*”’s given by Eqs. (2.6).
They are no longer split into an orbital and a spin part.
What kind of representations do we get? Obviously
PP* is zero. Using (2.17), we compute easily the
components of W*. One gets

W = £oghA, (2.44)

where A = —i(0/0y). Consequently, only physical
particles are obtained. The only nontrivial invariant is
the helicity operator A. Any wavefunction of helicity
A will be given by

fi§) = ij(S)D:z('/’, 6, )

or equivalently

(2.45)

fu(&) = f(p)e™. (2.46)

The “‘usual”’ wavefunction on Minkowski space is
obtained by Fourier transformation,

(22)3 fd45eif“fﬁ”«ﬂ (6. (2.47)

fix) =
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It is natural to look for an analogous treatment of
massive particles. Since it is not possible to build a
timelike four-momentum from only one spinor, one
must take a larger homogeneous space. One possi-
bility consists in taking the Lorentz group itself. A
complete set of functions on this space has been given
by Strém,*” in terms of matrix elements Dy, (9, 6,
o, 9, 6, ). (Strom’s angles § and y are here replaced
by 6 and @, respectively.) The Lorentz group is acting
on this set of functions according to the generators
given in the appendix of Ref. 17. If we choose the
translation generators P* to be the following multi-
plicative operator :

P* = m(cosh a, sinh « sin 6 sin ¢,
sinh « sin 0 cos ¢, sinh a cos §), (2.48)

where the mass m is given, one has a complete pre-
scription for the action of the Poincaré group. By
computing the helicity operators and the spin oper-
ators, one gets

3V el
Z=M=ii

, (2.49)
(P oy
1 9/. 8
Wws = m?| —— Zsin L
wre=m [sin TET (sm ae)
1 /¢ o .
(L 1% cosh .
sin® 0(81,02 + o¢* cos awagz”
(2.50)

This last operator is identical to the Wigner operator
(2.28). A complete set of invariant operators is given

17 8. Strom, Arkiv Fysik 29, 467 (1965).
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by P, P*, W, W*, i d[dy, the eigenvalues of which are
m?, —m?j(j + 1), and n, respectively. Therefore the
wavefunctions of an elementary particle characterized
by m, j, n are of the form

fmip, v, 0, ¢) = g frip)DL(#, 6, v), (2.51)

where 1 is the eigenvalue of the helicity operator.

It is interesting to note that these wavefunctions are
closely related to those one obtains by using the
Mackey method of induced representations.!® This
remark is not too surprising. All ways of building
wavefunctions for elementary particles are equivalent
since we are concerned with the kinematics of free
particles only. This is in fact a consequence of the
Wigner definition of an elementary particle as an
irreducible representation of the Poincaré group.
Nevertheless, the explicit way of constructing wave-
functions may have important consequences when
interactions are introduced. Different kinematical
frameworks may suggest different dynamical postu-
lates. In order to test our model, it is therefore neces-
sary to look for dynamical schemes. An attempt in this
direction was made in Ref. 11. We hope to continue
these investigations.

ACKNOWLEDGMENTS

One of the authors (H. B.) wants to acknowledge
Nordita for financial support and Professor N.
Svartholm for the hospitality extended to him at the
Institute of Theoretical Physics in Goteborg.

18 G. Mackey, The Theory of Group Representations, Lecture Notes,
Univ. of Chicago, 1955; P. Moussa and R. Stora, Lectures in

Theoretical Physics, W. E. Brittin and A. O. Barut, Eds. {Univ. of
Colorado Press, Boulder, Col., 1965), Vol. 7A.



JOURNAL OF MATHEMATICAL PHYSICS VOLUME 10, NUMBER 12 DECEMBER 1969

Treatment of Degeneracies in the Schrodinger Perturbation Theory by
Partitioning Technique*

JonGg H. CHot
Department of Chemistry, University of Alberta, Edmonton, Alberta

(Received 10 February 1969)

The degenerate case in the Schrédinger perturbation theory has been treated by use of the partitioning
technique developed by Lowdin. In order to simplify the concept and treatment, the repeated partitioning
technique is utilized. This repeated partitioning allows us to use a one-dimensional reference space and to

determine the correct zero-order wavefunction ¢, .

1. INTRODUCTION

One of the convenient ways of solving the Schro-
dinger equation is to use a partitioning process.!?
The principal concept embedded in the partitioning
technique is that one may first concentrate on a
particular subspace, called a reference space. From
this reference space one obtains eigenvectors by way
of an eigenoperator® and the eigenvalues of a given
Hamiltonian. For this purpose, we can use an iteration
method or an expansion method.

The method of expansion is convenient when the
expansion converges rapidly. The choice of the refer-
ence space S(O) for this expansion is arbitrary so long
as the eigenvector has some component in this refer-
ence space. Let us consider a system whose Hamil-
tonian operator ¢ = J° + Vis only slightly different
from the Hamiltonian operator X° of some problem
which has already been solved. In this case, the method
of expansion is attractive if we take our reference
subspace S(0) to be that composed of all eigenvectors
of J€° whose eigenvalue is E°. Then the eigenoperator
reduces to a wave operator and the energy is expressed
in terms of the reaction operator.?

Loéwdin has given the relations between various
types of perturbation and his partitioning technique in
a series of papers on perturbation theory.’~* His
treatment of the Schrodinger perturbation theory has
been primarily for nondegenerate cases.

In this paper, the degenerate case of J€° is considered
mainly for the Schrddinger perturbation theory.*
There are two principal types of perturbation,
Schrédinger and Brillouin.® Even if their expanded
forms are different from each other beyond the first

* Aided by Research grants to the University of Florida from the
National Science Foundation and in part assisted by grants from the
National Research Council of Canada.

1P.-0. Léwdin, J. Mol. Spectr. 10, 12 (1963).

2 p..0. Léwdin, J. Math. Phys. 3, 969 (1962).

3 P.-0. Lowdin, J. Chem. Phys. 19, 1396 (1951).

4 E. Schrédinger, Ann. Physik (4) 80, 437 (1928).

8 L. Brillouin, J. Phys. Radium 33, 373 (1932).

order, their accuracies in terms of the order of
perturbation V are the same.

The Schrodinger perturbation scheme is manipu-
lated in such a way that the reduced resolvent? R,
should always exist. Therefore, the reference space
S(0) should include all® eigenvectors ¥? of J° with an
eigenvalue E® so that the reduced resolvent R, exists
in the complementary space S(P). Since S(O) is
multidimensional in our consideration, it is necessary,
first of all, to obtain the zero-order eigenvector ¢,

g
$a=3CH?, (1.1)
i=1
where the C, are constants and
B =E?, i=1,2,-",g, (1.2)
(ba] pa>=1. (1.3)

The constants C; are to be determined by considering
perturbed terms in the Hamiltonian. In order to
determine C; uniquely except for a phase factor, it is
necessary that the degeneracy is completely resolved
for the branch we are considering. The problem of
obtaining ¢, is conveniently attacked by the intro-
duction of the repeated partitioning. We perform the
repeated partitioning until we are able to determine
C; uniquely.

The process of this repeated partitioning is described
in Sec. 2 and its applications to degenerate cases of the
Schrédinger perturbation theory is given in Sec. 4
with accompanying examples in Secs. 4 and 5.

An advantage of using the partitioning technique in
perturbation theory is the flexibility of our manip-
ulation and the use of simple notations. This aspect is
most outstanding in the treatment of degeneracy,as

8 In the definition of O, we do not often have to introduce all
the W'? associated with the eigenvalue E° of J€°. By considering the
symmetry of 3¢ and J€, we could treat the problem in a subspace, the
dimension of which is h, where # < g. As an example, we can
consider the Stark effect in the excited state of the hydrogen atom.
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can be seen from the expressions in Sec. 4 where the
wavefunction is given correct up to third order.

2. REPEATED PARTITIONING PROCESS

For procedural convenience, we first introduce the
partitioning technique developed by Lowdin.?

Let us divide the Hilbert space in which we are
interested into two subspaces S(Q) and S(P), asso-
ciated with the Hermitian projection operators O and
P, respectively. O and P have the following properties:

1=0+P, OP=PO=0,
0*=0=0" P2=pP=P,
Tr (0) = h,

@21

where 1 is the identity operator for the Hilbert space
we are considering.

If we are interested in particular symmetry with
respect to J€, then we need only concentrate on the
subspace associated with this symmetry so that S(0)
and S(P) together form this particular subspace.

We consider a Schrodinger equation

%Y = EV. 2.2)

If O¥ = ¢ = 0, one can treat this problem in S(P)
only. However, if OF = ¢ # 0, then one can replace
(2.2) by

EOY = O(K + XT 5 ¥X)0Y, 2.3)
where
T = Plo- O + P(E — )PP, (2.4a)
with « 5# 0.
1t is convenient to use a symbolic notation,
T - T(E) = P/(E - Je). (2.4b)
Denoting
¥, =X + XTX, 2.5)
we can rewrite (2.3) as
E¢ = 0OX,04, 2.6)
where
¢ = OVY. 2.7

Since (2.2), which is an eigenvalue problem in an
infinite-dimensional Hilbert space, is contracted to
(2.6), which is an eigenvalue problem in a finite-
dimensional space S(O) with Tr (O) = h, we shall
call S(O) an A-dimensional reference space. Equation
(2.6) is equivalent to an A-dimensional secular
equation.

A. Repeated Partitioning

An eigenvector ¥ of X, with an eigenvalue E,
satisfies (2.6) if ¢ # 0. One of the problems left to us
in the partitioning process, when S(0) is multi-
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dimensional, is how to find ¢. In principle, we could
obtain ¢ by solving a secular equation, equivalent to
(2.6). However, before solving this secular equation
we have to know the value of E; hence, some other
method which circumvents this difficulty is necessary.

If there is any good reason for one to expect that the
vector ¢ is heavily localized in a particular subspace,
say S(0,) in S(0), then it is convenient to apply the
partitioning process again to partition S(0) into two
mutually orthogonal subspaces S(0,) and S(P,) and
associate them with Hermitian .projection operators
0, and P,, respectively, so that

0=0,+P, 0,/,=0,

2.8
0:=0!=0,, P*=P =p,. 28)

For Tr (0,) > 2, an occasion might arise that a
further partitioning of S(0,) into mutually orthog-
onal $(0,) and S(P,) would facilitate the treatment of
our problems. Projection operators associated with
S$(0,) and S(P,) are denoted by O, and P,, respec-
tively. They have the properties

0,=0;,+P;, O,P, =0,

2.9
0:=0,=0), P!=P,=P]. (2:9)

For the sake of convenience, let us call the partitioning,
which divides a Hilbert space into S(O) and S(P), the
unipartitioning ; the partitioning, which subdivides S(0)
into S(0,) and S(P,), we call the bipartitioning ; and the
partitioning, which again subdivides S(0,) into S(0,)
and S(P;) we call the tripartitioning. We can repeat this
process further. From now on, a bipartitioning, or a
partitioning of higher degree than bipartitioning, will
be called the repeated partitioning.

B. Bipartitioning
We now define a resolvent T in S(P,) as
Ty = Py[f - (01 + P) + P(E — )PPy,

where § # 0. Then by the bipartitioning we obtain,
from (2.6),

EOl‘IS = 0,(%, + J€1TlJ€1)01¢,

(2.10)

.11

where it is understood that J¢, and 7, involve the
eigenvalue E. As in the case of T, we can denote T,
symbolically as

P, P,

I, = = .
E—3%, E— (¥ + JTlk)

(2.12)

Similar symbolic notations T;, / > 2, will be used in
the following for further partitionings, i.e.,

T, = PJ(E — X)), (2.13)
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where

X, =%, +¥_,T,%,,. (2-14)

It is shown,? in the case of unipartitioning, that
there exists an eigenoperator (2 satisfying the relations

XQ =EQ, Q*=Q, (2.15)

provided that

EO = 0%,0 = 0XQ. (2.16)

In order to establish relations similar to (2.15) and
(2.16) for the bipartitioning, it is convenient to define

Q= (1 + T¥)O, 2.17)
Q =1+ T.J)0,, (2.18)
Q= Q)Q,, (2.19)
so that
Q§=QO, Q§=Ql, Q2=Q,
0Q1= QIO= Ql, 220
Q,Q,=Q,, (2.20)
0,Q, = 0,.
Then it can be shown that
¥Q = EQ, .21
provided that
EQIQ, = Ql1,0, (2.222)
or
E01¢ = 0136191§[’
= 01!]6201¢, (2-22b)
where
¥, = XK, + &K, (2.23)

according to (2.14).
Using the relations in (2.20) and (2.21), this is seen
as the following:

EQQ, = 8Q,Q,
= X(1 + TX)0(l + T,¥X,)0,
= J(l + TR)( + T,¥)0,
= J\(1 + 71,0,

= 3,9,. (2.24)

Multiplying Qf or O, from the left on both sides of
(2.24) we obtain (2.22).

It is important to note here that the condition
expressed in (2.22) not only determines the eigen-
value E, but it also determines a correct vector O,V
If the reference space on which the eigenoperator
acts is multidimensional, an arbitrary vector in that
reference space;in general, will not satisfy the relation
(2.21) unless Tr (0y) = 1.
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C. Tripartitioning
Following the definitions in (2.13) and (2.14), for
the case of the tripartitioning, one obtains
EOY = 04(%, + X, T,3C)0.Y

= 0,3¢,0.%F. (2.25)

The eigenoperator which satisfies the relation (2.21)
can be defined as

Q= Q,Q,Q,, (2.26)
where €, is given by (2.18) and
Qz = (l + TzJez)Og. (2.27)

Relations similar to (2.20) and (2.22) are satisfied
for Q,.

The partitioning process could be repeated further
until one finally obtains a one-dimensional reference
vector. If the partitioning is performed repeatedly
n 4+ 1 times, then one can write, in general,

Q=09 Q,, (2.28)
EO¥ = 0,%,,,0,% (2.29a)

or
EQIQ, = Q'x,Q,. (2.29b)

3. DEGENERATE PERTURBATION THEORY

We consider that the Hamiltonian is decomposable
into two parts J€° and V, so that X = J° + V, where
V' is small and J€° has known eigenvectors and known
eigenvalues. Let us consider a particular eigenvalue

E® which has degeneracy of order g,
Je‘o‘lﬂ: = Eowg’ i=1-",¢g (3.1
SHEHETS (3.2

For this case, it is convenient to define O in Sec. 2 by®

where

0= __le‘l"!) (il (33)
Then (2.6) reads .
E¢ = O(E°+ V + VTV)04 3.4
or
E¢ = O(E® + VW,)0¢
= O(E® + t,))0¢, (3.5)
where
Wo=1+ TV, (3.6)
ty = VW,. 3.7

The operator 1, is called the reaction operator and W,

is called the wave operator.?
We restrict ourselves to the case where ¥V is small

enough to allow the expansion®

E=E0+2E(i)

i=1

(3.8)
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and

T = Ro 2 (V’Ro)",

n=0

(3.9)

where E% denotes the ith-order energy with respect
to the power of V,

V' =V -3 EY (3.10)
i=1

R, = PJ(E® — %). (3.11)

For simplicity, let us introduce the notation x4 e,

3*© = E°,

B = E 4V,

kP = %@ 4+ VR,

*® = 12 4 [~EVVREV + V(RV),

1D = % 4 [—EPVRIV + (EVVREY
— EP(VRVRYV + VRIVR,V) + V(R VY],

(3.12)

where J“) is an approximate operator of J,; correct
to the ith order.
Under the assumption of the validity (3.8), one can
see that
03,0 = lim 03%0.

i~

(3.13)

Sometimes the degeneracy remains? in all orders of V.
If a degeneracy of order f, f < h, remains in all orders
of V, one can reduce!-? the dimension of S(0) so that
Tr (0O) = h — f + 1. Hence, in the following process
we can assume that the degeneracy is completely
resolved at a certain order of perturbation.

In the application of the partitioning technique to
the degenerate case of perturbation theory, we have
first to decide in which branch of the splitting we are
interested. Let us assume that we are interested in the
branch 4. We repeat the partitioning process until the
degeneracy is completely resolved for the branch A.
Once the degeneracy is completely resolved for the
branch we are interested in, we are able to determine
the zero-order wavefunction ¢, uniquely except for a
possible phase factor. Thus the expression for the wave-
function and the energy depends on how many times
we perform the partitioning process, that is to say, the
degree of partitioning, and also on the degree of
resolution at each stage of partitioning. The degree of
partitioning depends on the resolution and persistency
of the degeneracy of the branch A4 only. Even if the
degree of partitioning is the same, the resultant
expressions for the wavefunction and the energy vary
according to the character of persistency. This

7 As an example, we can consider the Stark effect in the rigid
rotator, where & = f'= 2.
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property can be seen by comparing the results of
cases 2 and 3 of our examples.

In order to facilitate the explanation, let us consider
three different cases. We first introduce # mutually
orthogonal vectors ¢, -+, ¢, in S(0) which
diagonalize an operator OV 0 so that

(¢ ' 955) =0, Vi = Vidy,

Vi = (bl VId)). (3.15)

For convenience, it is assumed that ¢, is the zero-

order eigenvector for the branch i. Before considering

the examples, we identify ¢, in (1.1) with ¢, and
define projection operators Q; as

¢A = ¢’1
0. =1y (il

Case I: Vyy#Vy for j=2,--+,h: We take®
S(0,) to be S(Q,) and apply the bipartitioning tech-
nique with respect to the reference vector S(Q,).

Since the degeneracy is completely resolved at the
first order, the bipartitioning is sufficient for our
purpose. This case is considered in Sec. 4.

(3.14)
where

(3.16)
(3.17)

Case 2: Vy, =V, for all j=2,---,h For this
case, the degeneracy persists at the first order for all
branches, and the operator Q¥X® 0 has to be con-
sidered in order to determine ¢,. We assume the
degeneracy for the branch A4 is completely resolved
at the second order, then the bipartitioning technique
gives us the desired expressions. For this case, it can
be seen that

0,VP, =0
and (3.18)
O\VR,VP, = 0.

The results of this case are given in Sec. 5.

Case 3: It is assumed that the degeneracy for the
branch A4 is partially resolved at the first order by
considering OVQ and completely resolved at the
second order by O, VR,V O,. If the degree of remaining
degeneracy after the application of unipartitioning
process is m, one can denote

0,=S140 (bl Pi= 3 160,

=1 i=m+1

m (3.19)
0, = |951> <¢1|, P, = Z l¢c> <?5.'|7
so that =
O0=0,+P,, 0,=0,+4+P,. (3.20)

8 It is understood in this paper that, if Q is a Hermitian projection
operator with Tr(Q) = n, the S(Q) is an n-dimensional space"
associated with Q.
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We perform the bipartitioning process with respect to
the reference space S(0,), and then apply the tri-
partitioning technique with respect to the reference
vector S(0;). The results of this case are given in
Sec. 5.

In the partitioning technique, we have dealt with
Hermitian projection operators which divide a Hilbert
space into mutually orthogonal subspaces. Hence, it is
convenient to have the intermediate normalization

@Ga|d0 =1, @Gq|TH=1 (3.21)

4. APPLICATION OF REPEATED PARTITION-
ING TO DEGENERATE PERTURBATION
(CASE 1)

In this section, we consider the case where the
degeneracy for the branch 4 is completely resolved
at the first order of the perturbation V.

Since it is assumed that ¢, = #,, according to
(3.17) and (2.8) one can write

0, =0, (4.1a)
P,=0-—0,. (4.1b)

Using the relations (2.22), (3.3), and (3.6), one can
reduce (2.17), (2.18), (2.19), and (2.24) to

Q=1+ TV)O, 4.2)
O, = (1 + TWVTV)O,, 4.3)
Q=04+ 1TV)1 + T,VIV)0,, 4.4)
EOy$, = [(E*+ V) + (VTV)
+ (VIV)T(VTV)]O:¢y, (4.5
where
¢y = O.F[[(¥] 0, DI, (4.6)

After the definition of Q in (2.19), it is natural to
define a wave operator W for this case by

W = W W, “.7
where W, is given by (3.6) and
W,=1+ T(VTV). 4.8)

Using the property O,VP, =0 and relations (3.6),
(4.7), and (4.8), one can write (4.5) as

EO; ¢, = O4[E® + V(1 + TV)

X (1 + T1VTV)]0:9,, (4.9)
Ed, = O4[E® + VW],
= O,[E® + t]¢,, 4.10)
where
t=VW. 4.11)

We can compare (3.5), (4.5), and (4.9) as follows:

(a) The multidimensional reference space S(0) is
reduced to a one-dimensional reference vector S(Oy).
Thus we are able to define W which will give us an
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eigenvector of . We note here that W, by itself is not
able to give us an eigenvector of J¥.

(b) For (3.5), V is a perturbation with a reference
space S(O) consisting of eigenfunctions of J° with the
eigenvalue E°, whereas, for (4.5), VTV is a perturbation
with a reference space, or a reference vector, S(O,)
consisting of an eigenfunction of OXO with the
eigenvalue (E° + V7).

(c) In (4.5), we have an additional term

(VTV)T(VTV)

which does not appear in the nondegenerate case.

(d) The operator W; determines a correct reference
vector in S(0) from ¢,, and W, determines an eigen-
vector V' from ¢.

Eigenvector and Eigenvalue
Here, we introduce

6m = ZE(i)’

i=m

(4.12)

where E@ is the ith-order energy as can be seen from
(3.8) and EW= ¥, for the present consideration.
Using the notations defined in (3.8) and (3.11), and
using the operator identity

(A—By'=A4"14 A1B(4 — B,
one can write
T = Rg + Ro[(V - E(l)) - 62]R0

4 Ry[(V — EW) — G5]Ro[(V — EW) — §,]T
' (4.13)

and 8= E® 4 4,
5= EV 451, (4.14)

The relations in (4.13) and (4.14) give us
TV = RyV + RV — EMR,V
+ RV — E")Ry(V — EP)RV
— E®RY 4+ oV,
VTV = VRV + VR(V — EM)R,V
+ VRy(V — EMR(V — EMR,V

(4.15)

— EPVRIV + O(V%), (4.16)
Pl P1
’13 = =
E—%, E—E—V—-VTV
Py

(EY = V) — (VTV — 8y
=R, + R(VTV — 8)R,
+ R(VTV — 8)R(VTV — 8)T,
= R, + R(VR,V — E®R,
+ RVR(V — EM)RV — EPIR,
+ Ry(VR,V — E®Ry(VR,V — E®)R,
+ O(V?), 4.17)
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where

Py s |$s) (il

TEY_y &V, -V,

it

(4.18)

R,

Introducing the relations in (4.15)-(4.18) into (4.7),
one obtains

W=WO 4 WO 4+ we 4 e 4 OV, (4.19)

where the superscript / denotes the order of V,

W =1,
WY = R,V + R, VRV,
W® = RV — EM™)R,V + R, VR, VR,V
+ R,VR(V — E™R,V
+ R(VRV — E®)R, VRV,
W® = Ry(V — EMRY(V — EM)R,V
— E®RIV + RyVRVR(V — EMR,V
+ R(V — EM)VR, VRV
+ RVR(VRV — E®)R,VR,V
+ R,VR(V — EMR(V — EMR,V
— E®R, VRV
+ Ry(VRV — EP)R,VR(V — EP)RYV
+ Ry[VR(V — EM)R,V — E®IR, VRV
+ Ry(VRyV — EP)RY(VR,V — E®)R,VR,V.

(4.20)

Equation (4.10) can be written as
E = (| E* + VW |dy). (4.21)

Introducing the results of (4.20) into (4.21), one
obtains

E=E+EY+E® + E® 4+ E@ 4. (422)

where

EM =V, =),
E® = (VR,V),
E® = (VRy(V — EMRV) + (VR\VR VR V),
E®W = (VR,(V — ED)R(V — EM)R,V)
— E®(VRYY)
+ (VR VR, VR(V — E™R,V)
+ (VRy(V — E™R,VR, VR, V)
+ (VR,VR(VRV — E®)R,VR,V),

(4.23)

with
(A) = (1| 4 14y).
For the nondegenerate case h =1, R, =0, every

term which includes R; in the expression for the
wave operator and energy drops out and the resultant

(4.24)
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expressions are identical with those of the nondegen-
erate case given by Lowdin.?

5. EIGENVECTORS AND EIGENVALUES FOR
CASES 2 AND 3

Case 2: In this case the relations (3.14) and (3.15)
are automatically satisfied for any choice of ortho-
normal set {¢,;} in S(O). The set {¢;} are chosen to
satisfy the relations

<¢zl VR0V|¢9'> = <¢z| VROVI¢i> 61';'- (5-1)

Here we can use the same relations from (4.1) through
(4.15) as developed in Sec. 4. However, the expression
for T, is different from Case 1; now,
Ty = S1 + SiVR(V — EY)R,V — E®]S,

+ Si[VR(V — EP)R(V — EMR,V

— EPVYRIV — EWS,

+ S [VRy(V — EMR,V — E®¥]

X Si[VR(V — EMRV — E¥IS, + O(V),

(5.2)
where

_ P1 — % |¢z> <¢z! .
TE® YRV  SE® — (4] VRV |4
(5.3)

Using (3.18), the expanded forms for the wave
operator W and the eigenvalue E are

S1

W = WOWI
= WO 4 W 4 WO 1O, (54)

where

wo =1,
W® = RoV + S,VR(V — EP)RyV,
W® = Ry(V — EMR)V + RVS,VR(V — EM)R,V
+ S,[VR(V — E™R,V — E®) (5.5)
X S,VR(V — EMR,V
+ S{VR(V — EP)R(V — E?)R,V
— E®VRV],
E=($,| E°+ VW |

— EO + E(l) + E(Z) + E(S) + O(V4), (56)

where, using the property (3.18),
E® = (1),
E® = (VRyV)
E® = (VRy(V — EMVRyV),

6.7

with
<A> = <¢1| A |¢1>-
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Case 3: For this case, since we use the tripartitioning
process, £ is given by (2.26); accordingly, the wave
operator has the form

W = W,W,W,
= [1 + TVI[l + T(VTV)]
x [1 + T{(VTV) + (VTV)T,(VTV)}], (5.8)

where W, Wy, R,, and R, are given by (3.6), (4.8),
(3.11), and (4.18), respectively, and

W, =1+ LIVTV)T{(VTV)),

T2 == R2 + Rz[VRo(V - E(l>)RoV
+ VRVR,VR,V — E®]R, + O(VY),

R2 = Pz/(E(z) - VRoV).

(5.9)

(5.10)
(.11)

Using the relations in (3.18), we expand W according
to the power of V,

W = W(O) + W(l) + W(2) + O(Va), (512)

where

W =1,

W® = R,V + R(VR,V) + R(VRV)R(VR,V)
+ ReVRy(V — EV)RY,

W® = R(V — EV)RV + RVR(VR,V)
+ [RyV + RVRVIR(VRWV)R(VR,V)
4 VR(V — EMR,V]
+ RVR(V — EM)RV
+ Ry(VR,V — E®)R, VR,V
+ Ro(VRJV)RVR(V — EMR,V
+ RVR(V — EMR)VR(VR,V)
+ Ry(VRV)R(VRV — E®)R(VR,V)
+ RyVRy(V — EMR,(V — EM)R,V
— E®R, VRV
+ Ry[VRy(V — EP)RoV — E®]
X Ry[(VRV)R(VR,V)
+ VRV — EMRyV].

(5.13)

Hence,

E = ($| E°+ VW |¢y)

= FE° + EW + E®@ + E®) + O(V4), (5'14)
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where

E® = (¥),

E®@ = (VR V), (5.15)
E® = (VRy(V — EMRGV) + (VRV)R,(VRyV)),

with
) = <¢’1| A4 |¢1>

6. DISCUSSION

If the reference space S(O) is multidimensional, we
have to first decide on a proper reference vector ¢ in
S(O) since any arbitrary vector in S(O) will not satisfy
the condition given by (2.15). This problem is techni-
cally solved by introducing the repeated partitioning
and accompanying subeigenoperators Q;,Q,,-- -,
etc. In the Schrodinger perturbation theory, we take
S(0) to be the space composed of all eigenvectors of
J° whose eigenvalues are E° in order to eliminate the
singularity in R,. Usually, we can reduce the dimension
of S(O) by considering the symmetry properties of
J° and . The repeated partitioning is performed in
such a way that the resolvents R;, R,, S;, etc.,
exist. The most important problem is to find a zero-
order eigenvector ¢ . This becomes complicated if the
degeneracy is not resolved at the first order. We have
obtained the expressions for the eigenvector and the
energy by simply expanding the wave operator,
whereas in the conventional Schrédinger perturbation
treatment one has to deal with the equations of
various orders.*!® The treatment and notations we
have used are rather compact which is a characteristic
of the partitioning technique. One can treat degenerate
perturbation theory in a multidimensional reference
space S(O) without resorting to the repeated parti-
tioning technique.’ However, the use of the latter
process is more simple and convenient.
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The quasiparticle formalism developed by Armstrong and Judd for atomic shells is extended to
expose the complete group structure of the quasiparticle eigenfunctions of the equivalent electron
I shell. A simple method for relating quasiparticle states to determinantal states and for calculating
quasiparticle matrix elements is developed. The need for fractional parentage coefficients in calculating

these matrix elements is entirely eliminated.

I. INTRODUCTION

The theory of continuous groups has been used
extensively both to classify eigenfunctions and inter-
actions.}~* The orthonormal set of antisymmetrized
eigenfunctions associated with an equivalent electron
IN span the {1V} representation of the unitary group
Uy,,2- The members of the set of eigenfunctions may
be classified by considering their transformation
properties under the operations of the various sub-
groups of Uy, ,. The chain of groups

/ySUz X SUy iy
Ugiy2 SUp X (Ry 11— Ry) (1)
\)SPALH/

may be used to distinguish completely the eigen-
functions in the d-shells (/ = 2). If the exceptional
Lie group G, is embedded in R;, an almost complete
classification of the eigenfunctions of the fshell is
ossible.? For higher values of /, the above classifica-
P . ) .
tion scheme rapidly proves to give an inadequate
number of classification symbols to distinguish eigen-
functions associated with the same SL quantum
numbers. Thus, in the £1® configuration, no distinction
is possible among the 30 598 14E states.

The chain of groups given in Eq. (1) sheds little light
on relationships between the properties of con-
figurations involving different numbers of electrons.
This has led Judd* to consider the various subgroups
of the group U,ui+2, which comprises the group of all
unitary transformations among the 2442 multi-
electron states of the / shell. He has shown that the
chain of groups given in Eq. (1) may be replaced by
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Research, Office of Aerospace Research, U.S. Air Force, under
AFOSR Grant No. 1275-67.
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the chain
Ugtivz — RSH—S — R81+4 — SUQQ
X (Spgy2—> SUs X (Ry11 —> Ry). (2)

This chain of groups provides no additional classi-
ficatory symbols, but it does, through the introduction
of the quasispin group SUZ, display the N-dependence
of the multi-electron states in a transparent manner.

The eigenfunctions of the /shell all transform
according to the {1} representation of U,u ., which
under restriction to the subgroup Rg,; goes down
irreducibly into the basic spin representation A =
[(3)*+2] of Rg,s. To obtain further classificatory
symbols it is necessary to explore the subgroups of
Rg;5 that are alternatives to those of Eq. (2).

Judd® has shown that a much richer classification
scheme is obtained decomposing the representation
{1%} of Uy, under the chain of groups

Ugpe —> Usz+1 X U;z+1 -’R:’,T X R; — Ry, (3)

where the orbitally antisymmetrized eigenfunctions
associated with electrons having their spins “up”
(m, = +1}) transform under U}, and those with
their spin ‘“down” (m,= —3}) transform under
U' ... This chain of groups gives a complete classi-
fication of the eigenfunctions of the configurations
N up to /=3, and for />4 proves much more
successful in distinguishing states with the same SL
quantum numbers than that of Eq. (1), though it is
of course no more successful in distinguishing the
30 598 4E states of 113

These group structures have all been studied** by
representing the Lie algebras in terms of the annihila-
tion and creation operators of the method of second
quantization.® Armstrong and Judd” have recently
showed that it is possible to develop an alternative
classification scheme of the / shell by considering the

5 B. R. Judd, Phys. Rev. 162, 28 (1967).

$B. R. Judd, Second Quantization and Atomic Spectroscopy
(Johns Hopkins Press, Baltimore, Md., 1967).

? L. Armstrong, Jr., and B. R. Judd, “Quasiparticles in Atomic
Shell Theory,” Proc. Roy. Soc. (London) (to be published).
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properties of the basic tensor operators
l(l) — (2)—é[a'£q + ( l)l*qaé q]

u® = @7 la, — (=) ey ,),
W0 = () Haty, + (=1 ay ],
£V = () Haty, — (=)l

where the subscripts to the annihilation and creation
operators g and a* specify m, and m, for an electron.
Their results lead to the conclusion that the states of
the 7 shell can be classified according to the scheme

R}(21 4+ 1) x Ri21 + 1) x Ry(2l + 1) x R{(21 + 1)
(%)

and its subgroups. There is no basic difficulty in

extending their method to mixed configurations.

In the present paper we propose to demonstrate
that the group structure suggested by Armstrong and
Judd may be embedded in the group Rg,s in a
natural manner which sheds considerable light on
representation of atomic shells in the quasiparticie
methods familiar in nuclear and superconductivity
physics.® After careful consideration of the defining
of the vacuum states appropriate to the quasiparticle
operators, a method for expanding the quasiparticle
states in terms of the familiar determinantal states is
outlined. Finally, a method for calculating quasi-
particle matrix elements is developed. The need for
fractional parentage coefficients in calculating these
matrix elements is entirely eliminated.

)

II. THE BASIC GROUP STRUCTURE

Armstrong and Judd? derived the group structure
of Eq. (5) by showing that the coupled products

1 20 }.‘”)f,’”, —X ”m lu(n)(k) %(v(l)v(l));k}’
and

%(é(l)é(l))(k)

with k odd, form the generators of the rotation groups
R,2I+ 1), RQI+ 1), R, (2] + 1), and R,(2! + 1),
respectively. In this section we show that the group
scheme of Armstrong and Judd is part of a larger
structure of the form

7 ! 1 1
Rgpi5—> Rype X Rypo~— Ry X Ryari)
p i
X Ry X Regen)> (6)

where, as before, the arrow 1 is associated with eigen-
functions with m, = 44 and the arrow | with those

& R. D. Mattuck, 4 Guide to Feynman Diagrams in the Many-Body
Problem (McGraw-Hill Publ. Co., New York, 1967).
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associated with m, = —34. The individual spin spaces
may be further reduced by examining the subgroups
of the Ry, groups, e.g., in the spin-up space we have

RI(zH—l) X RL(21+1) "’R}.(a) X RL(a)“’RIn(a)- @)
Equations (4) can be re-expressed as
afo = @7 + W),
ar = () =1 — u),
3o = Q)7 (=D, ) ®

atye = @0 + &),
ay, = Q=1 6P — &),

Judd* has shown that for the / shell the 8/ + 4
annihilation and creation operators a,, . and a, s
together with their (4/ 4 2)(8/ + 3) dlstmct nonzero
anticommutators, close on the commutation algebra
of the group Ry, ; and thus the construction of the
group Ry ; from the operators of Eq. (8) is self-
evident.

Furthermore, the coupled products }(AVAV)®
and —3(u®p){¥ with k odd, together with the linear
combinations %(l,u)"" — (=13 (uA)® for all k even
or odd have the same commutation relations as those
of the tensor operators v(/;, ;) and v!¥'(l,, 1) with
k odd and v¥®(l;,1) + (-—l)kv”"(l 1) w1th k even
or odd and thus form the generators of the group?

Rz(w,ﬂﬂ,, i.., Ry.,. Since the annihilation and
creation operators used in constructing this group are
all associated with m, = +1, we designate this group
as R}, ,. The generators of the corresponding group
R}, can likewise be readily constructed from the
annihilation and creation operators with m, = —}.
To develop the group structure further, we must
consider the group representations that arise in the

classification of the multi-electron eigenfunctions.

HI. THE BASIC SPIN REPRESENTATIONS

Having established the existence of the group chain
Rgs— R}y, X R}, we show that the basic spin
representation'®* A of Ry, under restriction,
decomposes into the conjugate spin representations
Ay =[}---4], Ay = [} —1] of the Ry, groups
in the following manner:

A—(A + Az)t x (A + Az)la 9)

where A, is to be associated with an even number of
quasiparticles and A, with an odd number.
To establish the above result, we first consider the

® J. P. Elliott, Proc. Roy. Soc. (London) A245, 128 (1958).

1 D, E. Littlewood, The Theory of Group Characters (Oxford
University Press, London, 1950), 2nd ed.

11 p, H. Butler and B. G. Wybourne, “Reduction of the Kronecker
Products for Rotation Groups,” J. Phys. (to be published).
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group R}, and introduce the quasiparticle annihila-
tion and creation operators

(1)+

& = @7 el + (— D0yl = 2,
¥ = @ Hag, + (— 1) = (D79,

l—e (1)

7 = @7 e, — (=] = (=0,
A =k - (D =i, (0
all of which have ¢ > 0. We then use these operators
to define a normalized quasiparticle vacuum state

|0), which is related to the normal-particle vacuum
state [0) by

[0 = 2% TT 4 TT 2 0
q>

q>0

(11

The above definition of the vacuum state has the
necessary property that ¥ |0) = 0 for all the quasi-
particle annihilation operators.

By using a natural extension of Judd’s® operators

s I B )

we find that Weyl’s commuting operators'? for the
group R/, are, in terms of the quasiparticle
operators,

H} =3B!, B,), Hi= —4yi, v,
H(;)'” = %(—l)l[ﬁo, 70], (12)

where for convenience we now drop the quantum
number / of the electrons. H;l gives eigenvalues +4 or
—1% according to whether or not 8} is or is not con-
tained in the quasiparticle state ﬂj{ s By vE0),
while HY gives eigenvalues —3% or +% if y7 is or
is not in the state. Our definition of the quasi-
particle vacuum makes it legitimate to include f, or
o in the quasiparticle state, implying that if the state
contains both f, and y, or neither of these, H
gives eigenvalues of 3(—1)’, while if the state con-
tains only one of these, the eigenvalues become
—3(=D*

The operators of R}, ,, being coupled products of
the A’s and u’s, connect only states differing by two
quasiparticles (or two ordinary particles) or none. It
follows that if a state contains an even number of
quasiparticles (including either 8, or y,), it transforms
according to the representation A; = [}---3}] of
R},.., and if an odd number, according to the con-
jugate representation A, = [4 - -+ —4]. We note that
our quasiparticle vacuum is proportional to

TT 11 + (=1t ,a] 0y,
q

12 H. Weyl, Math. Z. 23, 271 (1925).
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i.e., contains an even number of real particles, and

consequently if the quasiparticle number is even

(odd), then the real particle number is even (odd).
Under the restriction

Ry —> R, 21+ 1) X R,2I + 1),

both A, and A, decompose irreducibly into the
product representations A x A}, where A; and A,
are the basic spin representations of the R, ; rota-
tion group. Similarly, under restriction of R/, ,, 4,
and A, decompose irreducibly into the product repre-
sentation A} X A} of R,(2/ + 1) X Ry(2/ + 1). The
coupled product }(AYA) supplies the generators of
the group R/ (3), which is a subgroup of R} (2/ + 1),
and similarly —3(u""u?)V gives the generators of
R/ (3). Thus we may write the complete group structure
for describing the transformation of the /-shell eigen-
functions in terms of the chain of groups:

Ugtvs— Ry 5 — RZ:+2 X Rng
— (R;(21 + 1) x R, 2] + 1))’
x (R,(21 + 1) x R,(21 + 1))}
- (R,(3) x R,3)" x (R,(3) x R(3))'

—R},(3) X Rjs(3) >Ry —>Ry.  (13)

If, under the restriction Ry,,; — Ry, the basic spin
representation A decomposes into the representations
of R; without repetitions, then the chain of groups
given in Eq. (13) will give a complete set of classifi-
catory symbols to uniquely label all the eigenfunctions
of the / shell. Methods of determining these branch-
ing rules have been discussed by Butler and Wy-
bourne.* As noted by Armstrong and Judd, the
classification is indeed unique for / < 8. It is interest-
ing to note that even in the ¢ shell (/ = 14), no repre-
sentation of R; occurs more than 15 times in the
decomposition of the basic spin representation under
Ry — Ry.

It is evident from the nature of the chain of groups
given in Eq. (13) that eigenfunctions constructed with
these transformation properties will be characterized
by well-defined L and M; quantum numbers, but
will generally not correspond to a definite number of
particles N or have accessible S and Mg quantum
numbers. In trivial cases, some identification may
still be possible, as may be seen when the quasi-
particle states appropriate to the d shell are expanded
as linear combinations of determinantal states.

IV. QUASIPARTICLE AND DETERMINANTAL
STATES

The quasiparticle scheme is unlikely to be of
calculational value if the quasiparticle states have
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to be first expanded as the linear combinations of the
usual determinantal states. Rather we would like to
calculate directly in the quasiparticle scheme. Never-
theless, it is useful in some applications to be able to
make the transformation from quasiparticle states to
determinantal states.

Consider the segment

RIQ2I+ 1) x Ri(2I + 1) —> R}(3) X R.(3)— R.,(3)
(14)

of the group chain described by Eq. (13). Suppose
under the restriction Ry, ; — R; we have

Ae g 2 gig[je]a

where g;_is the number of times the [j] representation
of R.(3) arises in the decomposition; then the same
branching rule holds for both R](2/+ 1) and
R,I (21 4+ 1). Thus the problem of forming eigen-
functions where every electron in the / shell has
m, = +% reduces to constructing eigenfunctions
liad,s L,IMMLM)T for pseudo two-particle configura-
tions (j,/,)", where j; and j, will either be both half-
integral or integral angular momentum.

For example, for the g shell we find, under R, — Ry,
A —>d+ h, and hence the LM, states associated
with all m, = 44 will be the same as those arising in
the three pseudo two-particle configurations d;d,,
dh,, hyd,, and hh,.

We now wish to develop a systematic method for
expanding the typical pseudo two-particle state
ljaj LM )1 as a linear combination of determinantal
states. To do this we first construct a set of angular-
momentum ladder operators in the spaces of R,(3)
and R,(3) in terms of the quasiparticle annihilation
and creation operators. These operators L} and L*
must clearly be simply proportional to the coupled
products (APAD)W and (uuV)Y and, in detail,

L} =3 qH} =} 3 alf7. )
>0 a>0

L= S(—D)"N0+ ¢l —q+ 1)]%151:);19_)0
a>0

=S [0+ )l — g + DIBIBurs

¢>0

(15a)

and
— 2 qHY =43 qlyi, vl
g<0 g>0
LA = =3 (=T — @ + g + DPFuPut,
g<0

=S+ 90—+ Dty

(15b)
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The form of L, shows that the quasiparticle vacuum
state is the state having the highest j; or j, and the
lowest m;, or highest m;, in the R,(3) and R,(3)
spaces, respectively. In obtaining these results we
have required that the quasiparticle vacuum state
|0), in the A space and |f))“ in the u space may be
coupled to yield the vacuum state 16),1 |6>”E 10)
defined earlier for the R}, , space. As a result, we have,
to within an inconsequential phase,

l6>,1 = 4 ]-_-[0 ﬂq )
q>
and
‘0>u — 2(2/4) ]—.[0 Ve |0>
q>

Having constructed the angular-momentum ladder
operators, it becomes a trivial matter to construct the
angular-momentum states |jm;) and |jm,) for
highest j, and j, appropriate to the R;(3) and R,(3)
spaces in terms of an even number of quasiparticles
(remembering to count a f, or a v, if it occurs).

The angular-momentum states for values of
Ji <Jjyorj, < j, may be constructed by requiring that
the states |j; — m;,.) 'and | j;m,-u/) be orthogonal to the
states | j, — m, ) and | jpm,.u&, respectively, and to any
other states having the same —m,,. orm, ., ie., we
construct an orthonormal set.

The states involving an odd number of quasi-
particles in either space may be built up by applying
the ladder operators to (2)44, |0, and (2)ty, |0),,
instead of to l()),1 and I(N))“. In each case, the normal-
ization is chosen so that (j — j|j — /), and (jj|ji,
are equal to 2—¥/2),

As an example, consider the case of the d shell,
where for Ry — Ry we have [43] — [§]. The propor-
tionality constant required to recover the ladder
operators is (10)} and we have

Li=H}+ 2H} and Li=(2)}:8,+ () 618,
(162)
and
Li=—Hf —2HE and L*, =Y.+ v,
(16b)

As a consequence, for n, even (where n, is the number
of quasiparticles in the 1 space) we have

13—, =10, 13—5,=—2BB6 10,

128), = (656, 10, and 13D, = AL 10,
(17a)
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while for n, even in the u space, we have

1§ 4, = |o>", 1§ B = Q170 10),,
% - %)p = (2) 72 7o |0>p’ |2 - 2>u, = 71 7-{ |0>u'
(17b)
Having constructed the states given in Eq. (17), we
may perform a vector coupling to produce states
characterized by the orbital quantum numbers L and
M; . For an even or odd total number of particles N,
|j).juLluML;,“> = z <m}.mu I LluML;“) Ijlm,la.jumu>,
m;.,'mu
(18)
where (mym, | L, M 1, is the usual Clebsch-Gordan
coefficient and
lj}.m}. H jumu>
= [(LY)F"H(LEY W ™[ AB] | jimy,, jy — m
with

), (19)

I

A =i Gy = m)YGy + m)E

B = [(2j)! (i + m)Y(ia — m)1PE.
If N is even and n; and n, are both even or odd, then,
apart from an inconsequential phase,

ljl - mfl’jum5ﬂ> = I(-)>a
while if N is odd and n; and n, are of opposite parity,
lja— m:i;_’jum:iu> = (2)%/30 10).
Use of the above results for the particular case of
the d shell gives

and

IA(D)A),F3) = Bipi 0) = alaf |0)
and
18(Da(@)uF2) = 2BEBo — ¥iveBiB:)Bo 10)

= afazaZ, |0),

while

185(8),(8),D2)" = 2810 + YivoBi D 10z

= _a;— l0>7

where the creation operators g} are all associated

with m, = +4.

The construction of the states |j, j§LML>* in the
spin-down space proceeds in exactly the same manner
except that the creation operators af are now all
associated with m, = —}. The states constructed for
the spin-up and spin-down spaces may be coupled
by the usual vector-coupling method to give the final
L-shell eigenfunctions

|(Jl]u)Llu(Jy}§)Lv§9 LML>
= 3 <MLMMLv§|LML)
MLA“,Mng

X NGajd LM, Gy JdLuML, )’ (20)
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These resultant eigenfunctions will not in general
correspond to a definite number of particles, but will,
however, involve either even or odd- numbers of
particles.

It should be apparent from the preceding discussion
that no significant complications arise when treating
pseudo two-particle configurations where j, # j, or
where j, and j, occur more than once in the decom-
position of the basic spin representation of Ry, to
the group Ry.

V. CALCULATION OF MATRIX ELEMENTS
Any interaction may be expanded in terms of sums
of products of tensor operators.® In the case of
equivalent electron configurations /%, the interactions
may be expressed in terms of sums of products of the
double tensor operators W** where

z w(xk)

w(xk)
and
(sl w11y = [(2x + D2k + 1)]%6(s, sHoU!).

Judd® has shown that the double tensors W**' may be
related to coupled products of the usual annihilation
and creation operators, viz.,

W,(,’;k) (a a)(xk).

(21)

The annihilation and creation operators in Eq. (21)
may be re-expressed in terms of the quasiparticle
annihilation and creation operators using Eq. (8) and
then decoupled to expose their spin dependence;
for k odd this gives

W(xk) 1[<s% s% I Kﬂ){(l'v)(k) _ (Mé-)(qk)
+ (s — 3 s | km{ ) — (£HP
— (sts — } | km{(ADF — (u)®
— (=15 — 3| xem{EGHP — EP
(22a)

and, for k even this gives

W = —3[(s} s} | km)
x {(w) — (AOP + 8(k, 0)2 + D)
+ (s — s} km)
X {(EF — 0O + 8(k, 021 + D}
— (sks— | km)
x {(uAF — Q™ + 8(k, 0)2! + D)
—(s—4s—%|wm
x {(EDF — o™ + 8(k, 02! + D1
(22b)
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All one-particle interactions can be expressed in
terms of the quasiparticle operators of Egs. (22a) and
(22b) and the relevant matrix elements evaluated in
the A, u, v, & spaces, i.e., for the pseudo four-particle
configurations j, j, j,j, with states as defined in Eq.
(20).

The two-particle interactions will involve terms of
the form?®?

igj [W$K1k1 )w(ixgkg)] (Kk)IQ{
— [W(Kl_kl)w(ngz)](Kk)g _ (_1)2l+2s+x+k

X [(2ky + 1)(2k5 + 12k, + (2K, + DI

ky ky k}{Kl Ko "} (ki) K
X Wik, 23
{ I I Ifls s s ¢ (23

For scalar interactions where k =k =K =0 =0,
Eq. (23) reduces to

2 (W,(;'Ck) . W(gxk))
i#Fd

= W(xk) . w(xk) _ \:

(2 + D2k + I)TWW 24)
(41 + 2) ’

where k; = k,and k; = k, and we drop the subscripts.

Having expressed the one- and two-particle inter-
actions in terms of quasiparticle operators, the matrix
elements may be directly evaluated using the standard
methods of tensor operators and angular-momentum
recoupling,® thus entirely eliminating the need for the
fractional parentage coefficients that arise in the
traditional evaluation of matrix elements.

The use of tensor-operator methods requires the
evaluation of the reduced matrix elements of the
quasiparticle operators between quasiparticle states.
The reduced matrix elements of the quasiparticle
operators will be zero between states containing the
same number of quasiparticles. The reduced matrix
elements may be generally evaluated by expanding a
particular component of the operator, say A,
together with the states of the bra and ket in terms of
ordinary annihilation and creation operators, remem-
bering that the states are orthogonal, though not
usually orthonormal. For the particular case of maxi-
mum j = j, in the space under consideration, a
simple formula can be found, viz.,

(Ayjarl AP 18gj 3
= (=1 Pajpll AY 1Ay j20)
— a(—1)eim| b (J 1 M -
sy 2 (e ) |
= +[Qix — D' Qiar + 1 + D21t (25)

13 B, G. Wybourne, J. Chem. Phys. 48, 2596 (1968).
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where the plus sign is taken if 4 is A or » and the minus
sign if 4 is u or £ For example, we may readily
deduce from Eq. (25) that

(A1 31 2 4, 3) = (10)%. (26)

The matrix elements of the Coulomb repulsion
may be readily calculated in the quasiparticle scheme
by first noting that, for equivalent electron configura-
tions /¥, we have?

3y e _ & e e® gy
i>j rl'.‘l' k rk>+l 2k + 1
and, from Eq. (24),

z (w(_()k) . w(;)k)) — W(Ok) W
2
i£]

z (w£0k) . W(,-Ok))
i¥7

o0 _ (2k+ 1) W%
@l +2t
(27)

and then expressing the matrix elements of W in
terms of the quasiparticle operators via Eq. (22b).

The scalar operator W is proportional to the
number operator® > ata, and for the d shell in the
“spin-up” space will have eigenvalues N/(4/ + 2)}
where N is the number of particles, since in this case
every state corresponds to a definite number of par-
ticles. For more general cases of particles, the eigen-
values of W% will reflect the mixing of particle
numbers in the quasiparticle state. This sometimes
leads to a simple method for expanding the pseudo-
particle states as linear combinations of the usual
|INSLMgM ) states to within a phase.

As an example of the above, consider the states of
the f shell in the spin-up space. The states may be
constructed in terms of pseudoparticles having 3 and
0 units of angular momentum, since, under R, — R;,
we have A — [0] + [3]. Evaluation of the matrix
element of W% for the S-states for an even number of
J-electrons proceeds in the pseudoparticle scheme as
follows:

<A1(3)}.(3)u; S0j W{)?)O) |A1(3),_(3)“; S0)

1
= ()7 (A13):3),5 501 (1" 1A,(3)4(3), 50) + ﬂ%)
3
= @ H AL SI WA IS 9 + T2
333
= (2)_5 33 3 <A1(3)“” [u(a) ”A2(3)“>
0 0O
3
X (A3, A9 1A,(3)) + Q:_>
_aat,

3

28
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and since we must necessarily have

1A1(3):(3),; SO) = a | f* °SMg = 2M 1, = 0)
+ blfOISMS= OML =0>,

we find 4% =} and &% = §. Similarly, for an odd
number of f-electrons,

[8(3)3(3),; S0) = a | f**SMg = $M, = 0)
+b1f"*SMg = M, = 0),

where again a* = } and 5% = §. The above two states
will be orthogonal to the states [A;(0),(0),; S0) and
|A2(0),1(0),,§ S0).

To summarize, the matrix elements of any inter-
action may be calculated in the quasiparticle formalism
by the following steps: (1) Express the interaction in
terms of sums of products of the tensor operators
WE); (2) express the sums of products of the tensor
operators W**) as sums and products of the coupled
products of the quasiparticle operators (Aw)®, etc.;
(3) calculate the matrix elements of the quasiparticle
operators within the pseudo four-particle configura-
tion j,j,j,Jj.» evaluating the reduced matrix elements
as required.

VI. CONCLUSIONS

The establishment of the complete group chain in
Eq. (13) sheds further light on the role of the quasi-
particle formalism in atomic shell theory. The
principal disadvantage of the quasiparticle scheme
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would seem to be the abandonment of the spin
quantum numbers SMg and the formation of eigen-
functions involving an indefinite number of particles.

The shortcomings of the quasiparticle formalism
are partially compensated by the establishment of a
remarkably rich classification scheme. Furthermore,
the calculation of matrix elements in the quasi-
particle scheme requires little more than a knowledge
of the theory of angular-momentum recoupling
coefficients, and, if combined with the powerful
diagrammatic methods of Jucys er al.,'* becomes a
trivial problem readily amenable to machine calcula-
tion without recourse to the usual coefficients of
fractional parentage.

Finally, we should note that while the methods
outlined here have been devoted solely to the case of
shells of equivalent electron orbitals, there is no
difficulty in extending these methods to mixed
configurations.
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A symmetric group analysis of the characters of U(N)and SU(N) representations yields formulas for
(i) the multiplicities of weights in irreducible and tensor product representations, (ii) the coefficients
occurring in the Clebsch-Gordan series decomposition of Kronecker products with an arbitrary number
of factors, (iii) the content of irreducible and tensor product representations of U(Y; N;) with respect
to representations of its direct product subgroup, U(N;) ® U(Ny) ® - - - = ®; U(N,), and (iv) the
content of irreducible representations of U(NM) with respect to irreducible representations of U(N) ®
U(M). In particular, we exhibit formulas for (i), (ii), and (iii) containing only irreducible characters and
Frobenius compound characters of the symmetric group. Under the application of an operator of the
subgroup, ®; U(N;) with ¥; N; < N, a vector in a representation of U(N) transforms as a linear com-
bination of vectors in irreducible representations of the subgroup. We give formulas for determining the
vectors occurring in such a linear combination. They are derived in a similar fashion to the formulas for
@), (i), and (iii). In terms of weight diagrams, the formulas give the number of times a weight diagram
of the subgroup’s algebra occurs in the hyperplane generated by the application of the algebra to the

weight of the U(N) vector in question.

I. INTRODUCTION
The generators of the U(N) algebra 4;, i, k =1,
- -+, N, satisfy the commutation relations
(1)

One form of the generators of SU(N) also satisfies (1),
but in addition must meet the requirements of trace-
lessness and

[AL, AL] = 8541 — 8lA%,.

N
> 4i=o0. @

=1

Another form of the generators and commutation
relations of SU(N) is the Cartan form

[Hn H ;»'] =0,
[H’ Ea] = raEa’
[E,, E..]J=T1,-H,
[Ea, Eﬂ] = NaﬁEa+ﬂ N
with H = (H,, Hy, -+, Hy_,) an (N — 1)-tuple of
the generators of the Cartan subalgebra, E, the
generator corresponding to the root r,, and N, a

set of numbers. The generators 44 and H, of SU(N)
are simply related by

H; =Y 5,47, 3
J
where
S;;=0, forj>i+1,
S, = —[iji + D}, forj=i+1, STS=1,
S, =i + DI}, forj<i+ 1

* Research sponsored in part by the Air Force Office of Scientific
Research, Office of Aerospace Research, U.S. Air Force, under
AFOSR contract grant number 69-1629.

In U(N), the matrices representing the generators
Ai,fori=1,2,---, N, are diagonal, and we define
the weight of a vector x in a U(N) representation to be
W = (W, Wy, -+, Wy) with dix = Wxfori=1,
2,--+,N. In SU(N), the weight of a vector x with
respect to the generators A is defined in the same
manner as for U(N). However, the weight of x with
respect to the generators H,,fori =1,2,---,N—1,
is W=, W, ---,W;_) with Hx=W/x
These definitions and Eq. (3) imply

Wi = Z SiiWy. (39
3

As a result of this simple relationship, we need only

consider the weights with respect to the generators

At in the remainder of the paper.

In Sec. II we discuss the structure of the weights
occurring in irreducible representations of U(N) and
SU(N), and emphasize their inherent symmetric
group (Weyl group) structure for later use in our
analysis of characters.

The characters of U(N) representations are analyzed
in Sec. III in order to derive formulas for (i) the
multiplicity of a weight in a reducible or irreducible
representation [Eq. (21) below], (ii) the coefficients
occurring in the Clebsch-Gordan series decomposi-
tion of Kronecker products with an arbitrary number
of factors [Egs. (27) and (33) below], (iii) the content
of any irreducible or tensor product representation of
U(C; N;) with respect to representations of its direct
product subgroup U(N,) ® UN,) ® + + - = ®; UNy)
[Egs. (24) and (35) below], and (iv) the content of an
irreducible representation of U(NM) with respect to
representations of U(N) ® U(M) [Eq. (36) below].
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Of course, the results we obtain are not indis-
pensable for present-day physics since the group
representations of current physical interest can be
handled quite well by traditional techniques. However,
besides being useful for more complex cases, our
results do demonstrate the interesting fact that one
may obtain all class properties (i.c., properties un-
affected by similarity transformations) of the unitary
groups from purely symmetric group considerations.
To be more precise, all formulas developed in Secs.
I and V can be derived strictly within the theory of
symmetric functions! and expressed solely in terms
of characters of the symmetric group. Furthermore,
one may use the formulas of Sec. III to find the con-
tent of Kronecker products of symmetric group
representations, and the content of symmetric group
representations with respect to subgroups.

The orthogonal and symplectic groups may be
analyzed in a similar fashion to our analysis of the
unitary groups with the role of the symmetric group
assumed by the ““octahedral’ groups.

Several papers have appeared® on formulas for
weight multiplicities and Clebsch-Gordan series
coefficients. Kostant derived a formula for the
multiplicity of a weight in an irreducible representa-
tion of a semisimple Lie algebra. Straumann has given
formulas for the decomposition of irreducible repre-
sentations of semisimple Lie algebras with respect to
semisimple subalgebras. Steinberg developed a for-
mula for Clebsch-Gordan series coefficients. Our corre-
sponding results [Eqs. (21) and (25)] for multiplicities
and Clebsch-Gordan series coefficients are expressed
in a simpler form and appear to be more useful for
computational purposes. We obtained simplified
equations because we dealt only with the unitary
groups. In addition, we were able to express our
results solely in terms of symmetric group characters.
There has been other work done on specific Lie
groups. Gruber derived formulas for Clebsch-Gordan
series coefficients for the groups SU(N), SO2N + 1),
SO(2N), and G,. Biedenharn, Gruber, and Weber
have extended Kostant’s formula to the noncompact
group SU(2, 1).

Hagen and MacFarlane have developed a recursive
procedure for calculating the subgroup content of
ma, “The Calculation of the Irreducible Characters of the
Symmetric Groups in Terms of the Compound Characters,” J.
Combinatorial Theory (to be published).

2 N. Jacobson, Lie Algebras (Interscience Publishers, Inc., New
York, 1962), Chap. 8; B. Kostant, Trans. Am. Math. Soc. 93, 53
(1959); N. Straumann, Helv. Phys. Acta 38, 56 (1965); N. Strau-
mann, Helv. Phys. Acta 38, 481 (1965); B. Gruber, Ann. Inst. Henri
Poincaré 8, 43 (1968); L. C. Biedenharn, B. Gruber, and H. J. Weber,
Proc. Roy. Irish Acad. 67A, 1 (1968); C. R. Hagen and A. J. Mac-

Farlane, J. Math. Phys. 6, 1355 (1965); C. R. Hagen and A. J.
MacFarlane, J. Math. Phys. 6, 1366 (1965).
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representations which is based on an analysis of
symmetric functions. Our results, besides applying
to more general cases, are in the form of closed
formulas and are not of a recursive nature.

In Sec. IV we discuss an orthogonal tableau basis
for U(N) irreducible representations (the Gel'fand
basis of Baird and Biedenharn®) for use in Sec. V.
We define a U(N) state to be a vector in the orthogonal
basis of some U(N) irreducible representation. Each
U(N) state is an eigenvector of the Casimir operators
of the chain of subgroups U(N — 1), UN — 2),-- -,
U(1), and the set of these eigenvalues together with the
state’s weight constitute a complete set of labels for the
state. In addition, each U(N) state x transforms as
a state in an irreducible representation with partition
w? of the subgroup U(p) with respect to the operators
of Ulp) for p=N—-1, N—2,-+-,1. The set of
these (N — 1) partitions u” are an alternate set of
labels to the subgroup Casimir operator eigenvalues.
We show how to find the (N — 1) partitions and
subgroup Casimir operator eigenvalues from the
numbered tableau labeling a state.

In Sec. V we find the transformation properties of
a U(N) state with respect to a subgroup of the form
®; U(N,) with 3; N, < N. In general, the state x
transforms like a linear combination of states in
irreducible representations of the subgroup if one
applies an operator of the subgroup to x. We develop
a procedure for finding the states occurring in that
linear combination. The procedure results from an
analysis of the character of U(N) in a similar fashion
to the analysis of Sec. III. In terms of weight diagrams,
our procedure finds the weight diagrams of irreducible
representations of the subgroup lying in any hyper-
plane of the weight diagram of the U(N) irreducible
representation.

II. THE STRUCTURE OF THE WEIGHTS IN
REPRESENTATIONS OF U(N) AND SU(N)

In this section, we develop a simple method for
finding the weights occurring in an irreducible
representation of U(N) or SU(N) for later use in
Secs. Il and V.

To the defining representation of the group U(N)
corresponds an N X N matrix representation of its
algebra in which the matrix corresponding to the
generator A; is given by

4)

with 4 and » labeling rows and columns respectively.
As a result, the N weights V/, for j=1,2,--+ N,

(all;)uv = 6iv6ku’

3 G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4, 1449 (1963).
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called the fundamental weights of U(N), are given by

(V') = 0y, ()
with i = 1,2, -+, N labeling the components of the
vector. For SU(N) one need only subtract the trace
0,9,,/N on the right side of (4) to obtain the corre-
sponding representation of its generators A;. Con-
sequently, the N fundamental weight vectors of SU(N),
W/, have their ith coordinate given by

(Wi)i = 5ﬁ - I/N- (5)

Before dealing with the weights of other irreducible
representations of U(N) and SU(N), we make the
following definitions and conventions regarding
partitions and Young tableaux. A partition of the
integer m is a set of integers whose sum is m and is
written in two forms (following the notation of
MacMahon?),

#=‘ulﬂ2...51k12k2...,

with pu,u, - - - the set of integers placed in nonincreas-
ing order going to the right (i.e., u; > p» > -+ ) and
with k, of the integers being 1’s, k, of the integers
being 2's, - - . Each of the integers u, is called a
part of the partition. We define the following addition
and subtraction of partitions for u = uyu, - =

112k« . and v = pypy - -+ = 1™M2m - by
Utrv=o0, (6a)
p—v=pp"", (6b)
[WE)] = 1m2isime e (69

with «; = p; + v, and 8, = u; — »;. We write u > »
if the first nonzero difference u; — v; is greater than
Zero.

Young frames are labeled by the partition of their
row lengths. A standard tableau is any frame whose
boxes have been filled with integers in such a way
that the integers are nondecreasing going to the right
in any row, and strictly increasing going down any
column. We define 7y to be the set of all distinct
standard tableaux which can be formed from the frame
u and all choices of integers (with repetitions of inte-
gers allowed) from the set {1,2,---, N}.

To each irreducible representation of U(XN) there
corresponds a unique Young frame; and to each
irreducible representation of SU(N) there also corre-
sponds a unique Young frame modulo columns of
length N. In each case we use the frame’s partition to
label the irreducible representation. It has been shown®
that one can label each of the basis vectors of repre-

1P, A. MacMahon, Combinatory Analysis (Chelsea Publ. Co.,
New York, 1960), p. 1.
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sentation u of U(N) or SU(N) with a tableau from
7% such that the weight of the basis vector is given
by

N .

V=>pV
in U(N), and =
N

W = z Piwi
=1

in SU(N), with p, being the number of boxes in the
labeling tableau containing the integer i. If

N N
’=§m=ZM,M=MMHu

i=1

then the jth coordinates of V and W are related by

(W); = (V); — r/N. (M

Due to the simple relation between the weights of the
irreducible representations u of U(N) and SU(N), the
remainder of Sec. IT applies equally well to U(N) and
SU(N), though we confine our discussion to U(N).
In Table I we present the representation 21 of U(3)
as an example of the labeling of states with 73, and their
corresponding weights. It is apparent from the
example and the definition of 7 that more than one
state in an irreducible representation may have the

TasLE 1. Tableau states and weights of the
representation 21 of U(3).

State Weight
(171
lbj> @,0,1)
111
1 EEI > 2,1,0
2
112
OB ,2,0
2]
2{2
1 ] > 0,2,1)
3]
EERN ©,1,2)
13
Y AELN 1,0,2)
3
MLEN 1,1, 1)
13 ]
LEIRS a1,
12|
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TasLE II. Weyl class structure of the representations 42 of U(5) and SU(5).

Dominant weights

SUN)
Weyl class v M3 UN) SUN) (Cartan form)
42 1 4,2,0,0,0) 34,4, —6, —6, —6) (\/2 V6,3, )
412 1 (4’ Ir 1!0) 0) ';_(14’ _1) —1) _61 _6) ( ,/; ’ \/3, '\/5)
K 1 (3’ 35 0’ 07 0) ;(97 9’ _6; _6’ _6) ( 6’ \/3 v )
1 3 3
321 2 (3,2,1,0,0) 39,4, -1, -6, —6) (——2 WEE V3, -‘75')
2 1 3)
3 1, —_]. — — —_ - — —
31 3 (35 1’191)0) 5(99 19 1’ 19 6) (v2a ,/3’\/3!\/5
2 3 )
3 pY —_f — - —
2 3 22,00 4,4,4,-6,-6) (0.3 v3. 3%
2812 4 2,2,1,1,0 34,4, -1, -1, —6) (0 Jz 1 i)
y 4 1y 1y s\t 94, —1, —1, ’3,'\/3"\/5
21t 6 2,1,1,1,1) 14, -1, -1, -1, —1) (—l— L -L-)
245 2y 4y CANE] b ’ ’ v211/6yV12’v20

same weight. The multiplicity of a weight in an
irreducible representation is the number of states
which have it as a weight. Thus we have a method? of
computing the multiplicity of a weight V = (¥,
Vs, *++, Vy) in irreducible representation u by
counting the number of standard tableaux which can
be formed from frame u, and ¥; ones, V, twos,
and Vy N’s. In Sec. III we present explicit formulas
for computing multiplicities which do not rely on
counting tableaux.

The weights of U(N) representations may be
divided into equivalence classes using the Weyl group
which is the group of all permutations of the co-
ordinates of a weight. For U(N) the Weyl group is
Sy, the symmetric group on N objects. All weights
of an equivalence class are equal to within a permuta-
tion of the Weyl group. As a result, we can define the
partition of a Weyl class to be the partition whose
parts are the coordinates of any weight in the class.
The dominant weight of the Weyl class » = »,9, - - -
is >, Vi. The highest weight of the representation
Bo= pafhy 8 D VY

We define M¥ to be the multiplicity of each weight
in the Weyl class » of the representation u. (All
weights in any Weyl class of a representation have the
same multiplicity.) As examples, we give tables of
M?* in Appendix A for each irreducible representation
of U(N) corresponding to a partition of any integer
less than eight.

At this point, we have a simple method of obtaining
all weights of an irreducible representation u. The

Weyl class ¥ (v of course has less than N 4 1 parts)
occurs in the representation y if M} is nonzero, and,
as a result, all weights may be obtained by applying
permutations to the dominant weights of the classes
occurring in the representation. One can obtain the
weights of the two forms of SU(N) through the use of
Eqs. (7) and (3'). Asanexample, we present in
Table II the partitions, multiplicities, and dominant
weights of the representations 42 of U(5) and SU(5)
which have dimension 420.

III. CHARACTER ANALYSIS OF U(N) REPRE-
SENTATIONS

In this section, we analyze the characters of U(¥)
representations in order to obtain formulas for
multiplicities, the content of representations of U(N)
with respect to subgroups of the general form
UN) ® UN) © -+ ® UN,) = ®,; UN)) (Z N, =
N), the content of irreducible representations of
U(NM) with respect to representations of U(N)®
U(M), and the coefficients occurring in Clebsch-
Gordan series reductions.

The character® of the irreducible representation u of
U(N)is a function of N variables ¢ = (¢;, s, -, dx):

= 2 exp(iV- ), (3a)

where the sum is over all weights V in u. For the
corresponding SU(N) representation u, the sum is
over all SU(N) weights of u with the variables ¢

5 H. Weyl, The Classical Groups (Princeton University Press,
Princeton, N.J., 1939), p. 134,
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restricted by the condition >¥ ¢, = 0. Owing to
this restriction and Eq. (7), the characters of repre-
sentation u of U(N) and SU(N) are identical if x has
no columns of length N; they are equal to within a
phase exp (ik D ¥_, #p) with k the number of columns
of u of length N otherwise. Therefore, all succeeding
results apply to SU(N) as well as U(XN) if one drops
columns of length N from frames (and partitions)
after performing all indicated operations.

In Sec. IT we showed that the weights of an irreduc-
ible representation may be divided into Weyl classes in
which each weight of the class may be obtained by
applying some S, permutation to the dominant
weight. In particular, one need only apply a subset of
the permutations of Sy to obtain all weights of the
class: For the Weyl class » = 1°2%37 ... with « +

B+ y+ - =k, one applies
NI(N — k)! ! Bl y!

permutations, which is the number of distinct weights
in the class. We call §, this minimal set of permuta-
tions. If the weight V =3, 8,V' and we let x, =
exp (iV*« ¢) = exp (i¢y), then

exp (iV - ) = xfixbe - - - xhy.
We may therefore rewrite (8a) in the form

= E M* 2 x9V1x20V2 .
v QesS,

=3I M3 x?,

v QeS,

. xgw
(8b)

where we sum over partitions » and the permutations
Q of S,, and we let x@"1x@" - - - x@'¥ = x@".
Another well-known® form for U(N) characters is

> opexp [iP(V, + Ry) ]

__ PeSy

=TS b exp (IQRy - )
QeSy

where Ry =(N—~1,N -2, - ,0), Vﬂ =zi:uivi»
and dp is the signature of the permutation P. In the
notation of (8b) this becomes

— Plu+Ry)
Xn = z 6Px ol /
PeSy

s

> OpxQEx
QeSy

)
Equations (8) and (9) can be shown to be equivalent
using the Frobenius equations in the theory of sym-

metric functions. In particular, if

N
s,= > xj for r=1,2,---,N,
i=1

¢ Reference 5, p. 200.
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if « = 1%12%2 .. . is a partition,and if
Dy(x) = H (Axi —X;) = Z ‘SQXQR”,
i<j QeSx

then? [in the notation of (8b)]

Se=skiskr =3 ¢r Y xO (10)
B QeSy
and
S Dy(x) = 2 1t 3 dpxPHES, (11)
A PeSy

where ¢ is a Frobenius compound character and y}
is an irreducible character of the symmetric group.
It has been shown® that

¢k = Z My,

where the integers M}, will turn out to be multiplicities
previously defined. From Egs. (10)~(12), we have
ZMAYXK z xO = ZX z S xP(H'RV)/DN(x)
uy QeSy
If we multiply by (g./g)x% (g, is the number of elements
in class x, and g = N! is the number of elements in
Sy) and sum over «, we obtain
EML 3 x% = 3 8pxFITER Dy(x)
5 Qe8, PeSy
(using the orthogonality of irreducible characters of
the symmetric group), which demonstrates the
equivalence of (8) and (9) and establishes a formula
for multiplicities,

M, =(1/g) Y g.xo:

using Eq. (12) and the orthogonality of irreducible
characters. Below, we will derive another method for
calculating M¢ via recurrence relations.

The integration volume element of U(N) is®

2r d¢1 d¢2 dqu _
f J N2 )N D (x) D py(x) =de
(15)

and the orthogonality condition for the characters is

(12)

(13)

(14)

f dUZ 1, = 6,0,

with 6,, a Kronecker delta in partitions, B;(x) the
complex conjugate of Dy(x), and 7, the complex
conjugate of yx,.

Next, we show that, in the reduction of the irreduc-
ible representation u of U(M + N) with respect to the

* D. E. Littlewood, The Theory of Group Characters (Oxford
University Press, Oxford, England, 1950), pp. 63, 67.

8 Reference 7, p. 71.

? Reference 7, p. 219.



CHARACTER ANALYSIS OF U(N) AND SU(XN)

direct product subgroup U(N) ® U(M), the number
of times « ® f appears [a is an irreducible representa-
tion of U(N) and 8 of U(M)] is given by

Nios = )3 0p0M{ius Ry— PRy S+ Ru—@Ri1> (16)

PeSny
QeSy

where [(x + Ry — PRy)(B + Ry — QRyy)] is eval-
uvated in accordance with the definitions of Sec. II,
and terms in the sum are ignored when either expres-
sion o+ Ry— PRy or B+ Ry — QR has
negative parts. Note that the sum of the parts of «
and B must equal the sum of the parts of u. For
example, the representation 321 of U(6) contains the
representation 21 ® 21 of U(3) ® U(3) twice,

321 321
‘N)21®21 = PZS 6P60M|[(420—P(210))(420—0(210))]
€53

QeS3
= Mah: — 2M3pn + M3 =2,
since M3%h =4, M33t =1, and M3 = 0.
The proof of (16) starts with the standard character
expression,

Nty = f dU AV (U)7,(V)z,

_ (4P dyDp(x)Dy(y) —S(a+Ry
_f N!M!J(vzw)Nﬂf 3 dgx DT

SeSxy
X 3 Ogy TR0 FMES 2%, (17)
TeSu v QeSy
Where¢ = (¢1a ¢2a T, ¢N)’¢ = (wla ’/’2, Y WM)’

x; =exp (V- d) = exp (ig,) for j=1,2,---, N,
y; = €Xp (in-q.o) = exp (iy)j) forj =12 -, M,
and 27 = xpgt - 3y for y = G,

Y2, **» Yn+ar)- The product
S 0pxPBY Y o,V Eu 3§ xS@tER
PeSy VeSy SeSx
X E 5Ty—T(ﬂ+Ru) EMI: Z ZQV (18)
TeSyu v QeSv

can be written as a sum over monomials:

ceexbyC.. . pd
xtll XNV1 Y-

No monomial with one or more of the exponents

a,**+,b,c,  ,d nonzero, will contribute in the
integral of (17). Thus,
N!M! Nig,

=2 2 2 3 273 dpdydsépMy, (19)
PeSy VeSy SeSy TeSy v QeS,
where the summations are restricted by the condition
O = PRy — S(e + Ry) + O»y) and O = VR, —
T(B + Ry) + Qviapy with Qvyy = (9, Ors, -~ -,
Qvy)and Qvyyy = (Qv¥yi15 Q¥nias > O¥yipg)- The
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restriction on the summations can be rewritten as
Qv = [(S(x + Ry) — PR)T(B + Ry) — VRy)].
Thus, Q and » are determined if «, 8, S, P, T, and V
are given. Therefore, the restriction on the summa-
tions may be implemented by dropping the sums over
v and Q after making the convention to ignore the
order of entries in the subscript » of M¥ (i.e., M* =
M}, for all Q) and substituting the expression for
Qv in M* in Eq. (19):

PeSy SeSy VeSy TeSy

u
X M{(S(at Ry)~ PRENT B+ Rar)—V Rap)]

=32 g ; Og-1pdrtp

P8
X M{tes Ry—5~"PRyWB+ Ry—T"V Ry
(20)
using dg0p = dg1p, 0p0p = dp-1p and the conven-
tion previously stated to write Mfs) 1o = M{(,)on
[with S(x + Ry) — PRy = S(« + Ry — S™'PRy)
and
T(6 + Ry) — VRy = T(B + Ry — T7'VR,y)).

If we let H = S7'P and G = TV, then

> 2 =N'3Y and Y Y =M!'3
PeSy Se8y HeSy VeSy TSu GeSy
in Eq. (20), and we obtain Eq. (16).
In the case M = 0, Eq. (16) can be used to compute
multiplicities. Since we may drop §, 8 + Ry, — QRyy,
and the sum over Q, Eq. (16) results in

| — (]
60: - z 6PM¢+RN—PRN’
PeSy

21

with N2 = d%, a Kronecker delta in partitions. The
reduction of any irreducible representation x of
U(N) with respect to the trivial subgroup U(N)
yields p and only u exactly once, resulting in the
Kronecker delta in (21). An example of Eq. (21) is

0%s = Mjs — 2M5y — My + Miz: + Mbe,

From this example it is clear that one may choose N
to be the number of parts of « without loss of gener-
ality. Equation (21) gives a recurrence relation for
M} in terms of M where o > ». Since Eq. (21) implies
M} =0 for » > u and one for u = v, we can find the
multiplicities in any representation u recursively. The
matrix of M} for all pairs of partitions x4 and » of
the integer m is presented in Appendix A for m = 2,
3, -+, 7, and, as aresult, one has the multiplicities and
Weyl classes for each representation of U(N), corre-
sponding to a partition of any integer less than eight
by inspection of these tables.
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Equation (21) could have been written in the form!

0 = 3 BMY, (1)
v

where B is the matrix inverse to the M# matrix (with

partitions labeling rows and columns). In general,

any equation of the form

Z,= 2 0pY, py PRy (22a)
PeSy
has the equivalent form
z, =3 B%Y,. (22b)
B

In Appendix B, we present tables of B% to aid in the
evaluation of formulas of the preceding type. Explicit
formulas for certain classes of the coefficients B* have
been given elsewhere.! One can thus evaluate (16) in
the following form:

Nies = %BfBZMfw)m]l : (16)
For typographic convenience, we use the equivalence
of (22a) and (22b) to write formulas in terms of the
coefficients BY whenever possible in the remainder of
this paper. Some general properties of the coefficients
M} are the following:

(D M =0 if »>pu;

(i) M4 = ¥4m, the dimension of the irreducible
representation u of Sy ;

(i) M™ =1 forall a;

(VyMi=1 if p=y;
! 3 e
v 2 ak > Mias = the dimension
¥SN(N —k)! afoe alBl---
a+pte=k

of representation u of SU(N).

Property (iii) implies that all weights of U(2) have
multiplicity one, as is well known.

If we apply Eq. (16) to the case U(N — 1) ® U(1),
we have

- Nogs = Zv B:Miiin, (23)
where j is an integer, 0 <j < py .

Equation (16) can be generalized to give the content
of the reduction of the representation x of U(Q% | N))
with respect to the direct product subgroup

k , UN;). The number of times u contains p! ®
PR ®pF=®, p' [where p* is an irreducible
representation of U(N,)] is

‘N”(:Diﬂ" = z

URTR

vippVe Vi oH
B;J}Bp2 T Bple[(vl)(Vg)"'(vk)]]' (24)
Vi
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A special case of this is

N one - -n = M4, (24%)
where a; is an integer for all i and o« = 050 « - * o is
a partition.

We now consider the Clebsch-Gordan series reduc-
tion of tensor products of irreducible representations
in U(N). We will establish that the number of times
the irreducible representation yx occurs in the tensor
product of « and f, denoted by « ® f, with &, «, and 8
irreducible representations of U(N), is

NP = 2 BIMIEY, (25)

where

M =3 3 M5 oM}
v QeS,,

(26)

is the multiplicity of the Weyl class y in the tensor
product representation @ ® 8 of U(N). Equation (26)
reflects the fact that the weight y in « ® 8 is the sum
over all possible pairs of weights y — Qv in « and Qv
in B. The contribution to the multiplicity M*®* for a
particular y — Qv and Qv is M3 o M}, = M} , ,M?.

The proof of Eq. (25) starts with the standard
expression

do
2m) N
_ d¢ —PR 3
T & 0PI M,

% z X_szMﬂ E x~ T z 5SXS(“+RN).
QeS, y yTeSy SeSx

e®f
NoOF =

D (%) DT

As in the previous proof, we have

N!.N’;’j®”= 2 2222 2 opdsMiMy,

PeSy v Q€8 7 Te8y SeSy

where the sums are restricted to satisfy
0=S(u+ Ry)— PRy — Qv — Ty.

If we implement the restriction by letting

B __ B e B
M, = My Ry)-PRy—@v1 = Ms(utRy)»—PRy—0Qv

and by dropping the sums over y and TeS,, then

N!N’z@’ = 2 z z z apathM%(u-{-RN)vPRN—Qv
PeSy SeSx v QeS,

=2 2 05 pMiEh, sipry-
PeSy SeSy
Using Eq. (26), 0p0g = 0g-1p and ME2# = M2*®# for
any permutation S and partition 7. If welet U = S-1P,
then ¥ pes, D ges, = N! Dyes, in the previous equa-
tion, which proves Eq. (25).
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Equations (25) and (26) have simple generalizations
to tensor products with an arbitrary number of factors
Rat=al®@a2®@ - @ o?tl):

i i
N =3 B,

=3 >33 3 3 M,

v1 @168y, va Q2eSv, Vi QreSv,

27

2
X M:z T Mtch;’lel—szz—"'*Qk"k
1
=2 2 2 2 Mjg,
Vi QeSv, ve QaeSvy,
4
X MV1 Qave MVk I‘Qlcvcha (28)

Another formula for N°%®# which can be derived in a
similar fashion to Eq. (25) and has been given by
Weyl? is

Jp:@ﬁ

= > 0pMjipy pprry - (29)

PeSy

Equation (26) can be expressed solely in terms of
characters of the symmetric group

=33 M;_o,M;
Y QeSy

=33 33% £E: m*-@y ‘4

Y QeSyx A

= zzg"g‘x: a‘z PO

M:er

= 5388 o, (30)
x 7 8g
using Eq. (14) with g, and g from the symmetric group
of which y} is a character, and g; and g’ from the
symmetric group of which y% is a character. We also

use the identity
Pl =2 3 P17,
b4 Qes'y

which has been proven elsewhere.! In general,

M®:)-1a — gllgla e glg
Andede 818277 8
1 2 P .
X e X Planty--am - (31)
Using the identity!
1 =2 Bidt, (32)
]
Eqgs. (31) and (27) yield
N = 81,81 """ &1y
redadiods 81827 8
1 2 k4
X xa3xes XX lan Gy (33)

10 Reference 5, p. 231.
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A special case of B is (R, 1 =101®@ - -® 1),
M® ral= "{” ’
which implies

PP @
Nl = xp

and shows that the x% Young projection operators
corresponding to the frame « are sufficient to project
out all N°@ (differently constructed) representations
« in a totally unsymmetrized tensor with p subscripts.
Now we show that

g@:’nla = Z‘Nﬁ@f-lz Mg, (34)
which expresses the multiplicity of a Weyl class in a
tensor product representation as a sum over the
multiplicities of the Weyl class in irreducible repre-
sentations occurring in its Clebsch-Gordan series
decomposition. Multiplication of Eq. (27) by M
and summation over y yields Eq. (34) immediately by
Eq. (21").

We now calculate the content of the tensor product
representation « ® f of U(N + M) [« and § are
irreducible representations of U(N + M)] when
reduced with respect to the subgroup U(N) ® U(M).
In particular, the number of times the representation
u®v of UN)® U(M) [p is a representation of
U(N) and » of U(M)] occurs in the reduction of
the tensor product « ® f is

Nigl =3 3 BBMichon - (35)
The proof of (35) starts with the identity
N8 = EN“®”N’u®V, (359

where the sum is over all representations 3 of
U(N + M) occurring in the Clebsch-Gordan series
decomposition of « ® . If we use Eq. (16'), we
obtain

Ne®s

hey = Z N3 ®° Z Z BB M{y;

= 2 E BABK Z ‘N)y® M[u)mn ,

which results in Eq. (35) due to Eq. (34). Equation (35)
can be easily generalized in the manner of Eqs, (24)
and (27).

The number of times the representation « ® £ of
U(N) ® U(M) occurs in the reduction of the irreduc-
ible representation u of U(NM) is given by

—_ (QA) N p(QA)
Wigr =3 5 BOV B MY,
4 QeS8

(36)
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where the partitions

M-1

M-1 M-1
(QVy = ( D Vinss D ViNezs s 2 ”u-nw)
j=0 J=0 j=0
and
N N
(Qy = (Z”k’z”Nﬂc’ T
k=1 k=1
with

(1}131)2,. )

N
" Z ”(J1—1)N+k)
k=1

' ,vNI‘l) = Q(}“l’ 12’ n

Equation (36) follows from the expression

d dip e
H o u A
x®p fN( M! (21T)N+.M; MAQEZSAX DN(y)DIH(Z)

Pla+Ry) OB+Ry)
X Y pylletEN) N oz OB R,
PeSy QeSxy

s Aym)-

with Xy, = VpZ;q for j =0, 1, -+, (M — 1) and
k=1,2,---,N;y, =exp(ig)fork =1,2,---, N
and z;, = exp (iy,) forj = 1,2, -+, M. Equation (36)
can be directly generalized to the reduction of irreduc-
ible and tensor product representations of U(J]; N,)
with respect to ®; U(N,).

IV. SUBGROUP LABELING OF U(N) STATES

Baird and Biedenharn® have shown that a complete
set of labels for a state x in a U(XN) irreducible repre-
sentation is given by its weight and eigenvalues with
respect to the Casimir operators of the chain of sub-
algebras U(N — 1), U(N — 2),- -+, U(l) [with the
subalgebra U(p) defined to have the generators A},
for all 7 and j less than p + 1]. Since x is an eigenstate
of the Casimir operators of the subalgebra U(p), it
transforms as a state in an irreducible representation
u® of U(p) with respect to the operators in U(p) for
p=N—-1,N-2,:-+, 1 The N—1 partitions
uP constitute an alternate set of labels to the Casimir
operators’ eigenvalues. We show how to obtain these
partitions from the tableau labeling x for later use in
Sec. V. In addition, one can calculate the Casimir
operator eigenvalues of x from the partitions u? with
the formula of Perelomov and Popov!!:

»

SLi— Y SLLS+-4+ (=)' ¥ |,

i=1 a+p=a—1i<j i <ig<+<iq

C,=

where ¢ <p, and L, =pu? 4+ p—1i with p?=
uPu2 - -+ . C, is the eigenvalue of the U(p) Casimir
operator of gth degree.

The development of the tableaux basis in Sec. II
only specified the tableaux labeling of U(N) states to
the extent that it assigned a set of tableaux to each set

11 A, Perelomov and V. Popov, JETP Letters 1, 160 (1965).

STEPHEN BLAHA

of states having a given weight, with the number of
objects in each set being the same. We now complete
the labeling of states in irreducible representations by
requiring the tableau labeling of a state x to be such
that the removal of all boxes containing integers
greater than p from the tableau results in a new
tableau whose frame u” gives the transformation
properties of x with respect to U(p) forp =1,2,---,
N — 1. As a result, one may read off the partitions
u* of the subgroup irreducible representations from
the tableau labeling x.

The proof that one may consistently label the orthog-
onal states of an irreducible representation of U(N)
with tableaux as described above follows from a
simple construction. In the irreducible representation
Aof UN),let x,, x,, -, x, be the states with weight
V. Each state x; is labeled by N — 1 partitions u?,
with p=1,2,---,N—1. Construct a tableau
for each x; by (1) placing u} ones in the first row of
frame 4, (2) adding twos in such a way that the boxes
containing ones and twos correspond to frame u?, and
(3) adding threes in such a way that the numbered
boxes correspond to frame uf,---. That there
exists a way of placing the integer p in boxes such
that one can go from partition u?-* to u? in the con-
struction follows from (i) the theorem!? giving the
irreducible representations of U(p — 1) lying in the
irreducible representation u? of U(p) and (ii)
the block diagonality of the U(p — 1) operators
with respect to the U(p) operators in U(N).

Each tableau constructed above is a standard
tableau in 7Y which is distinct from the tableaux of
the other states with weight ¥. Thus our method of
obtaining the subgroup partitions labeling a state from
the state’s tableau is valid. In fact, it is a direct
generalization of the procedure for finding the
Yamanouchi symbol?® of a tableau in a symmetric
group representation.

V. TABLEAU STATES AND ARBITRARY
UNITARY SUBGROUPS OF U(N)

In Sec. IV, we developed a procedure for finding
how a tableau state of U(N) transformed with respect
to the subgroup U(p) consisting of the generators
Ai, for i,k =1,2,---,p. It was noted that each
tableau state transformed as a state in one irreducible
representation of U(p), for p=1,2,--- ,N— 1.
However, if we examine the transformation properties
of a U(N) state with respect to an arbitrary subgroup

12 H. Boerner, Representations of Groups (North-Holland Publ.
Co., Amsterdam, 1963), pp. 161, 164.

13 M. Hamermesh, Group Theory (Addison-Wesley Publ. Co.,
Reading, Mass., 1962), p. 221.
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of the form U(N) ® UNy) @+ Q@ U(N,, with
25 N; < N, we find that the U(N) state transforms
as a linear combination of states in different irreduc-
ible representations of the subgroup. Furthermore, an
irreducible representation may occur more than once
in the linear combination, just as an irreducible
representation may occur more than once in the
Clebsch-Gordan series of a tensor product. In this
section we develop methods for finding the irreducible
representations and the number of times they occur
in the linear combination transforming like a U(N)
tableau state with respect to a subgroup.

The subalgebra U(p) in the integers 7, iy, -, i,
is defined to contain only the generators 47 of U(N)
such that j and & are integers from the set 7, i, - -+,
i,. Given a weight V' in an irreducible representation
of U(N), we define the U(p) hyperplane of ¥ to be
the set of all weights which can be generated from V'
by the application of operators in the U(p) algebra.
In terms of weight diagrams, a U(p) hyperplane is on
a geometrical hyperplane in the weight diagram of
the U(N) representation, and, in general, it contains
the superimposed weight diagrams of several U(p)
irreducible representations.

Given a weight V = (V1, V,, - -+, Vy) of the irre-
ducible representation u of U(N), we wish to find how
the states associated with its transform with respect
to the subalgebra ®* | U(N;), with X, N; = N and
U(N;) a subalgebra in the integers pi, p}, - -, p,-
Let p’ be the partition whose parts are the integers

Vs Vs ©**s V,,M,-;forj =1,2,--, k. The parti-
tion p’ labels the Weyl class of the weight with respect
to U(N)).

If we apply Eq. (21') to Eq. (24) k times, we obtain

M ”".N’ ®k

) (37

with the sums over k partitions, u!, u?, -+ -, u*. On
the right side of Eq. (37) one can read off the linear
combination of states, giving the transformation
properties of Vs states with respect to the subalgebra.
In particular the irreducible representation u! ®
UE® - @ u* occurs N% ¢ times [Eq. (24)] in the
linear combination. Furthermore Mh M"f - MY
states of each representation u' ® u? ) /A
appear in the linear combination. For cxample we
find the transformation properties of the states of

=(2,1,0,1,1,1) in the U(6) representation, 42,
with respect to the subalgebra U(3) ® U(3) in the
integers 1, 3, 4 and 2, 5, 6, respectively. All N3%¢ .
are zero except Ny = N'3%s = Nifes = Nijea =
1, and therefore, each tableau state of V transforms

1
u _ AL
MEohen o=, 2 MM
R

2165

as the linear combination:
a Lljr]4j®]2tsjsl> +b
2 ﬂ\ iy

oooNEE)
|1[1]4l® lj ®[D\

o FNHj B

with a, b, c, d, e, and f being numerical coefficients.
In terms of weight diagrams, we found the weight
diagrams of 3 ® 3, 3 ® 21, 21 ® 3, and 21 ® 21 lying
in the U(3) ® U(3) hyperplane of ¥ in the weight
diagram of 42 in U(6).

If we had chosen the U(3) @ U(3) algebra to be in
the integers 1, 2, 3 and 4, 5, 6, respectively, then,
because of our labeling of tableau states in Sec. 1V,
we have the states

%75—2145’ ,46£E]>’ ,1

+c

+ e

—
o
[u—

f—

2[6 N\
/

transforming as

a 1111L2!®|415[6{>+b

i e )

nAaE ®>,

L{1f4[6]\ |[1
)

while

1
216 /

transform as

7—1‘|®>+”

1 ﬂe|\
/

—

PP
AP

with the coefficients a, 5, ¢ depending on the U(6)
tableau state under consideration.

Given a weight V= (V, V,, -+, Vy) of the
irreducible representation x of U(N), we now find
the transformation properties of the states of weight

+c
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V with respect to the subalgebra ®; U(N,), with
St N; < Nand U(N,) a subalgebra in the integers
pi, pi, -, pk,. Let p’ be the partition with parts
Vs Vo * o5 Viys and if @ + 1is the minimum
integer in the set of integers pi for i =1,2,---, N;
and j=1,2,---, r, then let « be the partition with
parts ¥y, ¥y, + -, V,, and let § be the partition whose
parts are all coordinates of V not previously taken as

a part of a partition. Let y* = xJ'x}*- - - x/'s and
Varr Vase st’
Z = Xgp1 Xerz Ijg
j=1 i=1

To the subgroup U(N;) we assign the character
%, (Un,) in the variables x, s, x,,;, * s (instead
of X1, X2, **, Xn,5 respectively).

The number of states of ) @ U @+ O Y, =
®; 13, appearing in the linear combination expressing
the transformation properties of states of ¥ with
respect to the subgroup ®; U(N)), is given by

11’1»'

MMM - - MENS,, (3%)
where
v = J' dUy, dUy, - - dUy,
X Ll (Un )2 (Uny) " XU N,)yazﬁ
=, v?: R BB+ BuMiyy)vp---tip@mis  (39)

with the summation over r partitions vy, %3, ***, ¥,.
Equation (39) is derived in the same way as similar
relations in Sec. III. Equation (39) also gives the
number of times the weight diagram of &), u, appears
in the ®; U(N,) hyperplane of V. For the tableau state
of V transforming like the representation 4 of U(a),
we use

P . :

Nad a= 32 BBIBZ - BiM{eooag--tal
3.vivo, vy

instead of (39).

As an example of the above equations, we find the
transformation property of a state of weight V =
0,0,0,1,2,1,3,0) in the representation 421 of
U(8) with respect to the subalgebra U(3) in the
integers 5, 7, and 8. Expression (38) becomes

M,q N42l V
with (39) giving

421,V 421
‘M = 2 Bu;Ml{(v)(l)(lﬁl .
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Since M4 = 0 for 32 > u,, we need only consider
the following possibilities:

Nﬂl Vo 0 and ‘Na421 k4 N421 N - 2.

As a result, we have each of the four states with
weight ¥ transforming as

oS 4

E 2
7

+c

IR

5[5(7
EH

with respect to the U(3) subgroup where the additional
integers in the kets serve to distinguish multiple-
occurring irreducible representations.

For the analysis of the states of weight ¥V in a
tensor product representation of U(N), ®;a;, one
need only substitute M3, . ., i0 equation
(39) for Mftu,y vyy-- oo
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APPENDIX A: THE MULTIPLICITIES M

“ “
y 2 12 p 3 21 13
1 0 3 1 0 0
12 1 1 21 1 1 0
130 1 2 1
X
y 5 41 32 312 221 213 15
5 1 0 0 0 0 0 0
41 1 1 0 0 0 0 0
32 1 1 1 0 0 0 0
312 1 2 1 1 0 0 0
221 1 2 2 1 1 0 0
2131 1 3 3 3 2 1 0
1811 4 5 6 5 4 1
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Functional Integration and the Generalized Matthews-Salam Equations

ROBERT L. ZIMMERMAN
Institute of Theoretical Science, University of Oregon, Eugene, Oregon

(Received 29 July 1968)

Various properties of Feynman functional integrals that appear in quantum field theory are studied.
An indefinite functional integral is constructed. For the indefinite functional integral we prove a relation
which is analogous in ordinary Riemann integrals to integration by parts. A special case of this relation
gives an integration-by-parts formula for the Feynman functional integrals. In addition, various rela-
tions for integrating over variationals and variational derivatives are obtained. Application of these
relations gives, among other things, a set of generalized Matthews-Salam equations.

I. INTRODUCTION

Various formulations of quantum field theories
have been developed in order to go beyond the frame-
work of perturbation theory. Among these attempts
is the one based on the use of functional integrals.
The advantage of this approach is that it is possible
to obtain closed expressions for the complete Green’s
functions including all the radiation corrections.
The lack of formal properties and approximate
methods for solving functional integrals has hampered
the development of this formalism. It is the purpose
of this paper to investigate various properties for
functional integrals over variationals and variational
derivatives of functionals.

The concept of a functional integral or an integral
over an infinite-dimensional space was first considered
by Daniell.! Wiener later developed the Wiener
integral® which is used in studying Browning motion.
Feynman, in his space-time approach to nonrela-
tivistic quantum mechanics,® developed another
functional integral, sometimes referred to as the
Feynman functional integral. The Feynman functional
integral is not an integral in the true mathematical
sense; however, its close relationship to the Wiener
integral has been shown by Cameron.* We will not
concern ourselves in this paper with the outstanding
question on the mathematical meaning of the Feynman
integral. Our main concern will be directed towards
its properties and various means of evaluating it.
Because of the nebulous definition of this integral,
the results of this paper can at most be considered
formal and mere reflection of the properties of Wiener
integrals onto the Feynman integrals.

The extension of Feynman’s formulation of non-
relativistic quantum mechanics to quantum field theory

1 P, J. Daniell, Ann. Math. 19, 279 (1918); 20, 281 (1918); 21, 30
(121131).' Wiener, Ann. Math. 22, 66 (1920).

3 R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).
¢ R. H. Cameron, J. Math. & Phys. 39, 126 (1960).

was first accomplished by Davison, Matthews and
Salam,® and Polkinghorne.” In extending the func-
tional formalism to quantum field theory, there
appear two distinct classes of integrals: those over
fields obeying Bose-Einstein statistics and those over
fields obeying Fermi-Dirac statistics. In this paper we
will consider both kinds of integrals; however, we
will limit ourselves to the more common fields, i.e.,
scalar, photon, and spin-} fields.

The scalar functional integral over the field ¢(x),
whose integrand is F(¢), is denoted by

@ TEGN ) =L [ et @og,
M

where

N =‘f eila”,a'(¢)6¢’
[¢7.¢°]

Leald) = =4[ 46O + m)oe) .

¢’, ¢ are the eigenvalues of a complete commuting
set of operators, which specify the state of the system
on the two surfaces ¢’ and ¢”. The support of the
functional integral is over all continuous fields defined
between the two spacelike surfaces ¢’ and ¢”, which
are restricted to the values ¢’ and ¢”, respectively, on
these surfaces. The 1/N factor is a normalization
factor. We have chosen our matrix g,, such that
A,B* = A,A° — A - B. Here (] is the d’Alembertian
operator

0 0

- ox, ox* ’

Let us now define what we mean by the indefinite
Feynman integral over scalar fields. We denote the

5 B. Davison, Proc. Roy. Soc. (London) A225, 252 (1954).

¢ P. T. Matthews and A. Salam, Nuovo Cimento 2, 120 (1955).
7 J. C. Polkinghorne, Proc. Roy. Soc. (London) A230, 272 (1955).
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indefinite Feynman integral by

(¢, 0"| T(F(N |4', 0" )i
(2) <plx)
=L [ rgetesvsg. 0
N Jig .41
The indefinite Feynman integral is meant to indicate
that the integral is taken over all continuous fields
é(x) such that ¢(x) < u(x) and ¢ = ¢’ < u on ¢
and ¢ = ¢" <wuono”.
Likewise, the functional integral over the electro-
magnetic field A(x) with the integrand F(4) is
denoted by

(4", a"| T(F(A)) |4', o")

_1 F(A)e'lo o' V4,06 4,04,045, (3)
N Jia”,41
where
I (A) = —} f F,F* d*x,
_ 04, 04,
o axY ox*’
and

N =f eilo’»q,(A)(sAoaAléAgaAg .
[4”,4°]

The indefinite integral over A(x) is

(A", o"| T(F(AD 1A', 6")im
1 A(e) <plzx)

F(A)e'lo o D5 4,04,64,045. (4)
N Jra7,41

The functional integral over Fermi fields p(x) and
P(x) is the same as for Boson integrals, except that
the Fermi fields anticommute. The Feynman func-
tional integral for Fermi fields is denoted by

", ¢", ¢"| TE(p9) |y', 9, o)

1 o e s
=_J F(ypp)e'les v Poysg. (5)
N [v”.v'Il5".¢']

Likewise, the indefinite integral is

"o =

<1P » Y, G”I T(F('lp’ 1/-))) |’/’" u_),’ al>u(z);u(z)
1 plx) <pla);plz) <ulx)

F(y, 9)elor ooy, (6)

N Jwwite .91

where

N ___f e‘Ia"o'("’Wéy)éﬁ)
[0S RE 8 |

and

1099 = [ BT — mype) .
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The notation used in the Dirac equation is

0 0
iV = p = iy, — iy o
G AT A

and the y matrices satisfy the anticommutation
relations

Yry? 4 pryh = 2gM,

We would now like to prove some formal properties
of these integrals. In particular, we would like to
consider variationals of the indefinite Feynman
integral and integrals over variational derivatives of
the integrand. As a specific example of our results,
we will get a relation which corresponds to integration
by parts for ordinary Riemann integrals. From this
and similar relations will follow the variational
formulas of Schwinger and the set of differential
equations for the tau functions as developed by
Matthews and Salam.® The derivation of the Mat-
thews—Salam equations from the functional integral
formalism was observed by Polkinghorne’; however,
he had to assume that it was valid to integrate by
parts. The analogous properties that occur for the
Wiener integral have been derived by Cameron® and
Owchar.!®

The outline of the paper is as follows. In Sec. II
we will consider the Boson integrals and construct
various properties for these functional integrals over
variations and variational derivatives. Similar proper-
ties will be given in Sec. III for the Fermi field. In
Sec. IV we will give explicit examples in order to
illuminate how these results may be used to solve
complicated functional integrals. The Matthews—
Salam equations will be shown in Sec. V to be a
special case of the relations derived in Secs. II and
III. In the final section we will also construct a gen-
eralized set of Matthews-Salam equations.

II. BOSON INTEGRALS

In this section we will limit our investigation to
Boson fields. In particular, the first part of this
section will be limited to scalar fields. At the end of
the section we will extend the significant properties of
scalar fields to zero-mass vector fields.

Let us denote the first variational of the functional
F(¢) by 6,F(¢). It is defined by the relation

8,F($) = L F($(x) + hF ()]s %)
dh

8 P. T. Matthews and A. Salam, Proc. Roy. Soc. (London)
A221, 128 (1954).

? R. H. Cameron, Proc. Am. Math. Soc. 2, 914 (1951).

10 M. Owchar, Proc. Am. Math. Soc. 3, 459 (1952).
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The nth variational is defined in a similar manner as

07 1, F(P) = — 5?{ e P + () o
®)

The first functional (Volterra) derivative of F(¢)
at the point y is denoted by dF(¢(x))/d¢(y) and is

implicitly defined by the relation

o d*y.
540) () f(y)

For the sake of convenience and simplicity, it will
be assumed throughout the remainder of the paper
that f(y) vanishes on the surfaces " and ¢'.

In a similar fashion the nth functional derivative is

&

8,F($(x)) f ©)

e F(4(x))

_ 8 ot
6¢(xn) Cs¢(xn—l)9 s 6¢(x1)

Let us now consider the variation with respect to
the field u(x) of the indefinite Feynman integral
defined in Eq. (2):

5,(8", ") TE@D) | 6 e
- ﬁ (@, "l TED) 16> 0 atarsnyioimo- (1)

F($(x));- (10)

We will proceed to show that this is equivalent to

8;(¢", o"| TF() |4', 0 )i
= (¢", 6" TGF ()4, 6" huia)
+ i(¢", o"| T(F($)o,1,($N) 1", 0 Dt » (12)

where the variations on the right-hand side of Eq.
(12) are taken with respect to the fields ¢(x), while the
one on the left is taken with respect to u(x). Equation
(12) follows from the fact that

(9", "l T(E($)) |95 0 s

1 $1<p+hf

F(¢1)eil(¢l)‘s¢1 .

13
N (13)

Making a linear transformation of the variables in
Eq. (13),

$(x) = $:1(x) — hf(x), (14)

we obtain
(¢", " | T(F(IN |, 0" uizrsnsia

¢lz) <plax) .
- f F($ + h)eT4054 (15)
[¢”.¢°]
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Using Eqgs. (11) and (15), we get
3, (4", o"| T(F($)) ¢, 0" )uta)
= (d/dh) ($", o"| TFE($))1$', 0 Vutarntta|n=o
1 Hlaz)<ulz) d T(6ns)
== (F(s6 + )" )0 (16)

N Jie .41

In the ordinary manner we differentiate the integrand
with respect to /; Eq. (16) becomes

0, (4", 0"| TF () |9, 0" i)
1 ¢ <ulz) .

8, F($e P54
N Jis".¢1

1 ¢lx) <ulz) .
w1 [T R e s,
N Jio".¢'1

This is precisely Eq. (12), which we wanted to justify.

A special case of Eq. (12) is when we let u(x) =
+ co. In this case we integrate over the whole space
and the indefinite integral becomes the ordinary
Feynman functional integral. Notice that

0; (8", 6" T(F($)) |4’ 0")e
=0,(¢", o"| T(F($)) |¢",0") =0 (18)

since the integral is no longer a function of the
variable u(x), and Eq. (12) reduces to

0= (4", o"| T(6;F($) |¢', o)
+i(¢", o"| T(F($)0,F () 14’ o).
Using the fact that

(19)

oL@ = = [ 70XO + m) 4%, 2D
Eq. (19) becomes
@, 0| TOF@) |4, o)
= i[5 + m) 8,0 TEDD 14, ).

€3y

Let us now generalize the results to the nth varia-
tional. The nth variational of F(¢) satisfies

(9", "I T(OF, LF(E) |4, 0"y = —i($", o

x TF($) I—l2 (=il0s,1an,o($)] = 0,)6,,1(8) |4', 0").
ol
(22)
The proof of Eq. (22) follows directly from induction,
as will be shown below.
For n = 1 Eq. (22) reduces to Eq. (21), which was
already shown to be valid. Let us assume Eq. (21)

holds for n = N and we will show it is true for
n=N+ 1.



2172

Applying Eq. (22) for n = N to the functional
d; F(¢), we have

(@, 0| T F(@) |4, o)
=($",0"| TOY,...;,0,F($) |4’ o)
= —i(¢", 0"| Td,,f(¢)

N+1

X g(_iéhla”a'(d’) - 6f1)6f21(¢) |¢; 0-'>‘ (23)

Using Eq. (19) in the right-hand side of Eq. (23), we
get
(#", o' | TON . F@D14 o)
N+1
—i(4", o"| TF(¢) 1} (—il0,F($)] — ;)
X 6f2[d”,o"(¢)iaflld”a’(¢) tqsl’ GI>
N+1

— (¢, 0'| TF($)y, 1;! (—il0;F($)] — 9;) |4', 0"

N+1

—i(¢", o"| TF(¢) g (—ild,F()] — o)
X 6flIa".a’(¢) |¢” OJ>’

and this is just Eq. (22). This completes the proof by
induction of Eq. (22).
Let us now consider integration over functional
derivatives. Substituting Eq. (9) into Eq. (21), we get
0F(¢)
ay @ ¢, 1 T( 5, 5) 190)
f 5(x)
= i[O + ). (¢, | TEHHD 1)
(25)

(24)

Consequently it follows that
OF
@717 (5, 0) 14.9)
+ (0 + m®), (¢, o"| TFE($(x)) |4, o). (26)

6*R($)
6¢(XN)1 T 6¢(x1)

¢, o T(G(¢) ) 14, 0')

— (O + md),, ($" o T(G(qb)
— (O + mY,,_, (§", o] T(
+ (=DM + m¥), (", o] T(

+ (—I)N <¢u, 0”! T(
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The integration over the nth functional derivative
of F(¢) satisfies the relation

. 5"F($)

@ T(aqs(xn), 89

= ()" H (O + md,(¢", o"| TESS)) |4, o).
@7)

The proof of Eq. (27) follows in a trivial manner from
induction and will not be shown.
A special case follows from Eq. (21) if we let

) 16,2

F($) = G(H)R($). (28)
Substituting the first variational of Eq. (28),
b F($) = $,G(HR(P) + G($)5,R(¢),  (29)

into Eq. (21), we obtain

(¢", o"| T(G($)0,R($)) |¢', 0")
— (", 0"| T6,G(H)R($) [¢', o)

+i f dixf (0 + m?),
x (¢", "] T(GARGE) |¢, ). (30)

In a similar manner we get an analogous relation
from Eq. (26) for functional derivatives:

oR
/I’ 1 T G /, 14
(¢, o) ( (¢)—6¢(x)) 14, )
o
~ 1758 k) 14,7
(T + m¥), (¢, | TGRS 15 o).
(1)

Equations (30) and (31) are similar to integration by
parts in ordinary integration theory.

Let us generalize Eq. (31) to the analogous case of
integrating by parts N times. Using Eq. (31) over and
over again, we get

0N 'R(4) .
Sp(in—r), - > Op(xy) ¢("N)) I#2%
0G($) 8" *R($)
0d(x ) 6¢(x1v—2)» T, 6‘75("1)

PGB i) 1 o
g R 2)) 14, 0"

¢(xN_1)) I#, o)

3G (¢)

R(¢)) I$', o). (32)

6¢(x1)’ T, 6¢(xN)



FUNCTIONAL

The Matthews—Salam equations are special examples
of integration by parts in Eq. (31). Their generaliza-
tion will follow from Eq. (32).

The pertinent relations derived for the scalar

(4", 6" T, F(AN A, 0') = i f d'xf, ()0, (4", o'| T(f(AA*(x)) 4", o),

(A", a"| T(S,

INTEGRATION 2173
integral are Eqs. (21), (22), (26), (27), (30), and (32).
These equations generalize in a trivial manner to
arbitrary Boson fields. In particular, for the electro-
magnetic field 4,(x) we have

(33)

i FADIA' ) = — 1 (4%, | T F TL (=i, 1CA) ~ 31,03, ICO)14,0), (30

"o 6F(A) roonN "o n u [
A", lT(M - )) A", o) = i00, (A", 0"] T(F(A)A(x)) |4, 0", (35)
" " 6F(A) ! 14 — “\Nn i " " " A I !
o 7 YWER Au,,<xn>) A0y = (0" T O, (4", | TCFAYA(x) 141 ) (36)

(4", 0"| T(G(A)d,;,R(A) |4, o")

6”R(A) ) IAI o,l>
84, (x,) " 0A4,(x;) ’

(A", " T(G(A)

= i[J,, (A", o"| T(G(A)
X+ X i(_l)n+1D11 <A”, O'"‘ T(

X (=1)" (4", ¢ T(

This completes our discussion of Boson integrals.
Illustration of these relations will be found in Secs.
1V and V.

III. FERMI FUNCTIONAL INTEGRALS

The significant formulas of Sec. I1 will be extended
to Fermi fields. This problem is slightly more complex
because of the noncommutivity of the functional
integrals. Care must be exercised with the order of the
fields; otherwise the extension is straightforward.

The first variation of F(y, ) with respect to y is
defined as

_ d _
O F(p. 9) = F(y + b, Dlaco. (39)
The auxiliary spinor 7 anticommute among them-
selves and with all y and .
The nth variation of F(y, p) with respect to v is
just
i an—l

dh -1
The variational of F(y, ¥) with respect to ¢ follows

6:7.' - F(p, 9) = 4F(p + hn,, ¢)|h=o- (40)

~(A", 0"| T(9;,G(A)R(A)) |A’, ") + ifddxfu(x)l:]x (4", 0"| T(G(AR(A)A (X)) |4", ), (37)

8" IR(A)
6A'n—1(xn-l) e

- (x1>) A, (x,) |4, o)

n—1
aAM(xi) - :ztuﬂ(x,,) R 14)
o o) 9
in an analogous manner:
BF ) = S PG+ b (4D)
and
om0 P) = d—;é,ﬁ“} 2 F (s @ + i) |hmo,

(42)
where 7 anticommutes with all p, ¢, and 7.
The first functional derivative of F(y, ) with

respect to y is defined by the implicit relation

8,F(p(»), P) = f 3o (YO P ' ()
The nth functional derivative is
OF(y,9) _ 9 { 0" F(y, ) } (44)
Op(xy) -+ - dw(x,)  Op(xy) 18y(xe) « - - Oy(x,)

The first functional derivative of F(y, §) with
respect to  is

5.F(y, ) = f i) 2E D) o,

45
57() (45)
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and its nth functional derivative is generalized in the
usual manner.

The Feynman functional integral over the first
variational of F(yp, %) with respect to y is

(¥, 9", ¢"| TO,F(y, P Iv', 9, 0")
= —i(y", ¢", ¢"| T(F(p, 90,1 o (WD 9", ¥, o).
(46)
The generalization to the nth variation is
@', 9", | T@Ogy.. . F(p, DD 1Y, ¥/, 0")
— —l <1/}", "//’ U”I TF("I), v—))

N
X H (— 5.,)5';110",6'('/’) ITP', ?p ’ 0').

§=2
(47)
The verification of Eqs. (46) and (47) is equivalent to
the proof of Egs. (19) and (22) and will not be

repeated.
Likewise, for variations with respect to ¢ we get

<wu’ 7/_)”’ o,/tl T(aﬁF(w, ,(/-))) "l/)’, 1/-1', O_I>
= _l <w”9 1/)—"’ GHI T(F('l/), ¢)6ﬁla".a'(¢)) I'/)': "/7” U’>
(48)

iéq,-Iu”.a’("/)) -

and
W' ", 0" TOgy .. . FCp, D) 19 9", 0")
= —i(y", 9", 0"| TF(y, p)
N
X ;l:l;(—iaﬁjld”,a”(yj) -
(49)

Let us now consider integration over functional
derivatives. Using the fact that

L) = [ d5BN—T = mi) (500
and )
Ol oo (P) = + f ,d‘xr'](i_)i — m)y,  (50b)
relations (46) and (48) become
(", 9", 0| T(0,F(y, P |y', ¥', 07
= —i f T”d‘x W', @, 0"

x T(F(y, P)FX) v, § a'}(—i¥ — m)yy (Sla)
and

", 9", o"| TGF(y, P Iy, 9, 07)
— __ifdAx <1P”’ ,‘/—)u’ o’

x T(F(y, P)i(—i¥ — myp(x)) |y’, §', ). (51b)

6'71) 6’7110”6'(17’) v, ¥, a’).
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Let us define the sign indicator Sy such that S is
+1 or —1 when F(y, §) transforms like the product
of an even or odd number of spinors, respectively.
We can now write Eq. (51b) as

W', 9" o"| T, F(y, 9D |y, 9, a")
= —iSy f d (¥ — m),

X (y", 9", o"| TE(y, Pp()) 1y', 9', o).

Using the definitions of functional derivatives in
Eqs. (43) and (45), it follows directly from Egs. (51a)
and (51c) that

” -l/ II 6F(w’ w) 7 -7 13
T
(", ¥", o’ ( 59(%) ) v, 9, 0"
— —l <,‘P”’ 17)//’ O,/rl T(F('!/J, w)w(x)) le, ,‘pl, GI)
X (—i¥ —m) (52a)

(51c¢)

and
—Il II 6 (1/)’ w) 7 -
" T
', 9, (5())lw,w )
= —i(i¥ — m) (9", 7", 0"| T(Y()F(y, ) [¢', ', o).

(52b)

Equations (52a) and (52b) can be generalized for
the nth functional derivative:

- 6NF(W’ 1/-3) ’ -7 7
1 II " T
T ) P
= (=D @, #", | T(E(y, Pp(x1) - -+ #(x,)
X |9/, 7 0") (—i¥ — m),, - - (¥ — m),, (53a)
and
" ONF(p, 9) C oo
” T , s
W (aa(m » a@(xa) Vo9 )
= (=) = m)yy - - (¥ — m),,
X (y", ¢, 0| T(p(xy) -+ » 9(x)F(y, P y', ¥, 0"),
(53b)

The formulas for integration by parts follow

directly from (52a) and (52b) by letting
F=GR. (54)

Substituting the first variational derivative

f G(y, PR, 7)
L'

= Sg i—i (v, DR(p, §) + G(p, P) %Rp(w, 7 (55
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into Eq. (52a), we get

v, 9, o)

w01 7(Gtp, ) TP

"= ” 6G - - =t ’
—Sgr (v, ¥, 0" T(@(w, PR(y, w)) ly', 9',0")

o”| T(G(y, P)R(y, P)p(x) 1y, %', a”)
(562)

" ot II

— i,
X (-—1)37 — m),.
Likewise, for (x) we get

w71 T(%5 2P Ry, 9) 19, 7, 0)

59()
~Say", " 1 TGy, )"R(_’f’ )

7 -1

v, 9,0

— iV — m) (v", §", 0|
X T(p(x)G(y, PRy, P |y’ ¢ (56b)
Let us now consider the general case of integrating by
parts N times. Using the fact that, for N > 1,
8"R(y, 9)
5¢(x1)61/7(xN)

2

G(y, 9)

0" R(y, )
57(x 1)( @9 6¢(xN>)
d (60(1/), ) 6V °R(y, P) )
S\ 5B(r) D) - OFCxw).

o NG(y, )
" ” T
RANAS (awxl) e dp(ry)

=+ S¢

+ (Se)?

R(y, zp)) 9, 7, o)

OR(y, 9)
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(S 2 ( Gy, §) _ "Ry, ) )
Op(x3) \OP(x2)09(x,) 09(x,) * + + 09(xn)

+, . + _1 NS N 6
(1S 5
¥ G(y, 9) _
R »
(6¢<xN_1> it ¥ "’))
8NG(y, ¥)
SP(xx) - - OF(xy)

— (=DNESHY R(y, §) (57a)

and
NG(y, P)
0p(xy) -+ - 0P(xy)

R(y, 9)

o SNIG(y, P) _
=5 R(y,
" p(xy) {6w(x2) - openy ¥ "’)}
6 0" *G(y, §)  OR(y, P)
+ (Sg)
o {w(xs) S+ Sy(xy) By(xy) :
P
+ —1 NS N
(=D™(SR) Bo0n)
¥ IR(y, P) }
Op(xy_1) - - - Op(xy)
6"R(y, 9)
dp(xy) -+ + dp(xy)

(57b)
Egs. (56a) and (56b) generalize to

x {G(uv, »)

— (—=DMSRYG(v, §)

= (—1)¥SY (y", 7, o' T(G(w, 7)

NGy, 9)
Op(xz) "+

- s 7 7

Op(xy) "+

6'/’(357\7)
8" *G(y, )  OR(p, §) 0x)

llp’, 1;)!’ o,l>
5'/’(—"1))

R(y, w)w(xl)) v, 7> ") (=i¥ — m),

— Sk 7,01 T
5 Op(xs) - -

dp(xy) Op(x;)
¥ 'R(p, P)

) v, 7, &) (—i¥ — m),

— (= D)SE (", ", o] T(G(w, )
and

-l/ " - 6NR L )
(", 9", 0"| T(G(w, ()] (. 9)

8p(x1) - -+ 09(x)

) lv', 9, 0")

Op(xy_q) -

VG(y, p)

o W) ¥, 7,0 (=¥ = m)y - (58)

_ — —INS ” —-r/ " T(
(—DYSY s 7 T (5o =

— iSL(N — m)y (", §, 0] T(w(xN)

— (= DNSYGF — m)y (v, 7 o] T(w(xN)

0p(x,)
- i.S’G,(i§7> — m)(y", 9", "] T(lp(xl)G(lp, )

0G(y, )

R(’P’ 1/j)) I’P” "/-)” ¢’)

aN_lR 2 ) ? - [4

= (wip) )Iw,wu’)
0P(xs) - - OP(xn)

" *R(y, ¥)

Op(xy) Op(xg) - 67)5("1\’)) ', 9, o)
PGy, §)
8§(xy-) "+~ OF(x)

R(y, vp)) v, 7, o). (58b)
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IV. APPLICATIONS B. Example of Functional Derivative Formula
In this section we would like to illustrate the use

of the previous relations by solving some specific Let us illustrate the use of Eq. (26) by solving for

the ratio
examples.
A. Example of Variational Formula R(¢)

Let us consider the evaluation of the functional <¢~ o’ T( #(x) exp ( f g(»)(y) d* )) 14, 6")
integral .
[#s (@1 T(exp (i a9 a%) ) 19, )

X (¢ 0"\ Tlog | [0t dts 403} 141, 0, (64)

Let
(59)
where & = (i[sdm ay). 69
(O + m)B(x) = g(x)- (60)
This functional integral can be solved by using Eq. L2king its functional derivative, we obtain
(21). Consider the first variation of the functional o($)
F((ﬁ) = log {f(x)edi(:c)/ﬁ(z) d4x}. (61) (5(]5( ) lg(x)F(‘l’) (66)

Its value is

8,F($) = 1. (62) Substituting Eq. (66) in Eq. (26), we get
Thus we obtain the solution of (59) by substituting ([ + m®) (4", ¢"| T(F($)$(x)) |4', o)
Eq (62) into Eq. (21) = lg(X) <¢u, O,nl T(F(¢)) I‘ﬁ” 01>. (67)
1=i|dy(¢", 0" Therefore the ratio in Eq. (64) is given by the solution
of the simple differential equation
X T(log Uf(x)e""””"‘“’ d‘x}
(O + m*),R($(x)) = g(x) (68)

x $g) (0 + mz)yﬁ(}’)) 14, o)

=i d4 II’ 0'”
lf vel) <¢ C. Example of Integration by Parts
X T(log Uf(x)ed,(mw(x) d"x}¢(y)) |4, 0%). (63) We will now solve for the ratio

with the appropriate boundary conditions.

(#", o'l T( $(x)a sin (n f $(7) d‘y) — 11 cos (n f $(7) d4y) exp (a f $(7) d‘y)) 14, 0"

B[$(x)] = (69)
@I T (si UED @) exp (a[ 40 ay)) 14 )
by means of Eq. (32), where N = 2.
Let
G(#) = exp (a J# aty). R =sin (n E2 aty). (70)
Taking the appropriate functional derivatives, we have
9G = aG, (71a)
d(x,)
%G 2
—_— = , (71b)
SHx)dH(r)
6¢(R) ?7005( f¢(y) dt ) (T1c)
%R
9 4 71d
Hosiy ~ e (1] 40 ). (71
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Substituting the above relations into Eq. (32), we obtain
— @', T(exp (a0 'y ) sin (1901 a)) 14, 0)
= (01 + ), (¢, | T( gl xp [#0ra) cos HES a)) 1)
— (0 + m,, (s o) T(¢(x1>a exp (a f $(7) d‘y) sin (n f $(y) d‘y)) |6, o)

+at (¢, o T(exp (a f $() d4y) sin f $(7) d‘y) 14, o).

Letting x; = x,, it follows immediately that

i(0 + m)B($(x)) = (a* + 7). (73)

Consequently, the explicit relation for Eq. (69)
follows directly from the solution of Eq. (73).

V. GENERALIZED MATTHEWS-SALAM
EQUATIONS

The Matthews-Salam equations are special cases
of the previous theorems. In order to show this, let
us relate the functional integrals to the vacuum
expectation value of a time-ordered product.

Let L,(-) be the interacting Lagrangian of the system.
Then the vacuum expectation value of the time-
ordered product of F(*) is defined as

l F(')ei(Ia””’-’_IU"d'{)6(-)
(F()) = 1“’"” , (18
—_— ei(Irt"o'""Ia"o-’{)a(.)
N Jro.0
where
I, = f L) d*x (75)

and#’ — — 0, t" — + co. The integration is performed
over the appropriate fields.

The Matthews—-Salam equations® follow from inte-
grating the numerator in Eq. (74) by parts once. Using
Eqgs. (31), (38), (56a), (56b), and letting

G() = F(),

(72)

we get the ordinary Matthews—Salam equations:

(a) Scalar fields:

([0 + m®)($(x)F(P)) = i(F($)jy) + / 5F(</>)\

oot 7

where

oL,
d(x)

(b) Massless vector fields:

i (XIF(A)) = i(F(A)j4,) \34 A )/ 79)
6L1(A) d4

sarx) " (80)

Jo =

where

Ja =
(c) Spin-} fields:

—i(i¥ — m)(p(x)F(p, §))

= SpFm P + (2N Gt
and i i iy 6()/()
—i(F(y, PPV — m) e\
- = S(F(y, 9)j,) + \ov(x)/” (82)
= f 61:;;12);)1#) d*,
= f 5_?151’;_)’/’) d*. (83)

This equation can be generalized by integrating by
parts N times. It follows from equations (32), (38),

R() = exp (l. f L) d“x), (76) S:ir,l ezliti?:sb;r etflat the generalized Matthews—
(2) Scalar field: |
i+ mz)w<¢(xN)F(¢) 3 ¢(xif)lfii(;) ) e‘”"‘”’> o
SR CIT e ai(xi_z) gy e_ili(¢)>
1
HIEDTO o $0 5e )
- <F(¢) 6¢(xil)yfi-l -(2¢(x1) )~ (- N<a¢(x§NF(?¢(xN)>; 39
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(b) Massless vector field:
SN-1,i1'4)
AMN—I(xN_l) “ .. 6Al‘1(x])

e-iI‘(A)\

iDzN<AuN(xN)F(A) P

NN PR
MR YT s yTry

—- st —iI(A)> o N/ 6YF(4) \
- <F B4 (xy) - - OMA(x) DN sarnien - oy &Y

() Spin-} field (¥ > 1):
P
] 6N_1et1 (WZP) e_,‘]‘(w.'ﬁ)\
6'/)(x2) [P 61‘/)(XN)
O0p(x) OP(xg) - - - 61/_](XN)

—iSH(¥ — m)<w(x1)F(w, P)

— iS3(¥ — M)<w(x2)

Sy, 9§\
8P(xy_y) * + + 0p(xy)/

5Nes'1‘(tp.w) _”‘(%'ﬁ)\ » N/ 5NF('R/), ?) \ %6
e e ARSI ey VA

- ,'(_1)NS§(1‘§ — m)N<TP(xN)

— /F ]
\ (v, 9)

and

/ e 5N—1e+i1‘(zp.¢) . \ p=
et ’ F( » ) (x ) (_IV - m)
Sp(xa) - opGxy) TN/

IN-2gHIWD  §F(y )
Fy(xs) - - Op(xy) Op(x)

—iSy

.yt -
_iS2F/e—aI (v. %)

@(x2)><—i‘>? — m),

e wen/ @D o N\ &
1= SF\‘SQP(XN-—l) e Oy(xg) 1/)(XN)/( W = m,

it 6Nei1‘(w.¢) _ \\ / 6NF(1/), 17)) \
= I (p.§) F \ -1 NSN . 86b
<" e S ALV A ey )

Higher-order differential equations for the vacuum expectation values may also be obtained from Egs. (27),
(36), (53a), and (53b).
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We investigate the possibility of using perturbation theory to compute the binding energy for infinite
systems in which the particles are localized. For the case of the linear chain of coupled harmonic oscilla-
tors, we prove that the perturbation series for the ground-state energy per particle is convergent. Exact
expressions for the generalized Padé approximants are derived. The generalized approximants provide a
manifestly convergent sequence of approximations to the energy.

1. INTRODUCTION

Consider the problem of computing the cohesive
energy of one of the rare gas solids. A method which
works reasonably well except for helium is the Hartree
method.! The Hartree method is based on the trial
function

N
\F(rla Fo, ", rN) = E Sb(ri - Rz‘)‘ (1'1)

The single-particle functions which give the lowest
total energy for the system are solutions of

—(R2M)V3(r) + Vi(r)p(r) = €d(r), (1.2)

where ¢(r) and Vy(r) must be determined self-
consistently. Thus, the Hartree solution is an eigen-
state of

N
H, =3 [pi2M + Vg(r)],

(1.3)
i=1
SO We can write
H = H, + AH,, (1.4)
where
N N
H, = 2 Vir;—ry) — z Vi(ry). (L.5)

>g=1 i=1

Then we contemplate an application of perturbation
theory in order to account for the lowering of the
energy due to H;. It is obvious that the practical
problems associated with such a calculation are
formidable. Therefore, before seriously considering
such an attack, it is worthwhile to know the mathe-
matical properties of such a perturbation expansion
when applied to the simplest possible model problem.
For the purpose of this study, we consider the linear
chain of coupled harmonic oscillators. With rigid
wall boundary conditions applied to the N-particle

* Supported in part by the United States Air Force Office of

Scientific Research under Contract AF 918-67.
1 L. H. Nosanow and G. L. Shaw, Phys. Rev. 128, 546 (1962).

system, the Hamiltonian is

Nop: | KT s k. o 2
H =i§m + 5 igl(xiﬂ —x) + E(xl + xy). (1.6)
The normal-mode frequencies for this system are

é- .
w:':z(_li)Sin (“_—er—“—)3 .I= 1923“‘ sN3
M) v+ 1)
1.7

and the ground-state energy is

E(N) = ﬁ(;';)* $sin )

i=1 2N+ 1)

=3[ es) ) 00

The energy per particle of the infinite chain is
i
fim 29 _ 2 k(ﬁ) ,

N-=ao N w M

Now we ask whether this result can be calculated by
a straightforward application of Rayleigh-Schrédinger
perturbation theory.

(1.9)

2. EXPLICIT CALCULATION OF THE
PERTURBATION SERIES THROUGH
FOURTH ORDER

In order to apply the perturbation method to this
problem, we write (1.6) in the form

H = H, + AH,, 2.1
where
N p2- N .
H = 4 k x,' 2.2
0 i§12M + 1§1 2.2
and
N-1
Hl == —'k z xix,-,.,_l . (2-3)
i=1

As usual, we expand in powers of 1 and thenset 1 = 1.
We shall simply compute the expansion for the
ground-state energy using the standard technique of
Rayleigh-Schrédinger perturbation theory. We note
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at this point that the application of perturbation
theory to this model problem has been discussed
previously, but from a completely different point of
view.?

Our system consists of N distinguishable particles.
An excited state of the unperturbed system is specified
by noting the harmonic oscillator level occupied by
each of the N particles. Such an excited state can be
denoted by
sy

It is clear that there is no first-order contribution to
the energy. In second order

[y, mg, e

P

E® = (0| H H, |0
o = (0] Ty 110
0| H, |a){a}| H, |0
=Z<| 2 o (et} 1l>’ 2.9)
a EO-—Ea
where
|0y =10,0,---,0,0,---,0,0) (2.5)
and
loy =10,0,---,1,1,---,0,0). (2.6)
Now
ko 2k\E
Hy|0) =-{= 2.7
(a] H, 10) AQ @7
and

e, — € = 2h(2k/M)} (2.8)
for each of the N — 1 possible intermediate states.
Thus

C. C. ROUSSEAU AND D. P. SAYLOR

Once again, it is clear that the third-order contri-
bution vanishes. In fourth order we shall need to
compute the “regular” term,

P P P

OlH H H H,10), (2.10
Y T T 110),  (2.10)
and one “irregular” term,
P P
—(O|H H,|0){O| H, ————— H, |0).
OF Hy ——= Hy [0 O] Hy o H: 10)
(2.11)

All of the other ‘“irregular” terms vanish since
O] H,|0) = 0.

We shall need a systematic way of keeping track of
all the contributions to the regular terms. Let us
enumerate the various contributions by simply listing
in columns the individual particle levels which occur
in intermediate states and grouping the contributions
according to how many particles are involved. We
shall refer to such a listing as a “‘diagram.” For an
n-particle diagram there will be a certain weight,
which is the number of times such a diagram can
occur for an N-particle system. To illustrate, in
second order there is only one diagram:

00
11
00
This is a two-particle diagram and its weightis N — 1.

o) 28N — 1 For the fourth-order calculation we list all of the
EyY = —h|=—) — 29 ..
M 32 diagrams below.
Two-Particle Diagrams
00 00 00
11 11 11
22 20 02
11 11 11
00 00 00
Three-Particle Diagrams
000 000 000 000 000 000 000 000 000 000 000 000
110 110 011 011 110 110 011 011 110 110 011 011
121 121 121 121 101 101 101 101 020 020 020 020
110 011 110 011 110 011 110 011 110 011 110 011
000 000 000 000 000 000 000 000 000 000 000 000
Four-Particle (Unlinked) Diagrams
00---00 00---00
11---00 11---00
11---11 11---11
11 ve s 00 00 I 11
00---00 00---00

? R. D. Mattuck, Ann. Phys. (N.Y.) 27, 216 (1964).
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It is a straightforward matter of counting to see that
the appropriate weights are as shown below:

n Weight for an n-Particle Diagram,
2 N-—-1,
3 N-2,
4 (N—2)(N—-3)=N2—5N+6.

Note that we must have N > 2 in order to make
sense here. For higher orders in perturbation theory,
the minimum N will increase and, in general, for
2nth order we must have N > n in order to simply
specify a weight without going into more detailed
considerations. This point will be made more trans-
parent later on in our discussion of the problem.

Before proceeding to write down the regular con-
tribution to E{®, let us look at the irregular term.
Since the matrix elements, energy denominators,
and weights are just exactly the same as for E{?, we
can see immediately that

P P

_(©OH H, |0y (0] H H, |0
O Hy 2= Hy10) O] Hy s Hy [0
3 —_1\2
=h(%)(—N———1—). 2.12)
M) 2048

Since we have already listed all of the diagrams and
their weights, it is simply a matter of keeping track
of factors which occur in the matrix elements and
energy denominators to compute the total contribu-
tion of the regular term. When this is added to the
irregular term, the result is

3
EW = —h(%) L [6(N — 1) + 12(N — 2)

2048

+ (N2=5N +6) — (N — 1)}]. (2.13)

The two parts which are proportional to N2 cancel
and the result is

E(()4) _ —

3 -
h(.z_lf) ISN =25 . (2.14)

M 2048

Our purpose for computing the fourth-order
contribution in detail is to demonstrate that the
calculation is perfectly routine. The essential point is
that the number of nonvanishing matrix elements is
limited. Where this feature can be assumed, the
entire process of enumerating the various diagrams
and computing their contribution is amenable to
electronic computation. By writing a computer code
for this purpose, it is conceivable that one may be
able to obtain many terms in the perturbation
expansion.
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3. THE ENTIRE SERIES

Now we ask whether such an expansion is of any
utility. In particular, for the case of infinitely many
particles, we wish to know whether the series is
convergent for 1 = 1. To this end, we first find the
exact ground-state energy for the case where the
Hamiltonian is given by (2.1)-(2.3). By means of
the usual analysis of the coupled chain,

3
IM G

hiokd N ;
Ey(N, ) = ( ) 2[1 - cos( Jm
2\M N +
Now we formally expand each term in the sum using

i=1
the binomial theorem and then interchange the
orders of summation, thus obtaining

E(N, 2) = g(;g)*go(; )i 3 cort ()
(3.2)

By noting that

" 1[/2n < 2n
cos®” x = ﬁ[( n) + 2mz=:1(n N m) cos (2mx)]

(3.3)

Seos (Zmm) - <1 mAKN 41,
N, m=kqN +1),

-, we find

(3.4)

- Nz;t' 1[( :) * 2,2(,: + kz:l + 1))] —L G

= [n/N + 1] (3.6)

and it is understood that, if L = 0, the sum over k is
simply omitted. Thus, the complete perturbation
expansion is

s =31 E G

2%( 2n )}—112" (3.7)
i=i\n + k(N + 1) } T
In particular,

kM N — 1
E® = —h(ﬁ) Y (3.8)
and
3 -
EW = —h(fv—k) 1-5%8&, N>2, (3.9)

in agreement with (2.9) and (2.14), respectively. We
note at this point that the condition L = 0 coincides
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exactly with the ability to specify simply a “‘weight”
for each diagram. This condition is » < N, and, if it
is satisfied, we can write E*® = 4, N + B, , where
A,, and B,, are independent of N.

2n?

4. ANALYTICITY AND CONVERGENCE

By inspection of (3.1), we see that Ey(N, 1) is
analytic except for branch points on the real axis at
sec(jmn/[N + 1), j=1,2,---,N. Thus, for finite N
the radius of convergence of the perturbation series
is equal to sec (w/N + 1). The expansion for the
energy per particle of the infinite system is clearly

s 215 L)) o

and it is convergent within the unit circle. If we set

1 /(%\(2n
C,=— , 4.2
" 22"(2n)(n) “2
it is easy to show that
fim n[l — E—Jf—l] =2 (4.3)
n—w C,
By Raabe’s test,? then,
&1 {4\ (2n
— 4.4
'ngﬂ 22"(2n)( n ) @4

is convergent. Consequently, by Abel’s theorem,*
(4.1) is uniformly convergent for 0 < 4 < 1. Although
(4.4) is convergent, its rate of convergence is somewhat
slow, and it behooves us to investigate methods for
obtaining a more tapidly convergent sequence of
approximations than we can realize from the partial
sums of the series. To this end we investigate the
generalized Padé approximant.

5. THE GENERALIZED APPROXIMANT

The problem of extending the usefulness of pertur-
bation expansions is one which is common to a
number of areas of theoretical physics. Thus, it is
not surprising that the Padé approximant has received
much attention and has been applied in such areas as
statistical physics,> the many-body problem,® scat-
tering theory,” and elementary-particle physics.® The
Padé approximant can be applied when one has only
a formal power series expansion and no additional

3 P. Dienes, The Taylor Series (Dover Publications, Inc., New
York, 1957), p. 78.

¢ E. C. Titchmarsh, The Theory of Functions (Oxford University
Press, London, 1932), p. 9. .

5 G. A. Baker, Jr., Phys. Rev. 124, 768 (1961).

8 G. A. Baker, Jr., J. L. Gammel, and B. J. Hill, Phys. Rev.
132, 1373 (1963).

7 S. Tani, Phys. Rev. 139, B1011 (1965).
8 D. Bessis and M. Pusterla, Phys. Letters 25B, 279 (1967).
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information. Often, however, one has additional
information which is relevant to the problem of
finding an approximate analytic continuation of the
power series. In order to make use of this additional
information, several generalizations of the Padé
approximant method have been proposed. These
include the two-point Padé approximant® and the
method to be discussed in this section.

Given a formal power series expansion Y a,z" and
a known function,

g(z) = %ob,,z", 5.1)

we define the [N, N + j] generalized Padé approxi-
mant to be the expression

N i
FN.;'(Z) = zlang(ﬂnz) + z'}’kzk’

k=0

(52)
with the «, f§, and p coefficients chosen so that

@

Y a,z" — Fy {(z) = 02N+,

n=0
It is understood that, if j = —1, the sum over k in
(5.2) is omitted. The mathematical properties of
generalized approximant have been discussed in some
detail elsewhere.1%:11 At this point we simply state the
method by which it is computed. In order to compute
the [N, N + j] generalized approximant, one must
simply perform the following calculations:

(1) Compute the [N, N + j] Padé approximant to

the series

(5.3)

2 (aq/by)z", (5.4
n=0
i.e., find the rational function
PN+J'(Z) = Do + D12 + -+ pN-H'zN-H (5 5)
On(2) L+ gz + -+ gy
which satisfies
S (afbzn — 22D _ paveiny (56
n=0 On(2)

(2) Write the [N, N 4+ j] Padé approximant in
partial-fraction form:

N A J
Y ——— 4+ 3G~

11— B,z &=0

Then o, =A4,,f,=B,, n=12,---,N, and
Ve =b,C, k=0,1,---,j.

® G. A. Baker, Jr., “The Theory and Application of the Padé
Approximant Method,” in Advances in Theoretical Physics, K. A.
Brueckner, Ed. (Academic Press, New York, 1965), Vol. I, p. 54,

103, L. Gammel, C. C. Rousseau, and D. P. Saylor, J. Math.
Anal. Appl. 20, 416 (1967).

11 G. A. Baker, Jr., Phys. Rev. 161, 434 (1967).

(5.7)
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In the original work on this method, the function
g(z) was called the “model” function.!? The reason
for this designation is that g(z) may be derived from
the solution of some simpler model problem. Alterna-
tively, g(z) may be chosen on the basis of its analytic
structure or its asymptotic behavior. We expect that
the sequences of [N, N + j] generalized approximants
which will be of most value are the j = —1 andj = 0
sequences. Now let us compute these two sequences of
generalized approximants for the series given by (4.1),
choosing as our “model” function

g(A) = (1 + M + (1 — Wl

- 20(;) o,

In order to compute the generalized approximants,
we must find the partial-fraction form of the Padé
approximants of

(5.8)

> L2\ n_ o _ -t
gﬂzn(n)z =1 =2yt (5.9)

This problem can be solved exactly with the result
that

[N N = 1)) =_;J 2 [1 - (0052 Qn_2__1\—ll)_ﬂ)z]—l

n=1

(5.10)
and
— 2 Iy (o =D\ 77
[N, N1(2) SN+ 1 gl [1 (°°S 202N + 1))2}
1
+2N+1. (5.11)

(These results are proved in the Appendix to this
paper.) Making use of these results, as well as some
simple trigonometric relations, we find

(5.12)
and

B2k 1
Fyo®) = 5(;1) IN + 1

xzjgl[l — (cos %’N_Tl)l’;)zf. (5.13)

Our major concern, of course, is the sum of the series
given by (4.1) for 2 = 1. Performing the sums in
(5.12) and (5.13), we obtain the particularly simple

12 D, P. Saylor, J. L. Gammel, and C. Rousseau, Bull. Am. Phys.
Soc., Ser. II 12, 83 (1967).
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results ,
K\ 1
Fy (1) = k(ﬂ) - ose (_13) (5.14)
and
_ _lf_ $ 1 T
Fvol) = h(M) WN+ 1 C (4(2N + 1))'
(5.15)

Both sequences of approximants are manifestly con-
vergent to the limit (2/m)Ai(k/M)t, in agreement with
(1.9). From the Laurent expansion for csc (z), we
find the approximate errors of Fy, _;(1) and Fy (1)
to be

3 3
h(—’f-) T and h(—)—"—,
M/ 48(2N)? M/ 48(2N + 1)®
respectively.
6. DISCUSSION

The application of perturbation theory to an
infinite system in which the particles are more or less
localized yields some interesting results. In the first
place, the series for the energy particle is convergent
for 2 = 1. Secondly, the generalized Padé approxi-
mant provides a usefully convergent sequence of
approximations, thus adding to the utility of the
perturbation approach. It remains to be seen whether
these results can be of any benefit to those seeking
accurate calculations of the binding energies of the
rare gas solids. In any case, we suggest that this work
provides a different perspective to the use of pertur-
bation theory in connection with infinite systems.

APPENDIX

In order to prove (5.10) and (5.11), we make use
of simple trigonometric formulas and we appeal to
the uniqueness property of the Padé approximant.!®
Formally expanding the right-hand side of (5.10),
we have

N s 1
L > [1 - (cos2 M)Z:I
Ni=1 4N
(1 ¥ @2~ Dm,
_ngl)(N glcos N )z .
Now making use of (3.3) and noting that
%cos (m(2j — 1)71') _ {0, m # k(2N),
i=1 2N —N, m = k(2N),

fork=1,2,---, we see immediately that

(A1)

(A2)

N i3 4N 22n

13 H. S. Wall, Analytic Theory of Continued Fractions (Chelsea
Publ. Co., New York, 1967), p. 377.

1 X j —
< 20082"(2]—1)2 = _1__(2n)’ n<2N. (A3)
n
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Similarly, let us formally expand the right-hand side
of (5.11):

Eﬁé-_ljgllil - (cos
+Z(

Once again, we make use of (3.3) and note that
g:cos (m(2j - 1)77')
i=1 2N +1
% m # k(2N + 1) and odd,
={—% m# k(2N + 1) andeven, (AS)
—N, m=k(2N + 1),

fork=1,2,---

2 (2 = 1)#)2}—1 1
2(2N + 1) 2N + 1

2'n (2.] 1)7T n
IN + 1 é 202N + 1))z - (A9

. Thus

§C082n (2.] - 1)77
200 22N + 1)

R LAY N B X ]

1 /2n\ (2N + 1
2%( )(—7—), 1<n<2N+1. (A6)

Finally, noting (A3) and (A6) and using the fact that
the Padé approximant is unique, we have established
(5.10) and (5.11).

In connection with the results given in (5.10) and
(5.11), it is well to mention that exact expressions for
the [N, N] Padé approximants have been obtained for
a certain class of hypergeometric functions,’* and

14Y. L. Luke J. Math. & Phys. 37, 110 (1958).
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that (1 — z)~% = F(1, }; 1;z) is a member of that
class. The results obtained in Ref. 14 are very beauti-
ful. However, the partial-fraction form of the Padé
approximant, which for the special function (1 — z)~*
is so simple, is not discussed in that work.

The method of proof given in this Appendix has
been selected because it is straightforward and
requires no preliminary mathematical development.
However, if one recognizes the connection between
the generalized Padé approximant and the method
of Gaussian quadrature, then (5.12) and (5.13)
follow in a particularly simple way and this develop-
ment is perhaps to be preferred over the one given in
the text. We begin by noting the integral representa-
tion of the energy per particle of the infinite chain,

EHKE

lim E(N, %) _ —_
N-w N (1 —u )*
(A7)

Now let us approximate the integral in (A7) by the
2N-point Gauss-Chebyshev quadrature formula. Since
the Gaussian quadrature formula is exact if the
integrand is any polynomial of degree 4N — 1 or less,
its application to (A7) must agree with the exact
power series through O(A%2N-V) and the result is
thus equivalent to Fy _;(4). In a similar fashion, we
canconclude thatthe (2N + 1)-point Gauss—Chebyshev
formula applied to (A7) is equivalent to Fy o(4). It
is well known that, for M-point Gauss-Chebyshev
quadrature, the weights are all equal to #/M and the
abscissas are the zeros of T,(x), namely,

cos ((2n — )w/2M).
Thus we obtain (5.12) and (5.13).
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The physical regions of six-particle processes are constructed in all planes of pairs of Lorentz-invariant
variables. As a matter of course, the permissible ranges of the eight independent variables are established.
Thus, one application is the determination of the integration limits in phase-space integrals that occur
in calculations involving two-to-four and one-to-five particle processes.

I. INTRODUCTION

A previous analysis’ of the physical regions of
general five-particle relativistic processes is extended
here to general six-particle reactions. Specifically,
construction of the physical regions for any six-
particle reaction in all possible topologically distinct
planes of pairs of Lorentz-invariant kinematic vari-
ables (namely the Mandelstam variables) is shown.
This knowledge could be useful in the analysis in such
planes of the many-sheeted singularity structure of
perturbation-theory amplitudes, since only under
special circumstances can singularities lie in the
physical regions.? Also, such knowledge is useful in
establishing the domain of validity of single-variable
dispersion relations and partial-wave dispersion rela-
tions in perturbation theory.? Furthermore, recent
work in formal S-matrix theory concerning the nature
of singularities following from unitarity makes a
special point of beginning first with physical-region
singularities? and so it is desirable to know the extent
of these regions.

Another reason for making this study, from which
the limits on the ranges of all kinematic variables can
be obtained in a systematic manner, is that the result
enables one to develop efficient numerical-integration
techniques for use in calculating, for example, two-
to-four particle transition probabilities and one-to-
five particle decay probabilities. As applied to the
latter example, the results below encompass those of
Nyborg.?

Finally, the techniques developed below can be
regarded as an explicit example of and introduction
to the more abstract n-particle formulation.?

* National Science Foundation Undergraduate Research Partic-
ipant supported by NSF grant GY-4373 to Dartmouth College,
Hanover, N.H.

1 R. A. Morrow, J. Math. Phys. 7, 844 (1966), hereafter referred to
as Paper I.

2 R. J. Eden, P. V. Landshoff, P. L. Olive, and J. C. Polkinghorne,
The Analytic S-Matrix (Cambridge University Press, London, 1966).
See particularly p. 84ff and p. 204ff.

3 P. Nyborg, Phys. Rev. 140, B921 (1965).
4 R. A. Morrow, Ann. Phys. (N.Y.) (to be published).

It should be pointed out that only conditions on the
invariants, in order that a general six-particle reaction
be physical, are of interest here. The actual ranges of
the invariants for any particular process, i.e., any
particular channel, easily follow, however, and, when
used in conjunction with the expressions for the
phase-space volume element (in invariant variables,
given by Byers and Yang®), a complete and concise
description of the phase-space integral results.

In the next section, the Gram determinantal con-
ditions which serve to define the physical regions are
summarized and the manner of implementing them is
outlined. Various determinantal identities and sym-
bolic operations are then discussed in Sec. III and are
applied in Sec. IV to the Gram determinantal condi-
tions to obtain closed sets of determinantal conditions
from which the allowed ranges of all invariants may
be deduced.

All quantities throughout are real.

II. DEFINITION OF PHYSICAL REGIONS

The general six-particle process to be discussed is
shown in Fig. 1 where the ith particle of mass m; has
its 4-momentum p; (p? = m?) directed inwards for
convenience and the convention used is that if the
particle is incoming (outgoing), its 4-momentum is
positive (negative) timelike. A convenient, symmetri-
cally chosen set® of Lorentz-invariant variables with
which to decribe the kinematics is the following:

u=(ps + ps)?,

a = (p1 + pa + ps)?,
v = (ps + ps)’,

b= (ps+ps + po)?,

w = (p5 + pe)?,
¢ = (Pa + ps + ps)a.
® N. Byers and C. N. Yang, Rev. Mod. Phys. 36, 595 (1964).

8 V. E. Asribekov, Nucl. Phys. 34, 461 (1962); Phys. Letters 2, 284
(1962).

r=(ps + p?

§ = (Pl +P2)2,
0y
t = (py + ps)?,
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Fic. 1. This depicts a general six-particle process and indicates
schematically the nine Mandelstam variables used in the analysis.

Since there are, however, only eight independent
variables for a six-particle reaction, these nine vari-
ables are not all independent. It is convenient not to
specify a dependent variable at this stage, however,
since a choice will enter naturally later on.

Because any eight of these variables have inter-
dependent ranges, they cannot all be treated on an
equal basis. Rather, the physical regions in planes of
pairs of them will be set up with the remaining
variables treated as parameters. Conditions on these

2w wH+b—m! wHu—s
2b u+b—mi
L= 2u

Note that the six variables of interest r, s, 7, v, a,
and ¢ each occur in only one element of L (and, of
course, in the transposed element). As will be seen,
this allows an easy solution of the equation L = 0 for
any of them in terms of the other eight. Thus numerous
choices of the dependent variable can be made.

The over-all aim is now to solve L = 0 subject to
conditions (2) on A,, A;, and A,;. These Gram
determinantal conditions are necessary and sufficient
for the invariants to lie in a physical region. However,
given two invariants there is no guarantee that a
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latter parameters are then sought so that physical
regions do exist in the plane of interest. A brief survey
of Fig. 1 shows that any plane is topologically equiv-
alent to one of the following six: a-¢, a—t, c—t, v-s,
v-r, and s—r. Therefore only these six will be treated.

The general Gram determinantal conditions from
which the physical regions may be found were
established in Paper I. For the particular case of six-
particle processes, they are, with the Gram determi-
nant of the 4-vectors p,, p;, "+, p, defined as

A(pi,pa" e yplc) = det (pa 'Pb))

witha,b=1,j, -, k:

® Ao(pi, p) L0, (2a)
(i) As(pispsspi) 20, (2b)
(iif) Apis pis s P) L0, (20)
(iv) As(pis P55 P> Pr> Pu) = 0, (2d)
subject to

As in Paper I, conservation of 4-momentum will be
imposed on A; = 0, which can then be put in terms of
the nine Mandelstam invariants. Specifically, A; may
be brought into the form L/2°, where L is the sym-
metric determinant

w—a+mj —w—m:+ml

b—t+mi r—b—m

u—m4+m c—u—m

3)

2m? v—mi—mk

2
2m;

physical region exists in their plane if (2) is satisfied.
For this, further conditions on the remaining six
independent variables, logically derivable from those
on the Gram determinants in (2), are necessary. It
remains to find these logical structures.

III. IDENTITIES AND SYMBOLIC OPERATIONS

In order to find the implications of (2), it will prove
convenient to first develop some logical operations
(almost identities) which will be applied to (2) in the
next section. To begin, the notation used in this and
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the following section is that of Paper I: L is the deter-
minant of a symmetric matrix whose elements a;; are
defined by (3); L,;..., is the principal minor of L
obtained by deleting the ith, jth, - - -, kth rows and
columns of L; V(ij- - k),, is the cofactor (signed
minor) of the element a,,, of Ly;...;; V(ij * * " k), i8
V(ij -+ k), With a,,, = 0.

Numerous formulas, useful indealing withsymmetric
determinants, are summarized in the appendix of
Paper 1. The three that will be used in the present work
are

(a) the identity

L‘i"' j =

7

(L.l jm — V(i .j)lim]/Li”-jkm; )

(b) the solution of L,...; = 0 for a,,,:

G = VG Jiomg & Livo L 5 L i

= (i -y )5 &)
(c) a concise expression for L, ... ;:
Li...; = —Li... jenltym — @i~ J, +)]
X [akm - akm(i . 'j’ _)] (6)

From these relations and from the structure of L
there follow a number of useful properties:

(A) L=0and L, <0 imply L, < 0. This results
from a straightforward application of Eq. (4).

(B) L; <0, L;; >0, and L;;; <0 imply L; > 0.
This also results from applying Eq. (4).

(@ L;>0 and L; <0 imply L, <0.7 The
argument here is a bit more involved. If L, > 0
then an application of (4) shows that L;;,, < 0. On the
other hand if L, < 0, then the functional form of
L,;,, requires it to be negative. To see this, notice that
each L;;,, = —A(x, y, z), where

Ax,y,2) =x2+ y2 4 2% — 2xy — 2yz — 2zx, (7)
and each of x, y, and z is either a variable or the
square of a mass. Then, L,,,, is either 2x, 2y, or 2z,
depending on the index m. From Eq. (7) it follows
that A(x, y, z) > 0if x, y, and z are neither all positive
nor all negative. Now, by inspection of (3), at least one
of x, y, and z is the square of a mass [except in the
case Lo = —A(s, u, w), which will not enter the
present analysis] while, because of L,;;,, < 0, another

7 An exception to this—which will not be encountered in the
present work, however—is pointed out below.
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is nonpositive. Hence A(x, y,z) > 0 and so L;;, <0
as asserted.

These properties may be symbolized as logical
operations or implications:

Li L ij L ijk
A L Ly |B) L © Ly
LJ’ L ik Li:i m

®)

where L =0, L, <0, L; >0, and L;; < 0. Deter-
minants at the tails of arrows are assumed to have
these signs, whence the identities require the deter-
minants at the heads of arrows to have these signs,
as shown above. The manner in which this requirement
on any particular determinant is actually met is by
varying one of the invariants that the determinant
depends on. To see how this operates, suppose
L;...; < 0iswanted. Consider thesolutionsof L,...; =
0 for a,, as given in Eq. (5). It will always turn out in
the present work, by proper choice of the indices k and
m, that L,..;L;...;, > 0. Thus L;...; = 0 has real
solutions @, (i---j, &) and there is, therefore, a
range of real values of a, for which L;...; <0,
found by using (5). Concrete examples of these argu-
ments are given in the next section.

IV. LOGICAL STRUCTURES OF DETER-
MINANTAL CONDITIONS

The arguments of Sec. II may now be continued
using the symbolic operations set up in the previous
section. The aim is to build upon a set of Gram deter-
minantal conditions (2), using the operations in (8), a
structure of other determinantal conditions from which
the ranges of all invariants in (1) may be found in a
systematic manner. It turns out that, although many
such structures are possible, two particular ones are
sufficient for a study of the physical regions in all of
the six planes proposed in Sec. II. Only these two
structures will be shown.

The a-c, a—t, and c-t Planes

Take as the set of Gram determinants A,(p;, p,),
As(ps, ps, pa), and Ay(py, p2, ps, pa). By adding appro-
priaterows and columns and by using the conservation-
of-momentum condition in (2), these three Gram
determinants become L;55/2%, L,5/23, and L,/2¢,
respectively. Thus conditions (2) become L, < 0,
L, >0, Ly 0, and L = 0. Beginning with these
and using the operations (8), the following structure
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can be obtained:

Ly25(u)
©) Lys(u, b, 1)
(B)
Lyys(u, b) /
© Ly;(u, w, b, 5)

(B)

|
Lyys(W, b) /
EC)/L\(W‘JIJ )

w)

4
L234(

with L=0,L; <0, L; >0, and L,; <0. By con-
struction, the conditions in (9) are necessary and
sufficient for a set of values of the kinematic variables
(1) to describe a physical process. How they determine
the physical regions in the various planes will now be
described.

Physical Regions in the a—c Plane
The conditions (9) may be satisfied as follows:

(i) pick u so that Ly, < 0;

(ii) pick w and b so that L5, Lays, Legg < 0;

(iii) pick 7, s, and r so that L,;; > 0, L5 > 0, and
Lgy > 0, respectively;

(iv) pick @ and ¢ so that Ly < 0 and L, < 0, respec-
tively;

(v) pick v so that L = 0.
In the a-c plane, the physical regions exist and are
given by those regions where L;, L, < 0. Use of (6)
shows that there is only one such region and that its
shape is rectangular.

That the above choices can always be made was
argued at the end of Sec. III. For example, consider
satisfying Ly > 0 by choice of s. From (3), s occurs
only in a,5 and (5) shows that Ly = 0 can be solved
for a real value of ay,, since Lygslyys > 0 by prior
choice of u, w, and b. Thus real values of s exist that
make L,5 > 0, the range being found by use of (6).

Essentially the same argument can be applied to the
choice of each invariant. Note in particular, from (5),
that rwo values of the dependent variable v satisfy
L = 0. For any particular channel (selected by prior
choice of the eight independent variables), both values
of v are physical. In other words, specification of the
eight independent invariants does not lead to a unique
configuration of momentum in Minkowski space.
In fact, two additional pieces of information® are
needed before the configuration is unique; one is the

8 F. Rohrlich, Nucl. Phys. 67, 659 (1965); Nuovo Cimento 38, 673
(1965).
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L5(ua w, b9 s, t, a)
(A)

L(u, w’ b! s’ t’ r’ a’ c) v)

9)

L4(u9 W, ba s, r, C)

value of v, while the other is not really important,
since it just distinguishes between configurations
related by a spatial reflection. These remarks also
hold in the following cases.

Physical Regions in the a-t Plane

Conditions (9) can be satisfied precisely as above.
To then find the form of the physical regions in the
a-t plane, consider using (5) to solve Ly = 0 for ay,(a)
and a,,(1):

ay = [V(S)uo + (L15L45)é]/L145,
Qg = [V(5)24o + (L25L45)é]/ Lygs.

This shows that L,; = 0 and L,; = 0 are tangent lines
to Lg = 0, parallel to the coordinate axes. Further-
more, since L,; > 0, the curve L; = 0 lies only in
those regions where L5, Ly; > 0. Use of (6) on Ly
shows that if L, =2u >0, then L;; >0 for ¢
between the tangent lines L;5 = 0; otherwise ¢ must be
taken outside these lines. The two possibilities are
shown in Fig. 2. Whether the hyperbola lies in the
first and third quadrants as shown or in the second
and fourth quadrants depends on the values of the
other invariants.

Physical Regions in the c-t Plane

The order of choosing invariants to satisfy (9) is for
the most part the same as before. The exception is that
a must be chosen before ¢ or ¢. This is easily handled,
for from Fig. 2 it can be noted that if @ is chosen so that
Los(u, w, 5, a) > 0 then any ¢ such that L; < 0 also
gives Lz > 0. Thus conditions (9) can be satisfied by
the scheme:

(i) pick u so that L;,5 < 0;

(i) pick w and b so that Ly, Lass, Lagy < 0;
(iii) pick s and r so that L,;, Lys > 0, respectively;
(iv) pick a so that Ly; > 0;

(v) pick ¢ and ¢ so that Ly, L, < 0, respectively;
(vi) pick v so that L = 0.
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(a) uzo
(wz20) o (b) uco
(v) (w<o) a
] (v)
\ ot
L25=0 " 12520
(L23:0) (L23:0)

et+—L5s=0 \

\ (L3=0) —

FiG. 2. The form of the physical regions in the a~t (v-r) plane for (a) u(w) > 0 and (b) u(w) < 0. In (a) there is only one physical
region, the interior of the ellipse. In (b) there are two physical regions, inside each branch of the hyperbola.

As in the case of the a—c plane there is only one physical region in the ¢—7 plane given by the overlap of Ly <0
and L, < 0. Its shape is also rectangular.

The v-s, v-r, and s-r Planes

Take as the set of Gram determinants As(pas Pa)s As(pa, P, po), and Ay(py, ps, Ps, Pa), the only differ-
ence with the previous choice being A,, which here may be written in the form —}A(z, m?, m%). Thus
conditions (2) become —A(t, mi, m3) <0, L;; >0, L; <0, and L = 0. The operations (8) can then be
used to build the following structure:

—A(t, m%, m}

Lys(t, b, u)
/ ‘ Ly(t,w, b, a,u, 5)
Llss(t b)\ / l (A) L(t,w,b,a,u,r,s,v,c) (10)

Lg (15w, b, a)

/ L o1, w, b‘ﬁ
L345

L34(w b, r)
Loy, ("/

with L=0,L,<0,L; >0, L, <0, and and application of (4) gives
Me, m, m3) 2 0. Lys = [—A(t, m3, m3)Lyg;
Although —A(r, m2, m2) is not one of the L, —(t — mE + md¥(b — t — m2?)2t

operation (C) of (8) can still be used to require
Lygs <0, because L; can be put in the (symmetric) from which it follows, by repeating the arguments used
form to establish operation (C), that

2t t—mi+m; b—t—mj s s
Ly=]--- o2 - — Lz >0 and —Ai(t,m2,m2) <0

2mé imply L35 < 0.
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Physical Regions in the v—s Plane

This case is quite similar to that of the a—c plane.
The conditions (10) may be satisfied as follows:

(i) pick ¢ so that A(t, m2, m2) > 0;
(ii) pick w and b so that L35, Ly, Logy < 0;
(iii) picku,a,andrsothatLys, Lys, Ly > 0, respec-
tively;
(iv) pick s and v so that Ly, Ly < 0, respectively;
(v) pick ¢ so that L = 0.

The single, rectangular-shaped, physical region in the
s—v plane is given by the overlap of L; < 0 and
L; L0.

Physical Regions in the v-r Plane

The conditions (10) may be satisfied precisely as in
the previous case. The situation here is quite analogous
to that in the a—f plane case and so to find the form of
the physical regions first use (5) to solve Ly = 0 for
a,5(v) and ay(r):

g5 = [V(3)450 + (L34L35)&]/L345,
a5 = [V(3)es, £ (LosLgs)t)/ Logs -

This shows that the lines Ly; = 0 and Ly,3 = 0 are
tangent to Ly = 0 and that the latter curve exists only
in regions in the v-r plane where Lgy, Ly3 > 0 since
Lg; > 0. Use of (6) on Ly, then shows that if Ly, =
2w > 0, then Ly, > 0 for r between the tangent lines
L ,, = 0; otherwise » must be taken outside these lines.
Thus Fig. 2 applies to this case with the replacements
a—v, t—r, u—w, Lys— Loy, L;;— Ls,, and
Ly— L.

Physical Regions in the s-r Plane

This case is analogous to that in the ¢—f plane. The
order of choosing the variables can be the same as in
the previous two cases with the exception that v must
be chosen before r or s. This'is easily done, for, from
Fig. 2, if v is chosen so that Ly(w, a, v) 2> 0, then any
r that makes Lg < 0 will give Ly, > 0. Conditions (10)
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are thus satisfied by the following:

(i) pick ¢ so that A(z, m3, mZ) > 0;

(if) pick w and b so that Lygs, Lgys, Logs < 0;
(iii) pick v and a so that L5, Lys > 0, respectively;
(iv) pick v so that Ly; > 0;

(v) pick r and s so that Ly, Ly < 0, respectively;
(vi) pick ¢ so that L = 0.

Since Ly = 0 and L, = 0 are each two straight lines in
the s—r plane, there is only one physical region and it is
rectangular, being given by the overlap Ly, Ly < 0.

V. CONCLUSIONS

It has been shown how to systematically construct
the physical regions of six-particle processes in all
topologically distinct planes of pairs of Lorentz-
invariant variables. Instructions have been given as to
how to select the ranges of the first six variables which
are viewed as parameters.

There was no need in this analysis to specify which
particles were incoming and which were outgoing.
This information is imposed when the ranges of the
variables are chosen. That is, many of the variables
have more than one nonoverlapping range, each
range corresponding to a different process. Thus all
25 possible reactions® (plus any decays) are included
in the formulation.

As an important application, the ranges of the
variables as found here can be taken as the integration
ranges in the phase-space integral set up by Byers and
Yang.® The resulting expression, which is straight-
forward to obtain, is particularly well suited to
peripheral reactions.!®

% For an n-particle reaction there are 2"~ — n — 1 (if decays are
forbidden) disjoint connected physical regiens, each corresponding
to a particular channel; see D. A. Jacobson, Nuovo Cimento 45A,
905 (1966).

10 A Monte Carlo numerical-integration program based on this
scheme has been used successfully in calculations involving the
multi-Regge model. Its great usefulness rests on the efficiency with
which events at small values of the momentum-transfer variables can
be generated, a prime reason for this being the fact that such variables
occur as integration variables.
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The problem of three equal particles interacting pairwise by inversecube forces (*‘centrifugal
potential”) in addition to linear forces (‘“harmonical potential”) is solved in one dimension.

1. INTRODUCTION

It has been known for some time that the one-
dimensional three-body problem with linear (“har-
monical”’) and inverse-cube (“centrifugal”) pair forces
is separable,’? but apparently there has been no
attempt at its actual solution. In this paper this
problem is solved in the case of equal particles: The
complete energy spectrum is determined, and all the
corresponding eigenfunctions are explicitly written out,

The particles may satisfy Boltzmann, Bose, or
Fermi statistics; in fact, the nature of the problem is
such that the type of statistics does not modify the
energy spectrum and affects the wavefunctions only
in a trivial way. The problem which obtains from that
described above eliminating the inverse-cube force
between two pairs (so that it acts only between one
pair) is also solved.

In Sec. 2 we discuss the two-body problem with
the same “oscillator plus centrifugal” forces. This
treatment is useful both as a preliminary for the
solution and as a model for the interpretation of the
three-body problem, which is discussed in Sec. 3.
The last section contains comments on possible
extensions of the results of this paper.

Units are chosen so that 2mA=2 = 1, where m is
the mass of the particles.

2. THE TWO-BODY PROBLEM

The Schrodinger equation for the two-body problem
under consideration is

¢ & .
[— o T $0’Cry — x))°

+ g(x; — xz)“ﬂw = Eyp. (2.1)

Here x, and x, indicate, of course, the coordinates of
the two particles, and we assume that g > —% to
avoid “fall to the center.”’® Going over to the center-

* Permanent address: Physics Department, Rome University,
Rome, Italy.

1 H. R. Post, Proc. Phys. Soc. (London) A69, 936 (1956).

2 J. Hurley, J. Math. Phys. 8, 813 (1967).

3 L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon
Press, Inc., New York, 1958), Sec. 35.

of-mass (CM) and relative coordinates,*

R(2) = %(xl + x2)’
X = 2—é(x1 — Xy),

(2.2a)
(2.2b)

and eliminating the center-of-mass motion, we get

2
[— A N E}p =0, (23
dx
where now E is the energy in the CM system.
The physically acceptable solutions of this equation
(in the interval 0 < x < oo) are

v, () = x* exp (—ox)E (Gox?), n=0,1,2,--,
(2.4)

with
a =31+ 2t (2.5)

Here L? is a generalized Laguerre polynomial, defined
as in Ref. 5. By changing the sign of a, namely, by
taking the negative determination of the square root
in Eq. (2.5), one would still obtain a solution of the
Schrédinger equation, but it would not be an accept-
able one owing to its behavior at x = 0.8

The corresponding energy levels are

E,=0@n+a+1), n=01,2,--. (26)

Because, for g 0, both y,(x) and y,(x)y,(x)
vanish at x = 0, the physically acceptable solutions in
the whole interval —o0 < x < o0 are obtained by
supplementing Eq. (2.4) with the simple prescription®

p(—x) = +p(x), x>0. 2.7

The upper sign corresponds to Bose statistics, the
lower sign to Fermi statistics. Obviously the energy
spectrum is no affectetd by this prescription. This

¢ The factor 2-% in the definition of x is convenient for the com-
parison with the three-body problem.

51. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series
and Products (Academic Press Inc., 1965); Higher Transcendental
Functions, A. Erdélyi, Ed. (McGraw-Hill Book Co., Inc., 1953), Vol.
I1. Note that the definition of Laguerre polynomials given here is
different from that used in some textbooks, for instance in Ref. 3.

¢ A wavefunction y(x) is considered physically acceptable if both
lp(x)|? and w(x)y’'(x) are continuous. This condition may be inter-
preted as deriving from the requirement that both the density and
the current of probability (that the particle be found at x) vary
continuously with x. Moreover, the wavefunction must be normaliz-
able (for closed problems).
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happens because the restriction to one dimension
together with the singular nature of the centrifugal
interaction at short distance implies a complete
separation of the configurations with x > 0 from
those with x < 0. Of course if the particles are assumed
to satisfy Bose or Fermi statistics, the energy levels
(2.6) are nondegenerate, while if they satisfy Boltz-
mann statistics, each level is two-fold degenerate.’

In the g — 0 limit, the eigenfunctions (2.4) and
eigenvalues (2.6) go over into the “antisymmetrical”
eigenfunctions and eigenvalues of the harmonic-
oscillator problem:

w,(x) = exp (—10x*)Hy,[(3o)x],
n=0,1,2-", (2.8

E,=o@n+3%), n=0,1,2---. 2.9)

Here of course H,, is a Hermite polynomial.® This
happens quite independently of the type of statistics
that the particles satisfy, although, of course, to
extend these solutions to the whole interval —oo <
x < o0, one should now use the negative sign in Eq.
(2.7). The even solutions of the oscillator problem,
that do not vanish at x = 0, would instead result,
in the g — 0 limit, from the functions (2.4) with the
negative value of a corresponding to the negative
determination of the square root in Eq. (2.5); that is,
they result in inserting @ = —} in Eqs. (2.4) and (2.6)
and taking of course the positive sign in Eq. (2.7). But
they cannot be obtained as the limit of the eigen-
functions of the problem with g # 0. This is con-
sistent with the fact that, owing to the singular nature
of the interaction, for g # 0 all eigenfunctions vanish
atx = 0.

In conclusion we may assert that switching on the
“centrifugal” interaction shifts all the “odd” eigen-
values of the harmonic oscillator problem by the
constant amount

oa—1 =il + 2t — 11, (210

while it eliminates altogether the “even’ eigenvalues.
This is also consistent with the indication of first-
order perturbation theory, which yields a finite
answer when applied to an “odd” oscillator state
(whose wavefunction, vanishing at the origin, com-
pensates the divergence of the centrifugal potential),
but yields a divergent answer if applied to an “even”

7 In the case of equal but distinguishable particles (Boltzmann
statistics), each independent eigenfunction may be chosen to corre-
spond to a definite ordering of the particles, because the singularity
of the “centrifugal” pair interaction excludes the possibility that
the particles overtake one another. Such an eigenfunction vanishes
unless the variable which distinguishes the different orderings of the
particles (x in the two-body case, ¢ in the three-body case) lies
within the appropriate range.
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oscillator state. Of course,the energy shift is positive
for repulsive interaction (g > 0), negative for attrac-
tive interaction (—4 < g < 0).
On the other hand, for = 0, the solution of Eq.
(2.3)is
w(x) = x3J (kx) (2.11)

and the corresponding eigenvalues belong to the
continuous spectrum

E=k 0<k< oo (2.12)

In Eq. (2.11), J, is a Bessel function® and a is still
defined by Eq. (2.5). Note, however, that in the w — 0
limit, all the solutions (2.4) go over into the zero-
energy solution

p(x) = Cx*, (2.13)

This case with w = 0 is of no interest because there
is no energy quantization and, on the other hand, the
nature of the problem implies that the particles
cannot overtake one another [see the discussion after
Eq. (2.7) above]. In fact, it is immediately seen that
the transmission coefficient, evaluated from Egs.
(2.11) and (2.7), vanishes identically for all values
of the energy.

3. THE THREE-BODY PROBLEM

The Schrédinger equation for the three-body
problem under consideration is

ox2  ox:
+ %wz[(xx — Xx2)* + (x5 — x3)* + (x5 — x1)2]

+ ga(xy — X)) 4 gy(xp — x3)7*

+ gax3 — xl)—2 yp = Eyp. 3.1
We will solve the two cases
g81=8=0, sa=g (3.2)
and
51=8 =8 =§- (3.3)

As in the two-body case, and for the same reason, we
assume throughout that g > —4.

It is first of all convenient to go over to the center-
of-mass and ““Jacobi” coordinates

Rm\ = 3(x; + x; 4+ Xx3),
x = 2”%("1 — X),
y= 6—%("1 + Xy — 2x3).

(3.4)

In these coordinates, the Schrddinger equation
becomes, after elimination of the center-of-mass
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motion,

+ 3Oy — %7 + 1@y + x° — E}w —o,
(3.5)

where E now indicates the energy in the center-of-
mass system.

We introduce next the two-dimensional “spherical”’
coordinates r and ¢:

r2 = x2 +y2 = (xl —_— R(B))Z + (x2 —_ R(3))2
+ (x3 — R(a))z
= 3[(x; — %)% + (32 — x3)* + (x5 — x1)*],
¢ = tan~! (x/y)
= tan~! [v/3(x; — xo)/(x; + X, — 2x9)], (3.6a)

x =rsin ¢,

y =rcos . (3.6b)
The range of these variables is

0<r<w (3.7a)
and

0< ¢ < 2m (3.7v)

Moreover, it is easily seen that the value of ¢ corre-
sponds to the ordering of the three particles a$
follows:
0<¢<im,
Ir <¢ <4m,
fr<é<m,
< < 4w,
im < ¢ < g,
37 < ¢ < 2m,

Xy > X3 > X3,
Xy > X3 > Xg,
X3 > Xy > Xo,
x3>x2>x1,
X3 > X3 > Xy,

Xy > X1 > X3.

(3.8)

In fact, from Egs. (3.4) and (3.6), we have
X, — X, = 24rsin ¢,
Xy = X3 = 24rsin (4 + 3m),
X3 — X, = 28rsin (¢ + 4m).

(3.9)

In these new variables the Schrodinger equation
reads

19, ., ., M
————— Y —E)p=0, (3.10
( or? rar+§wr +r2 )'P (3.10)
with
Mo 1( 2s g
04  2\sin® ¢  sin®($ + 3m)
82

—==—. (3.11
T+ %w)) G40
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It is, therefore, solvable by separation of variables as

y = R(Nf($). (3.12)

Let us denote the eigenvalues of the operator M

by b2, I =0,1,2--- (they are certainly positive;
see below), i.e.,
Mf(¢) = bif$), 1=0,1,2---. (3.13)
We then get the equation
d2 1 d 3..2.2 bzl
————— H —~—EJR=0 (3.14
( ar®  rdr 8wr-i_rz ) (3.14)

for the corresponding radial wavefunctions. The
normalizable solutions of this equation are

Rou(r) = rrexp [ 1P LG or),

n=012---, 1=0,1,2---, (3.15)
where L are again the Laguerre polynomials.
The corresponding energy eigenvalues are
E, = (®lo@n+b,+ 1),
n=0,1,2---, 1=0,1,2---. (3.16)

There remains now the less trivial part of the
exercise, which is to determine the eigenfunctions
and eigenvalues of the operator M of Eq. (3.11).

We consider first the case with g, =g, =0,
gs = g.8 Then the differential equation

d g 2
-t =b 317

a8t T e ¢fz(¢) S (317)
may be transformed into the hypergeometric equa-
tion by appropriate substitutions, so that we obtain

fu@) = (sin g)*HFF(a + 3 — b), 3@ + § + b)),
1 4+ a;sin®¢) (3.18a)
= cos $(sin $)**1F(}(a + § — b)),
Ya+3+5);1+ a;sin?d). (3.18b)
Here a is defined by Eq. (2.5), F(4, B; C; t) is the
usual hypergeometric function, and Eq. (3.18b) is

obtained from Eq. (3.18a) by using the well-known
identity

Mf(¢) =

F(4,B;C;t)=(1 = n°4BF(C — B,C — 4;C;1).
(3.19)

& This problem is separable (and easily solvable) also in the x, y
variables [see Eq. (3.5)]. (In fact, any problem characterized by equal-
strength harmonical potentials acting between every two particles
and, in addition, by one arbitrary potential depending only upon
the interparticle distance of one pair is completely separable?; and
this statement remains true for any number of particles and spatial
dimensions.) But the solution of the more complete three-body
problem with g, = g, = g; = g can be simply obtained only using
the spherical variables 7, ¢ (see below).
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The negative square root in Eq. (2.5) would still
yield a solution of Eq. (3.17), but it would not be an
acceptable one owing to its behavior at ¢ = 0 and
¢ == (ie., at x; = x,). This situation is identical
to its counterpart in the two-body case [see Eq.
(2.4) and the discussion following it].

The function f,(¢) is, however, physically unaccept-
able® unless the hypergeometric functions in Eqgs.
(3.18a) or (3.18b) reduce to a polynomial, owing to
the discontinuous behavior of its derivative at
¢ = 47.° Thus, the only acceptable solutions (in
the interval 0 < ¢ < =), and the corresponding
eigenvalues, obtain from the requirement that the
first argument of either one of the hypergeometric
functions in Egs. (3.18) coincides with a nonpositive
integer. In this manner one obtains

fA$) = (sin py*HCi+¥(cos ), 1=0,1,2--,
(3.20)

by=l+a+3% 1=012--, (321

where C? is a Gegenbauer polynomial.?

The extension of these solutions to the whole
interval 0 < ¢ < 2 is performed, just as in the two-
body case, by the prescription

fillm — @) =2fid), 0K <7, (322)
the positive (negative) sign corresponding to states
symmetrical (antisymmetrical) under the exchange
of particles 1 and 2. There is, of course, no symmetry
under the exchange of particle 1 (or 2) with particle
3, because in the case under consideration particle
3 has an interaction different from that of particles 1
and 2.

We may, therefore, conclude that the (normaliz-
able) eigenfunctions of the three-body problem (with

g1 =8 =0,g3=2g)are
Pulr, §) = P exp [—1Dror LA or?)
X (Sin ¢)a+%c?+%(cos 95), 0 S ¢ S , (3233)

‘/’m(", ¢ + 77) = i(_)lwm(r’ ?S)a 0 S ¢ S ™,
(3.23b)
and the corresponding eigenvalues are
Eppy= @to@n+1+a+3). (329

We recall that a is defined by Eq. (2.5) and that
both quantum numbers » and / take all nonnegative
integral values. If the two equal particles 1 and 2
satisfy Bose (Fermi) statistics, only the positive
(negative) sign should be taken in Eq. (3.23b); if
they satisfy Boltzmann statistics, both possibilities

% At @ = 4w the differential equation (3.17) has no singularity,
but the mapping between the variable @ and the argument of the
hypergeometric function does.
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are allowed (so that the degeneracy of each eigen-
value is doubled).”

Equation (3.24) implies that the spectrum is linear,
with the same spacing as in the three-body “oscillator”
problem without any *“centrifugal” potential.

It is also easily seen that, just as in the two-body
case, in the limit g — 0, a — §, the eigenfunctions
(3.23a) and the eigenvalues (3.24) go over into those
eigenfunctions and eigenvalues of the three-body
“oscillator” problem that correspond to states anti-
symmetrical under the exchange of particles 1 and 2.
The eigenfunctions and eigenvalues corresponding
to “oscillator’” states symmetrical under the exchange
of particles 1 and 2 result inserting @ = —% in Egs.
(3.23a) and (3.24), and therefore cannot be obtained
in the g— 0 limit from the eigenstates and eigen-
functions of the problem with g # 0 (compare with
the analogous phenomenon in the two-body case,
discussed in the preceding section). Of course, to
extend the corresponding eigenfunctions to the
whole interval 0 < ¢ < 27, one must choose in Eq.
(3.23b) the negative (positive) sign for antisymmetrical
(symmetrical) states.

The degeneracy of each level Ey, N =2n+ 1, is
the integral part of (N + 2)/2 (if the two equal
particles satisfy Bose or Fermi statistics; twice that
if they are distinguishable, namely, if they satisfy
Boltzmann statistics).” The shift of each energy level
from the corresponding level of the oscillator problem
is (3)¥a — Hw, namely, (3)t times that found in
the two-body case.

We proceed now to the equal-particle case (g; =
g: = gs = g). To do this we must solve the eigen-
value equation

& gl 1 1
ME(9) [ d¢? * 2(sin2 ¢ + sin® (¢ + 37)
1 _
e rararne) | LR R ORNCED
We have used capital letters for the eigenfunctions
and eigenvalues of this equation, to distinguish them
from those of the analogous equation (3.17).

The solution of this problem is immediately
reduced to that of the previous one, Eq. (3.17), by
the use of the trigonometric identity

(sin ¢)2 4 [sin (¢ + §m)]* + [sin (¢ + $m)]?
= 9(sin 3¢)2.  (3.26)

This identity,® which may be verified by explicit
computation, was actually discovered through a

10 It is amusing to recognize that the equality
[sin @¢]~? + [sin (¢ + Fm)]™" + [sin (¢ + £m)]? = 37[sin 3¢]?

holds both for p =1 and p = 2. It does not, however, hold for
p=3.
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solution of the eigenvalue problem, Eq. (3.25), that
had been obtained by a painstaking analysis. Such an
analysis is, however, completely unnecessary once
the existence of this identity is recognized, because
its insertion in Eq. (3.25) and a comparison of this
equation with Eq. (3.17) immediately implies that

Fi($) = fi(34), (3.27)
B, = 3b,. (3.28)

These equations, together with Eqs. (3.20) and
(3.21), yield “acceptable” solutions of Eq. (3.25) in
the interval 0 < ¢ < m/3. The extension of these
solutions to the whole interval 0 < ¢ < 27 is easily
achieved by the prescriptions

Fi(¢ + §pm) = £F(¢),

0<¢p<dm p=1,2,3,45 (3.29

The justification of these prescriptions and the choice
of the sign [depending on the statistics of the particles;
see also Eq. (3.8)] should be obvious by now. There-
fore, we proceed immediately to the final expressions
for the eigenfunctions and eigenvalues of the problem:

Yolr, $) = raz+3a+% exp ['—%(%)%wrz]L?;Ll+3“+%[%(%)%wr2]
X (sin 3¢)“+%C‘f+§(cos 3),
0< ¢ < 3m (3.30)
w"”(r’ ¢ + %pﬂ) = (_)pll/)nl(r: ¢)7 0 S (# _<.. %17,
D= la 2’ 3, 4, 5, (3.313)

Youlr, ¢ + kpm) = (=) Py, (r, 4), 0L ¢ < b,
p=1,23,4,5 (331b)

Egpim = (DPo@n + 31+ 3a+ 9. (3.32)

Here a is again defined by Eq. (2.5), L}, and C?
indicate again the Laguerre and Gegenbauer poly-
nomials,® the quantum numbers n and / take all
nonnegative integral values, and r and ¢ are con-
nected to the coordinates of the three particles by
Eqgs. (3.5). Note that these equations imply that
sin 3¢ and cos 3¢ depend in a symmetric manner on
the coordinates of the three particles:

sin 3¢ = —3(6)%()‘1 — X2)(Xg — X3)(x3 — X1)
X [y — X9)2 4 (x2 — x)% + (x5 — x,)% 3,
cos 3¢ = 24(x; + xp — 2x3) (%5 + X3 — 2x;)
X (x5 + x; — 2x,)
X [(ry — %)% + (x2 — x5)% + (x5 — x,)?] .
(3.33)

Equation (3.31a) is for the case of Bose statistics,
Eq. (3.31b) for Fermi statistics; in these cases a
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unique wavefunction corresponds to each pair », /. In
the Boltzmann case, in each one of the six “angular”
sectors (3pr < ¢ <3p+ Dm, p=0,1,2,3,4,5)
the wavefunction can be defined through Egs. (3.30)
and (3.31) and can be set to zero in the remaining
five sectors, giving altogether six different states
corresponding to each pair s, 1.7 On the other hand,
the degeneracy of each level Ey, N =2n+ 3/, is,
in the case of identical particles (Bose or Fermi
statistics), the integral part of }(N + 6), and of
course six times that in the case of distinguishable
particles (Boltzmann statistics).

It should be noted that the energy spectrum is
again linear; it reproduces the spectrum of the problem
without “centrifugal” forces and with Fermi statistics,
except for a constant shift of all the energy eigen-
values by the quantity 3(3)¥w(a — }). In fact it is easily
seen that in the g — 0 limit (@ — %) the eigenfunctions
(3.30) and (3.31b) and the eigenvalues (3.32) go over
into the eigenfunctions and eigenvalues of the
“oscillator’” three-body problem with Fermi statistics,
in analogy to the previous cases.

In the w — 0 limit, the eigenfunctions (3.30) go
over into the zero-energy eigenfunctions of the prob-
lem with only “centrifugal”” forces. On the other hand,
the complete set of eigenfunctions of this problem is

Pa(rs #) = Jaria.13(kr)(sin 3¢)“+%C‘l'+*(cos 34),

0<¢<L4m 1=0,1,2,---, (3.34)
and the corresponding energy eigenvalues are
E=k, 0<k< . (3.35)

The complete definition of the wavefunction in the
whole range 0 < ¢ < 27 may be given with the same
prescriptions as in the previous case [see Eqs. (3.31)],
depending on the statistics. These eigenfunctions
depend now on the discrete index / and the continuous
index k; they are, of course, not normalizable.

4. CONCLUSION

In this paper the Schrddinger equation for the
three-body problem under consideration has been
explicitly solved, and in this manner the eigenvalues
and eigenfunctions of the problem have been deter-
mined. The simplicity (and degeneracy) of the
spectrum obtained suggests that a solution by group-
theoretical techniques should also be possible. This
has not been attempted here.

The possibility of solving this problem completely
suggests attacking similar, but more complicated,
ones. The type of generalization that appears natural
is an increase in the number of particles and/or
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dimensions of the space.l! It is, of course, well known
that, when no ‘“centrifugal” forces are present, the
problem is easily solved for an arbitrary number of par-
ticles and dimensions; but such a problem is of very
limited interest, because it corresponds to a collection
of completely decoupled oscillators.?

Finally, as regards the possible usefulness of the
present model, it is perhaps worthwhile to recall
that one of the major difficulties in many-body (or
rather, more-than-two-body) physics has to do with
the presence of interactions that are singular at short

11 An interesting question to ask in this connection is whether
the energy spectrum will continue to depend linearly on all quantum
numbers. It is expected that it will if only the number of particles
is increased, but that it will not if the number of space dimensions
is increased. Incidentally, using the approach of this paper, one can
immediately solve the one-dimensional N-body problem with
equal-strength harmonical forces between every two particles and,
in addition, either only one or only three (equal-strength) centrifugal
potentials depending, respectively, either only upon the interparticle
distance between two particles or only upon the three interparticle
distances between three particles.

12 Also the problem considered in this paper is, however, in
some sense equivalent to that with decoupled oscillators, as indicated
by the structure of its spectrum. But this correspondence does not
appear to be a trivial one.

F. CALOGERO

interparticle distance. The present model, which
features interactions just of this kind, might therefore,
in spite of its extreme simplicity, provide useful tests
for approximation schemes and computational tech-
niques or a convenient starting point for the (approxi-
mate) solution of more realistic problems.
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The problem of N quantum-mechanical equal particles interacting pairwise by inverse-cube forces
(“centrifugal potential”) in addition to linear forces (“harmonical potential™) is considered in a one-
dimensional space. An explicit expression for the ground-state energy and for the corresponding wave-
function is exhibited. A class of excited states is similarly displayed.

1. INTRODUCTION

The one-dimensional N-body problem with linear
(“harmonical”) and inverse-cube (*‘centrifugal”) pair
forces has been recently solved for N = 3; the com-
plete energy spectrum and all the corresponding
eigenfunctions have been exhibited.! For arbitrary
N, the ground state and a set of excited states are
given in this paper. From these results, a remarkably
simple expression is obtained for the ground-state
wavefunction of the one-dimensional system com-
posed of N oscillators interacting pairwise and
obeying Fermi statistics.

Units are chosen so that / = 1.

2. THE N-BODY PROBLEM

The Schrédinger equation for the N-body problem
under consideration is

1 N 62 N i~1
[— 3 qmat S 3 (x— %)
1—13 2 =2 j=
N i-1
+83 S0—x)" - E}p =0. @1
1=2j=
We assume throughout that g > —4, to avoid two-

body collapse’?; and we consider only the sector of
the N-body phase-space characterized by the inequal-
ities

XL XS X L0 (2.2)
As explained in I, for g 7 0 the extension of the
wavefunction to the whole phase-space is performed
by the simple prescription

Xy

2.3)

where x indicates the set {x,;i=1,2--- N}, P indi-
cates an arbitrary permutation, and %, equals unity

Y(Px) = npp(x),

1 F. Calogero, J. Math. Phys. 10, 2191 (1969) (preceding paper),
hereafter referred to as I.

3 L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon
Press, Inc., New York, 1958), Sec. 35.

if the particles obey Bose statistics and equals the
parity of the permutation if the particles obey Fermi
statistics. If the particles are considered distinguish-
able, i.e., if they obey Boltzmann statistics, each
wavefunction y(x) gives rise to N! different states,
each one of these being characterized by a wave-
function vanishing identically for all but one of the
N! particle orderings, and that one is given by Eq.
(2.3).2

We introduce now the two completely symmetrical
variables z and r?:

N i1
= E I;[l(x, —Xx 2.4

1 N i-1 N .
;llzug(x x,)? = 5]1 2 g - x,)% (2.5)

and we consider the subset of solutions of Eq. (2.1)
of the form

p = z¢g(r), (2.6)
with

a= +3(1 + 4mg)t. (X))

Before proceeding to show that such a subset is not
empty, we note that the ansatz (2.6) implies that p
vanishes proportionally to (x; — x,)>** whenever the
distance x; — x; vanishes. This phenomenon origi-
nates from the singularity of the <“centrifugal”
potential; together with the one-dimensional nature
of the model, it implies the impossibility for any
particle to overtake any other particle.! Thus con-
figurations characterized by different particle orderings
are dynamically separated; and the prescription (2.3)
is justified, because the wavefunction resulting from
its application does indeed possess the required
continuity properties.! We also note that since both
variables z and r are obviously translation invariant,
so is the wavefunction (2.6), i.e., it describes states in
the center-of-mass frame.
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We now insert the ansatz (2.6) in the Schrédinger
equation (2.1):

-5 > i+ pia - %)z—z(aa—;)z

+ (a + %)z‘laa—j + 2(a + Hz? 9z or 9

Ox, 0x; Or
or\: o*
+ <ax ) or? t o

N i-1

+g3 30— x) —E] () = 0. (2.8)

=2 j=1

or 0

ox2 ar} + 5 e

In the Appendix it is proved that

N N
= Z z(xz —x;)7 (2.9)
i¥

i=1 L

N 52,

3==0, (2.10)
N oz or
2’1%5 = }N(N — Dzr7, 2.11)
N ror
s (a—) - 2.12)

N A2

> % = (N — 2L, 2.13)

Using these equations and Eq. (2.7), Eq. (2.8)
becomes

L[ d
[_—{d2 Fla+HNN =1+ N —212 d}
+ % ma’rt — E] o(r)=0. (2.19)

The normalizable solutions of this equation are

@u(r) = exp [—imo(mN)PIL, [mo(mN)Er),

n=0,12---, (215)
where L is a Laguerre polynomial® and
b=3INNN+1)+ gN(N —1)—3 (216)

3 1. S. Gradshteyn and [. M. Ryzhik, Tables of Integrals, Series
and Products (Academic Press Inc., New York, 1965); Higher Tran-
scendental Functions, A. Erdélyi, Ed. (McGraw-Hill Book Co., Inc.,
New York, 1953), Vol. II. Note that the definition of Laguerre
polynomial given here is different from that used in some textbooks,
for instance in Ref. 2.
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The corresponding energy eigenvalues are
E, = }o(N/2){[4n + IN(N 4 1) 4+ aN(N — 1) —1]
(2.17a)
= jo(N/2)¥[4n + N* — 1 + (a — YNV — 1)}
(2.17b)

For N = 2, the eigenfunctions (2.6), (2.15) exhaust
the whole set of eigenfunctions of the problem. For
N > 3, they constitute only a subset of all the eigen-
functions; for N = 3, they correspond to the / =0
eigenfunctions of 1. But for all N and for g # 0, the
n = 0 eigenfunction

vy = 2%+ exp [—Imow(mN)ir?) (2.18)
and the corresponding eigenvalue
Ey = 3o(N/2D}N2— 1 + (a — HPNWN = 1)]  (2.19)

correspond to the ground state of the system. This is
implied by the evident property of y,: to be nodeless
within the sector (2.2). Moreover, in the g—0,
a — % limit, yoand E;, Egs. (2.18) and (2.19), become,
respectively, the ground-state wavefunction and energy
of the N-fermion oscillator problem?*:

Yo = Z €Xp [—3mw(N/[2)z2], (2.20)
Ey = 3o(N2)}(N2 — 1). (2.21)

The eigenvalue E, was already well known,® but the
expression (2.20) of the ground-state wavefunction is
considerably simpler than that given in Ref. 5.

In fact, in the g—0, a — } limit, all the eigen-
values and eigenfunctions, Egs. (2.17), (2.6), and (2.15),
go over into eigenvalues and eigenfunctions of the
N-oscillator problem with Fermi statistics.* This
phenomenon has been explained in sufficient detail in
I (for N = 3) so not to warrant any further discussion
here. It appears reasonable to conjecture that the only
difference between the complete energy spectrum of
the problem considered here and that of the pure
oscillator problem with Fermi statistics is a shift of
each energy level by the constant amount AE:

= (@ + Do(NDHNN — 1), (222)

It is also easily seen that, again as in I, in the
limit the eigenvalues and eigenfunctions,
Eqgs. (2.17), (2.6), and (2.15), go over into eigenvalues
and eigenfunctions of the pure oscillator problem
with Bose statistics*; and in particular in this limit y,
and E,, Eqs. (2.18) and (2.19), go over into the

a— —4%

4 Provided of course the appropriate prescription is used in Eq.
(2.3) to define the eigenfunctions throughout the whole N-body
phase-space; compare with the analogous situation as discussed
in I.

5 H. R. Post, Proc. Phys. Soc. (London) 66A, 649 (1953). See also,
for instance, J. M. Lévy-Leblond, Phys. Letters 26A, 540 (1968).
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ground state of the N-oscillator problem with Bose

statistics.*
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APPENDIX
In this Appendix Egs. (2.9)-(2.13) are proved.

Proof of Egs. (2.12) and (2.13)

Differentiating the definition of r?, Eq. (2.5), we
get

or a2
r—=N Z(xi - x,). (Al)
0x; =1
Differentiating again with respect to x;, we get
ar\ ?*r N-—1
— — = A2
(3x,-) tr ox} N 42
Thus
N 2 az
2( )+ 2—=N—1 (A3)
=1 S10x3
On the other hand, from Eq. (Al),
0 -
P(E) =N 3 im0 (A9
X i=1=1
If we now use
N N N
2> 2 2 (% — x)(x; — x) = N°r%, (AS)

i=1j=11=1
we get, from Eq. (A4), Eq. (2.12); and from this
equation and Eq. (A3), we get Eq. (2.13).
There remains to prove Eq. (AS). This can be done
as follows:

§ g g‘('xi -

t=] j=1(]=1

x)(x; — x;)

N NN

= é Z ZZ — x)(x; — x; + x; — x;) (A6a)
N

= g z,l =1(x —x)(x; —x;)  (A6b)

= 2N*? — 21 glg(x - x;)(x; — x;).  (A6¢c)

Equation (Aé6a) is trivial; Eq. (A6b) obtains using the
definition of r2, Eq. (2.5); Eq. (A6c) follows exchang-
ing the dummy indices / and j, and it immediately
implies Eq. (AS). Q.E.D.

Proof of Eq. (2.11)
Differentiating the definition of z, Eq. (2.4), we get

%2 Sk — %)
j=1

ax (A7)
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Here, and always below, the apex in a sum indicates
that the divergent term must be omitted. Equation
(2.11) is then immediately implied by the combination
of Egs. (Al) and (A7) with the formula

N N N

sy MR _ANYN —1).  (AS)
i=1j=1 1=1X; — X;
As for this formula, it can be proved as follows:
i=1j=1 1=1X; — X;
YN Nx,—x;4+x;—x
=333 == (A%)
i=1 j=1 =1 x,- - Xj
NN N,
=NN-D+3 Y SHTE (Agp)
i=13=1 I=1X; — X;
NN Ny x
=NWN-)-33"3 (A9%)

These steps to derive Eq. (A9c) are essentially the
same as those for the derivation of Eq. (A6c) above;
on the other hand, Eq. (A9c) immediately implies
Eq. (A8). Q.E.D.
Proof of Egs. (2.9) and (2.10)
Diﬁ‘erentiating Eq. (A7), we get
az

N
37 = 5; jZ (= %) — Zgl(xi —x;)7" (A10a)

= 1 Qi — ’ — —2
=z (axi) zgl (x; — x;)

N N
= Z[Z'Z’(xi — X)X~ X))

i=11=1

(A10b)

N
- z’(x.- - x,)_z] . (AIOC)
i=1

Equations (A10b) and (A10c) follow from Eqs. (A10a)
and (A7). But therh's of Eq. (A10c) yields a vanishing
result when summed over /, namely,

N N 1\1

ay = 21 Zl’ ,21’(x,~ = x )% = x) P =0. (Al1)
=1 1= =
1#7

This immediately implies, through Eq. (A10c) itself,
the validity of Eq. (2.10), and through Eq. (A10b), the
validity of Eq. (2.9).

There remains to prove Eq. (A11). First note that

N N it
Z Z’ [Z’ (% = %) Hx; ~ x)7?

7=17=1 | I=1

an

N
+ 37— x) % — xz)‘l} (A12a)

I=j+1

-

—1
’ !

Mz
M=

i
—
-
]

2 (s = x )70 = )7 (A12b)

¥ 2 =1
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Equation (A12b) is obtained exchanging the dummy
indices j and / in the second term in the rhs of
(Al2a), thereby demonstrating its equality to the
first term. Incidentally, in writing Eq. (Al2a), and
also below, we adopt the convention that any sum
vanishes whenever the upper limit of the running index
is smaller than its lower limit.

It is now easy to show, by direct computation, that

a; = 0. (A13)
Then, defining by through
by = Hay — ayy), (A14)
Eq. (A11) is proved if one can show that
by=0, N>4 (A15)
In fact, from Eqs. (Al4) and (A12b),
N-1 i-1
by =2 (xy — xj)“[E(xN —x)
i=1 =
- gl’ (x; — x,)‘l]. (A16)

F. CALOGERO

But since
j—1 N-1
z(xN - xl)‘l - Z’ (x; — x) ™
=1 =1
-1 i1 N1
=2y —=x) =2 (x; = x) = Y (x;—x)t
=1 =1 J=731
(Al17a) -
—1
= —(xy — x) 2 (xy — %) x; — x)7"
=t N-1
— 2 (x;—x)7%, (A17b)
=341
we get
N-1 j—1
by = — 21 ZZI(xN - xz)—l(xa' - xl)—l
j= =
N-1 N—1
- 2 2 (xy — xa‘)—l(x} - xz)_l- (A18)
=115

By exchanging the dummy indices j and / in the
second term in the rhs of this equation, it is apparent
that this term is just the opposite of the first one, so
that b, vanishes. Q.E.D.
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Self-Consistent Approximations in Many-Body Systems. II
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Department of Physics, Technion—Israel Institute of Technology, Haifa, Israel

(Received 1 July 1968)

A stationary property of the grand-canonical potential is introduced. This stationary property is used to
define a class of self-consistent approximations. The class of self-consistent approximations is shown to be
particularly suitable for the random-phase approximation (RPA). The conditions for self-consistency are

only sufficient.

L INTRODUCTION

Luttinger and Ward! (L.W. henceforth) give an
exact diagrammatic (i.e., perturbative) proof that the
grand-canonical potential® Q js stationary with respect
to variation of the proper self-energy 2. This station-
ary property enables the formulation of a correspond-
ing class of self-consistent approximations (SCA).>4

In this paper. the exact grand-canonical potential
is shown to be stationary with respect to variation of
some quantity W, which is related to the density-
density correlation function.® The method of proof is
diagrammatic (i.e., perturbative) and is parallel to
the L.W. proof for the aforementioned stationarity.
But, whereas L.W. concentrate on the particle
propagator, here the interaction line is the object
of our analysis.

The stationarity with respect to W enables the
definition of a new class of SCA. The self-consistency
appears in the fact that one may calculate any desired
thermodynamic property at equilibrium from the
approximate grand-canonical potential, as well as
from the corresponding approximate propagator, or
the approximate density-density correlation, the
results being identical.

It will be seen that RPA is a natural approximation
in this SCA in the same sense as the Hartree-Fock
approximation is natural in the previous®* class of
SCA.

II. STATIONARITY OF THE GRAND-
CANONICAL POTENTIAL

The grand-canonical potential (GCP) {2 is connected
with statistical mechanics through the grand partition
function Z; by

Zg = exp (— Q). (M

* Based on a thesis submitted to the Senate of Technion, Israel
Institute of Technology, in partial fulfillment of the requirements for
M.Sc. degree.

1J. M. Luttinger and J. Ward, Phys. Rev. 118, 1417 (1960).

2 H. B. Callen, Thermodynamics (John Wiley & Sons, Inc., New
York, 1960).

3 M. Revzen, J. Math. Phys. 6, 450 (1965). This article is referred
to as I.

4 G. Baym, Phys. Rev. 127, 1391 (1962).

( 5 C. De Dominicis and P. C. Martin, J. Math. Phys. 5, 14, 31
1964).

FIG. 1. A representative Fr,, diagram. A4, B, etc., by their
structure are arbitrary vacuum-vacuum dxagrams, each one lacking
a single wavy line. The wavy lmes joining A, B, etc., carry the
momentum “%” and “energy” “{;,” which go in and out through the
heavy dots.

It can be represented in terms of linked diagrams,

namely,
Q- Q= }92 l)fdul J.du
X <Tu{V(u1) e V(u,,)})L’ (2)

where €, is the GCP with no interaction. (We use the
notation as in Paper I, apart from replacing 4 by Q.)

Our aim is to analyze a functional which emphasizes
the role of the interaction line in the formal building
of the vacuum-vacuum (GCP) and the propagator
diagrams. To this end we consider the density—density
correlation function®

Fywy = (T p_rtwr P })- (3
The density operator in momentum space is defined as

“

— +
Pr(u) = Z Ar(u)ptx(u) -
T

The perturbative development of F,, is

1 ’
Fk(u)—E( )J;d Uy --ﬁdun

n=0 n!
X AT p-rwProVeun " V> (5)

where the subscript L signifies linked* and the expecta-
tion value is now taken with a noninteracting Hamil-
tonian.

The Fourier transform of Fy,, is defined

Frgn =J;Fe_;ka(Cz) du, (6)
where
G=2milf+p, 1=0,41,42,---
The general shape of an Fp diagram is drawn in
Fig. 1. k and {, are the momentum and “energy,”

¢ See, e.g., David Pines, Elementary Excitations in Solids: Electrons,
Phonons and Plasmons (W. A. Benjamin, Inc., New York, 1963).

2201



2202

respectively, which enter and leave the diagram
through the heavy dots on the two opposite sides of
the diagram. Conservation of momentum and
“energy” obviously is valid in the heavy dots. The
numerical factor of an nth-order diagram is
( l)n 1 n

all free n! 2" [3”+1 H Ok

indices
A, B, etc., are, pictorially, vacuum-vacuum diagrams,
which lack a single wavy (interaction) line and cannot
be separated into two disconnected parts by merely
removing a single wavy line. The momentum and
“energy” carried along by the wavy lines which join
A, B, etc., are k and {;.

We may sum up all ., diagrams of m parts as
depicted pictorially in Fig. 2. W), indicates the sum
of all the vacuum-vacuum diagrams which lack a
single wavy line and are not constructed of distinct
parts joined by wavy lines only. k and {, denote the
momentum and “energy” of the missing interaction
line.

The full expression for Fy ) is

Frep = Wiy + WeoVuWeien + °*°
= Wiy + WacoVelWaep + -

= Wiep + WeeoeFrieps M

hence,
Frep = Wk(;;)/(l - Wk(;;)vk)- (®

By naked diagrams of F, ,, we mean those which
are not constructed of distinct parts joined by wavy
lines. In these lines an appearance of momentum ¢ on
a certain wavy line does not imply (by the conserva-
tion laws) that some other line should be assigned the
same momentum ¢; e.g., see Fig. 3. (Diagrams which
do not fulfill these criteria are termed “dressed.”)

In order to construct W, , diagrammatically, one
has to sum up all the naked diagrams of F,, and
replace in them every wavy line by a saw-tooth line.

+

FIG. 2. The mth-order Fyg,) diagrams are summed up to give a
single diagram built up of m equal Wi((,) blocks joined by wavy
lines.

O. SHLIDOR AND M. REVZEN

I NPyt

D @

{a} (b)

Fic. 3. Examples for Fy(;,) diagrams not constructed by distinct
parts; (a) is naked and (b) dressed.

The analytical meaning of a saw-tooth line is

Uiy = 0l + Frpte)s &)
and its graphical meaning is given in Fig. 4. By (8) we
get

Upiep = v/(1 — WatcoOs)- (10)
Let F,,, represent the sum of all nth-order F,

diagrams. The vacuum-vacuum diagrams of order
n + 1 may be constructed from F,, by the relation

—_ Fn e;lo+.
2( + 1) ﬂzz kY nk(g)

By introducing an interaction-strength parameter
A v, — Av, and using (8), (10), and (11), we obtain®

dl’

(Q - Qo)n+1 (11)

Quy = Qo — —22 I Wi W€, (12)
2[9 k 0
so that
oQ
A T 2522 W Ukne® . (13)

We define the functional R’ to be the sum of all
naked vacuum-vacuum diagrams, in which every
wavy line is replaced by a saw-tooth line:

Ry = —Zizﬁg

(W, corresponds to F, in the natural manner.)
The functional R" is defined as

R{y = 24 Z 2 e§0+{ln [— Z__ + Wk@mt)]

+ Uk(;,,uvvk(;,,n}. (15)

- (149

Uk(;,,z)Wnk(;z,A)e

It can readily be proved that
R=R +R" (16)
is not sensitive to first-order variations in Wy 4,
ie.,
dRw

=o. (17)
6Wk(§z,l)
U v v U
MVWNA =z AW+ w

FiG. 4. Graphical meaning for Eq. (9).
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On calculating the derivative of R(4) with respect to
A, we obtain

A g_f == 2‘%%% Uk(Cz,J.)Wk(Cl,l)e;lo+ (18)
and, therefore,
R _ @ 19
0r 04
Since R;_, = 0, we see that
R=Q-Q,, (20$)
and hence, in using (17),
ut = 0. (1)
Ween

III. SELF-CONSISTENT APPROXIMATIONS
The stationarity of Q with respect to variation of
Wy, is an exact result,
6Q _ _0Q _ 0, 22)
Wiy Uiy
and is analogous with the stationarity of Q with
respect to the proper self-energy*:
0Q 6Q
02y Gy
The basis for the discussion above was the pair of
implicit equations
F=W@wll + vF],
U = ov(1 + vF).

(M)
®)
Thus the naked diagrams of F were used as building
bricks for W, which was the building brick for F,
which, in turn was the building brick for U, the latter
being used to construct W. The procedure does not
require the whole set of naked diagrams of F. It is

FiG. 5. (b) and (¢)
(a) aretwodifferent Fr(,)
diagrams which yield
the same vacuum-
vacuum diagram, (a),
when closed.

(b} (c)
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Wag (2,1 O

ZA (g,) = @ +®

FiG. 6. The diagramma- R's =
tic base for the RPA.

sufficient to use a partial set, finite or infinite, and
still to retain the exact functional interrelations
among F,, W,, Uy, and Q,  (subscript 4 denotes
“approximate”). The stationary property, namely

_é(i‘l_ =0, (23)
6WAI€(C[)
thus holds.

It follows that any thermodynamic property (at
equilibrium) which is calculated with F, may be
obtained from Q, as well, with no difference whatso-
ever.

The set of naked F diagrams forming the approxi-
mation cannot, however, be chosen arbitrarily. The
inclusion of certain F diagrams requires the inclusion
of all other F diagrams, which, together with the
original F when closed, yield the same vacuum-
vacuum diagram (see Fig. 5). Moreover, all vacuum-
vacuum diagrams which are topologically equivalent
to the latter should be constructed too.

Given a set of R’ diagrams, there is a one-valued
correspondence between these diagrams and a set of
self-energy diagrams X’ obtained by removing in turn
each one of the free propagator lines of the former.
These self-energy diagrams contain sawtooth lines for
their interaction lines, so that each diagram represents
an infinite number of ordinary, self-energy diagrams.
The unique value is due to the unique way of identi-
fying the R’ source of a given self-energy diagram.

If our functional R’ is an approximate one, say
R/, then we use this procedure to define the set of
self-energy diagrams consistent with this approxi-
mation.

As an example, consider the approximation which is
sketched graphically in Fig. 6. (These diagrams lead
to the RPA.)

In order to illustrate that the correspondence
between R’ and ¥’ is self-consistent, let us calculate the
average number of particles in a grand-canonical
ensemble.* From its definition,

o 30 _ 2R _29

24
ou ou du 29
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R” is dependent on u only through its dependence
on Wy,; hence dR"[ou will cancel out that part of
OR'[du which corresponds to the dependence of R’ on
W - Thus we have to consider only the dependence
of R’ on p through the free propagators:

i}g =§: z—-aR;'ﬂ B_G‘,’c(;l) Lo+
ou  n=0 ,zaGg(m ou
- § 3 B gy i
n=0k,1 a k(Cl)
= ;’5 gokz n+1k<g,)(G:?(;,))Ze“O+
| R
= - EZZM;,)(G&;,))%“W- (25)
Hence,
1 Q)
(N) = E Gk(Cz)Ek(Cz)e - 3—0
B i
1
- B kzl Grepe®”,

as expected. (In the above calculation, a subindex 4
is not mentioned, but it should be remarked that the
calculation holds for properly approximated func-
tionals as well.)

IV. THE SELF-CONSISTENT HARTREE AND
HARTREE-FOCK APPROXIMATIONS AND
THE SELF-CONSISTENT RPA

Special attention should be drawn to the case
k = {, = 0, where broken F diagrams also appear,
such as in Fig. 7(a). (They are, of course, linked!)
Such diagrams should not be considered when the
interaction line is dressed, but have to be taken into
account when the self-consistent self-energy diagrams
are formed.

If one desires to construct the self-consistent
Hartree-Fock diagrams, one should consider, among
others, an infinite set of broken F diagrams [e.g.,
Fig. 7(a), Parts (1)-(3)]. Examples of other naked F
diagrams for Hartree-Fock approximation are given
in Fig. 7(a), Parts (4)—(6). It is readily seen that when
the interaction line is dressed, undesired diagrams,
such as in Fig. 7(b), Part (1), appear.

Similarly, if one wishes to formulate a self-con-
sistent RPA in the propagator formalism, one faces a
similar difficulty, namely, the necessity for an infinite
number of diagrams as a base and the appearance of
undesired diagrams [e.g., Fig. 7(b), Part (2)] when
an exact evaluation is made.

O. SHLIDOR AND M. REVZEN

GG 000 0O-O8
O <3

{4} (5) 16}
(e)

(43
(b)

Fic. 7. (a) Several naked Fy;,) diagrams out of the infinite set
required for the Hartree~Fock approximation. (b) (1) An undesired
diagram which appears upon evaluating the Hartree-Fock approxi-
mation through the interaction-line formalism. (2) An undesired
diagram which appears upon evaluating the RPA through the propa-~
gator formalism.

On the other hand, the interaction-line formalism
sketched above is tailored for the RPA, as only a single
R; diagram is responsible for it.

V. REMARKS AND CONCLUSIONS

The interaction line and the propagator line play
similar roles in the formal construction and evaluation
of diagrams. In this paper this similarity is utilized to
formulate, in a diagrammatic manner, a variational
principle of the vacuum-vacuum diagrams.

It is expected that propagator-based mathematical
properties of diagrammatic functionals should corre-
spond to analogous properties based on the inter-
action line.

If the bare interaction line is considered as a
“propagator” of a free boson field (e.g., phonons)
through the vertices, then the analogy is natural. In
the case where the particles are electrons interacting via
the Coulomb interaction, the wavy line may be re-
garded as the bare plasmon propagator. In those
effects where the plasmons rather than the electrons
play the significant role, it is suggested that the new
approach to self-consistency should be preferred.
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Expressions are developed which describe the ensemble average of the annihilation of groups of
contiguous vacant compartments when spatially random attempts are made to place dumbbells on a
linear array of N compartments. It is shown that in the limit, as the number of compartments tends to
infinity, <6,(#)), the ensemble average of the fraction of the compartments which is composed of p

contiguous vacant compartments, is given by

0
0, = pe"(l -2 Cne‘"“‘) e v,
n=2

where v is the striking frequency of the dumbbells, ¢ is time, and the C,’s are appropriately defined

coefficients.

I. INTRODUCTION

It was shown in a previous paper! that (6(m, N)),
the ensemble average fraction of the compartments
occupied after m spatially random attempts to place
dumbbells on a linear array of N compartments, is
given by

O(m, N)y = 1 — (I—V—N‘—l)

XNZ‘3(—2)’H(N— 1— k)(N —-2— k)
=0 k! N-—-1 N~—1

N—1—j
N-—1 )
In the limit as NV tends to infinity the fraction of com-
partments occupied becomes

6(t) =1 — exp {—2[1 — exp (—»)]}. 2

The present paper is concerned with another aspect
of this problem, namely, the kinetics of the annihila-
tion of the p-tuple contiguous vacant compartments
when dumbbells are placed on a linear array of com-
partments in a spatially random manner.

Our task is to determine (6,(m, N)), the average
fraction of the array which is composed of p-tuple
contiguous compartments after m spatially random

x éo(—l)f kc,.( )

Ny(m,N)=(N — pN(m —r, N) + 2(N — p)"*

N—2 AN ¢ — h\2
<2+ (=) (=)
h=pt2 N-—p N-—p

N—4 N-2

attempts to place dumbbells on a one-dimensional
array of N compartments. A somewhat similar
problem has been treated by Flory.2

II. CALCULATION OF (6,(m, N))

We showed in a previous article! that the appro-
priate recursion relationship for N,(m, N), the number
of p-tuple contiguous vacant compartments after m
spatially random attempts to place indistinguishable
dumbbells on a linear array of N compartments, is

Ny(m,N)=(N — p— 2)N,(m — 1, N)
N—2
+ 23 Ny(m —1,N)
h=p

N-3
- 2N1)+1(m - 1, N)hgl 6ph s (3)

where d,, is the Kronecker 4.
To facilitate computations it has been found that
N,(m, N) may also be represented by

N,(m, N) = (N — p)N,(m — 1, N)
N=2
+2 3 Nym—1N), 4
h=p+2
with the restriction that either p > N — 4 or the

summation term is neglected. If Eq. (4) is recurred r
times, the result is

+ (H) N, (m —r,N)

FEN =S > [1+ (N‘h
A=p+2 i=ht2 N-p

J+ (=) (=) )

1 R. B. McQuistan and D. Lichtman, J. Math. Phys. 9, 1680 (1968).

2 P. J. Flory, J. Am. Chem. Soc. 61, 1518 (1939).
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+ (x—’_';)2+ R (H)ﬁ ]N,,(m — r,N) + (N — py~

N-6 N-4 N-2

W2 ) () () + ()

() B B B+

—-p N-p
X Np(m_ r’N)+24(N—'P)r_4“ ’

)
with the restriction that either the summation indices are nonnegative or the summation is neglected
Since N, (1, N) = 2, Eq. (5) may be written, forr =m — 1, as
N-2 1 N — p\1
Ny(m, N) = 2(N — p)"'-‘{l +23 ———[1 _ (__) J
a=pt2h — p N
N-4 N-2

22(——)(—[ =+ (=0

p
N-6 N-4 N-2

+23 2 2 ool - R (e )

S(EENE - EEIEET T @

To determine (6,(m, N)) we multiply Eq. (6) by p and divide by N(N — 1)™; the result may be written in
the form

(B,(m, N)) = N(;p_ 1)@ . If)m_l{l + ZN_fz;l.[ (-7 )m]

T

2N~1¢—4 N—p—2 1 1 i 1 h m—1
2 —=|{1- - +
+ ngz i=%-z ihl: (i + h)( N p) (l +
( m—1
)

N~p—68 N—p—4 N—p—2
H 3 m—1
) -ws) ]
— i N-p

toot? ;.gz i=§|—2 ng[l—(iih)(j_i—’;)

) E) -7+ ()6

+ 242_8 Nf NE: :_—2; h:jk[l B (i - h)(j = h)(k . h)(l e p)m_
+(jii)(k-k—i)(ifh)(l—Nl—p)m—— k-k—j)(jfh)(jii)(l_lvl— )
+(kﬁh)(kl—i)(k]—j)(l_N—Iié)m—]“s'”}' @

To obtain 0,(f), we consider (f,(m,N)) to be n=0,1,2,---
expanded in the form

, in Egs. (7) and (8), we see that

N — p m—1 o n m—1 a. = —2_(1 + 2 2 + 22N‘27—4 N—zp_zi
(0,(m, N)) = p( N 1) ann(l TN p) T N(N-1) o} i inve hi
(8 3N—w—6 n—v—4 N-p~2 | 9
2 —_—
Comparing the coefficients of [1 — n/(N — p)I™7, + ;Z ;_%z 552 hij + ) ©)
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/—_“
p=I
12
A0
FiG. 1. 8, (the fraction of the compart- .08 |-
ments consisting of p-tuple contiguous 8 2
vacant compartments when dumbbells are ~ P
placed in a spatially random manner on an 06
infinite array of compartments), as a func- -
tion of exposure, is given for various
values of p. 3
04 4
S
.02 28
0 1 1
0 0.5 | 1.5 20 2.5
vt
It is known! that, for the isolated vacancies (p = 1) For example,
when N tends to infinity and m = Nvt, we may write C.=1,
lim (8,(c0, N)) = €2, (10) G=4%
Noveo C4 =V,
Thus, it is seen from Eq. (8) that _
“=-5e°
a, = e, (1D ”
In general,for N — oo one may write, for n > 2, Co=— m .

n—21 n—4 n-2
1—22-7+222 z
n=e h

h2 i=it2 ih

b +24---), (12)

1

—2(10

a, =

(

where the first term is found by choosing 2 = n in
Eq. (7); the second term by choosing i = n and h =
2, 3,---,n—2; the third term by choosing j = n,
i=4,5,---,n—4,andh=2,3,---,n— 6, etc.

Thus, in the limit as N — p tends to infinity, where
m = Nvt (v is the dumbbell striking frequency and ¢
is time), Eq. (7) becomes

)e—(ll—l)vt.

0,(t) = pe‘z(

These C, in Eq. (13) are related to the a, by
n>2.

n—6 n—4
— 28 E

h=2 i=nt+2 i=ive ijh

1

0
1 =YC,e™

n=2

(13)

C, = —a,e?,

In addition, the C, satisfy the quasinormalization
condition
e
>C,=1
n=2
Figure 1 shows 0,(¢) for several values of p. It is
seen that only the curve representing the fraction of
compartments which are isolated (p = 1) is monoton-
ically increasing, i.e., the isolated vacancies cannot be
annihilated. In addition, those groups of vacancies
with p > 1 initially show an increasing surface
density but eventually are annihilated to form groups
of vacancies of lower order.
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The quantum-mechanical analog of the classical Gibbs canonical density is characterized by considering
a large collection Q of noninteracting quantum systems, each in an equilibrium statistical state. The set
Q, the Hamiltonian operator for each system, and the statistical states are assumed to have certain
properties which are given as axioms. It is shown that these assumptions imply that each member of Q
is in a canonical state at a temperature which is the same for all systems. The possibility of zero absolute

temperature is included.

1. INTRODUCTION

The purpose of this paper is to present a character-
ization of the quantum-mechanical analog of the
Gibbs canonical state in statistical mechanics. The
approach is based on a method which considers
composite mechanical systems composed of two
mechanically and statistically independent com-
ponents. We proceed in a way which parallels, as
closely as possible, the usual measure—theoretic
description of classical statistical mechanics. The
development presented here differs from the classical
approach in that it is not possible, in the most general
case, to consider only a single two-component system.
The problem then is to define in a mathematically
precise way an appropriate collection Q of quantum
systems, with each system in an equilibrium statistical
state, such that the statistical state of each system in
Q is defined by a Gibbs density operator corresponding
to a uniform temperature.

2. FUNDAMENTAL ASSERTIONS OF QUANTUM-
STATISTICAL MECHANICS

We denote a quantum-mechanical system by a pair
(J€, H), where X is a Hilbert space and H is the system
Hamiltonian operator. Let A denote the set of all
closed linear subspaces of J. Following Mackey,! we
define a statistical state of (¥, H) as a probability
measure on (G in the sense of the following definition:

Definition 1: A probability measure on the closed
linear subspaces of J is a function p which assigns to
every closed subspace M < X a nonnegative real

* The material in this paper is discussed in greater detail in the
author’s doctoral dissertation. See R. E. Kvarda, ‘“Canonical States
in Quantum-Statistical Mechanics,” Tech. Report No. 21, Dept. of
Math., Oregon State University, Corvallis, Oregon. Work supported
in part by a National Science Foundation Grant in Applied Analysis
and by the Naval Electronics Laboratory Center, San Diego, Calif.

+ Present address: Mathematics Research Group, Naval Weapons
Laboratory, Dahlgren, Virginia 22448.

1 G. W. Mackey, Mathematical Foundations of Quantum Me-
chanics (W. A. Benjamin, Inc., New York, 1963).

number p(M) such that

(2) p(3) = 1, p((0}) = 0;

(b) 0 < p(M) < 1 for all closed subspaces M < J¢;

(c) if {M;} is a countable collection of mutually
orthogonal subspaces having closed linear span M,
then p(M) = 3.2, p(M)).

The following theorem, due to Gleason,? identifies
each statistical state of (¢, H) with a density operator
in a one-to-one way:

Theorem 1: Let p be a probability measure on the
closed subspaces of a separable (real or complex)
Hilbert space of dimension at least three. Then there
exists a unique, nonnegative, self-adjoint operator D
of the trace class such that for all closed subspaces M
of J& we have p(M) = Tr (DP,,), where P,, is the
orthogonal projection of ¥ onto M.

Since D is of trace class, it is also completely con-
tinuous.® Being completely continuous and self-adjoint,
it admits a complete orthonormal sequence of charac-
teristic vectors. Its nonzero (necessarily real) charac-
teristic values have finite multiplicities* and form either
a finite or countably infinite sequence {4,}. A density
operator therefore has the spectral representation

D= lenPn; 0<41,<1 and glm"}”" =1,

where P, is the projection operator onto the charac-
teristic subspace of J€ of dimension m, corresponding
to the characteristic value 4,,.

In the case of composite quantum systems, one is led
to consider composite probability measures on the
closed subspaces of a tensor product of Hilbert spaces.
We denote the tensor product of ¥, and XK, by
X, ®3¥,. If pek, and p e XK,, then their tensor
product is denoted by ¢ X . The space ¥, ® &,

2 A. M. Gleason, J. Math. Mech. 6, 885 (1953).

3 R. Schatten, Normed Ideals of Completely Continuous Operators
(Springer-Verlag, Berlin, 1960).

4 F. Riesz and B. von Sz-Nagy, Functional Analysis (Frederick
Ungar Publ. Co., New York, 1955).
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is the completion of the set (¥, ® J,)’ consisting of
all finite linear aggregates of the form

= Zf’;ml (‘pm X 1pm)-

IflP. = ng=1 (En X nn) is in Jel ® Jeg, then the inner
product (@, ) is defined by

@1 =3 3 (@us £, 1)

m= =

By defining the functional

(¢ x 9)(0y, 05) = (9, 0)(w, 0,)

with ¢, 0, €X, and v, 0, € X,, every member of
(%, ® ¥,)’ may be identified with an antibilinear
functional on the Cartesian product ¥, x ¥,. It is
not difficult to show® that the norm convergence of a
sequence from (3, ® ¥,)’ implies pointwise con-
vergence as antibilinear functionals on ¥, x X, so
that every member of J; ® ¥, may be identified with
a certain antibilinear functional on J¢; x ¥,.

If M, N are closed linear subspaces in J¥;, 3,,
respectively, then the closure of (M ® N)' is a closed
linear subspace of 3, ® ¥, and is denoted by M ® N.
We denote by A0; ® M, the set of all closed linear
subspaces of X, ® JC,. The set of all subspaces of the
form M ® N is a proper subset of G ® A, .

Let Dy, D, be density operators on ¥, , &, , respec-
tively. The operator D; X D, which is the tensor
product of D, and D, is defined as follows: If
{o1, s om} = Ky and {y;, -, 9,} = K, then
for finite m,

m m
(D'l X D2) Zl((pn X QPn) = zl(Dltpn X D2'pn)

It is easy to show that D, X D, is a density operator
having a unique extension to all of ¥; ® &,. In
particular, for projection operators, we have

For brevity, we denote a quantum-mechanical
system in a statistical state p by a triple (J, A, p) and
call it a Q-space. A Q-space then is a nondistributive
probability structure which plays the same role in
quantum statistics as a probability space in the meas-
ure—theoretic description of classical statistics. The
QO-space (; ® ;, My ® My, p1p) denotes a com-
posite quantum system in a statistical state p,
composed of two components which may or may not
be independent. In either case, the state p,, induces
certain states p, in (3¢, , H,) and p, in (¥,, H,) accord-

§ J. von Neumann and F. Murray, Ann. Math. 37(2), 116 (1936).
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ing to the definitions

(M) = pp(M ® X,), P(N) = p1,(%, ® N)

for all closed subspaces M, N. In general, the induced
states p;, p, do not determine p;, uniquely unless the
components are statistically independent. This is given
by the following existence theorem:

Theorem 2: Let (¥, Ay, py) and (J,, A5, p,) be
two Q-spaces. Then there exists one and only one
probability measure on M, ® My, denoted by
71 ® ps, such that

(71 ® p2)(M @ N) = p1(M) - p(N)
for all clused subspaces of the form M ® N.

Theorem 2 follows at once from Theorem 1 and the
following statement®:

Theorem 3: Let (¥, ® ¥,, My ® My, pyp) be a
composite system composed of the two components
(3,, My, py) and (K,, My, p,), and let Dy,, D,, and
D, be their respective density operators. Then D, =
D, x D, if and only if p;,(M ® N) = p,(M) - p,(N)
for all closed subspaces M < ¥, and N < X,.

To prove Theorem 3, the following lemma is needed:

Lemma 1: Let A be a self-adjoint operator of the
trace class defined for all ® € &, ® X, . If

for all projection operators of the form Py, gy, where
M, N are closed linear subspaces in X,, X,, respec-
tively, then 4 = 0.

Proof: Let [¢] and [y] denote the one-dimensional
subspaces spanned by the unit vectors ¢ and y. Then
Tr (AP4yp4) = Oimplies (4(p X ), ¢ X y) = Ofor
all ¢,y €, ¥,. Using the distributive property of
tensor multiplication, one finds that

(A(pr X v1), @1 X 95) =0,
(A(pr X 1), oy X ) =0,

for all ¢;, ¢, € ¥, and all y,, y, € J&,. It follows that
(4P, @) = 0 for all ® € (X, ® X,)". By the continuity
of the inner product, we have (4®, ®) = 0 for all
®eX, ®¥,. Hence 4 = 0.

Proof of Theorem 3:1f Dy, = Dy X Dy, , then for all
subspaces M < J¢ and N < ¥, we obtain

Plz(M ® N) = Tr (D].PM) * Tr (DzPN).

¢ Theorem 3 is presumably well known to the experts; however,
we have been unable to find a reference to it in the literature.
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Hence pi (M ® N) = pi(M) - po(N). On the other
hand, if p,(M ® N) = p)(M) - po(N) for all M, N,
then

P12(M ® N) = Tr (D1Py) - Tr (D,Py)

= Tr ((Dy X D)Pyren)-
Since py, corresponds to D, we also have
P12(M ® N) = Tr (DyoP 1)
for all M, N. Therefore
Tr ([(Dy X Dg) — Dyp]Pyrgn) = 0.
Applying the lemma', we obtain
Dy, = Dy X D,. 2.

Theorem 3 may be extended to the case of a com-
posite system composed of an arbitrary but finite
number of components in a straightforward way. In
the case of an infinite number of components, the
technique of this paper breaks down since an infinite
tensor product of Hilbert spaces (of dimension
greater than one) is always nonseparable. However, in
the next section we shall define a (possibly) nonde-
numerable collection of quantum systems for which
Eq. (2.1) holds under the pairwise formation of
composite systems. By placing appropriate conditions
on the collection, the resulting family of operator
equations may be solved to yield the canonical density

operator.
3. THE AXIOMS

We shall view Q as a set in the mathematical sense.
However, Q may be interpreted physically as a
collection of systems, each pair of which can be
brought together into equilibrium at a common
temperature. We do not treat the mechanism for
attaining equilibrium. We deal instead with the limit-
ing case of zero interaction, and postulate that each
component is in a limiting state p, independent of the
second component of the composite pair. It is not
necessary to make an explicit assumption regarding a
common temperature for all systems. The temperature
simply appears as a free parameter in the class of
canonical states.

The axioms fall into three categories. The first
axiom restricts the collection Q to systems whose
Hamiltonian operators have pure point spectra, and
the next three axioms ensure that Q is sufficiently large
for our characterization to succeed. The last two
axioms place natural restrictions on the equilibrium
states.

Axiom 1: For each system in Q, the Hamiltonian
operator H has a pure point spectrum S(H) con-

ROBERT E. KVARDA

sisting of zero and a sequence of real numbers in-
creasing to infinity:

O=dy < <A< <A<, limi, = oo,

7=

Since the Hamiltonian operator is arbitrary up to
an additive constant, the requirement that the smallest
characteristic value be zero merely requires that each
Hamiltonian be normalized by a constant energy
shift.

Let I}, I, denote the identity operators on ¥, , 3,,
respectively.

Axiom 2: The set Q is closed under the pairwise
formation of noninteracting composite systems. That
is, if (J€,, Hy) and (¥,, H,) are any two members of
Q, then the composite system (¥, ® 3,, H; x I, +
I, X H,) also belongs to Q.

This axiom provides the mathematical counterpart
for the physical assertion that each pair of systems
can be brought into equilibrium with each other in
the limit of zero interaction. Since H, and H, are un-
bounded operators, Hy X I, + I; X H, is an un-
bounded essentially self-adjoint operator and has the
spectrum {4, + 4,:m,n=1,2,- -}, where {4,,,} =
S(Hy) and {,,} = S(H,). To obtain the self-adjoint
operator corresponding to the energy of the com-
posite system, one identifies the symbol H; x I, +
I, x H, with its smallest closed extension. It follows
that the set D consisting of all Hamiltonian spectral
values for systems in Q is closed under addition. The
next axiom ensures that D is closed under positive
differences.

Axiom 3: Let D be the union of the Hamiltonian
spectra for all systems in Q. Then D is closed under
subtraction in the sense thatif 4;, A, € Dand 4, > 4,
then 4, — 4, €D.

The next axiom requires that Q contains certain
systems which, for convenience, we call “harmonic
oscillators.”

Axiom 4: For each A€, 4 # 0, there exists a
system (¥, H) in Q such that S(H) = {nd:n =0,
1, 2, .o .}.

Axiom 5: Let (¥, H) be a system in Q in the equilib-
rium state p, and let D be the density operator for this
state. Then there is a function f(A) defined on S(H)
such that D = f(H).
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This axiom ensures that D commutes with the
dynamical group {T, = exp (—iHt):t € R} and there-
fore qualifies as a true integral of the motion.

In view of Axiom 1, each Hamiltonian has a
spectral representation H = > *  A,P,, where P, is
the projection onto the characteristic subspace of ¥
corresponding to the characteristic value 4, . If fis any
function defined on S(H), then by the spectral
theorem one may write f(H) = >*  f(4,)P,. Since
Tr D = 1, every function f defined by Axiom 5 must
satisfy

0<f(A) <1 for n=0,1,2,-+,

3 maf) = 1,

where m,, is the (necessarily finite) multiplicity of 4,,.

The final axiom presents the main statistical assump-
tion. It asserts that the mechanical independence of
any pair of systems in Q implies their statistical
independence also.

Axiom 6: For a composite system (J€,,, H;,) com-
posed of two noninteracting components (¥,, H;)
and (¥, H;) in Q, the component systems are
statistically independent; that is, their statistical states
satisfy pio(M ® N) = p;(M)- p,(N) for all closed
subspaces M < X, and N < X,.

It should be stressed that the axioms do not deter-
mine the set Q uniquely. For example, Q might con-
sist of only those systems built up by composition from
a single harmonic oscillator, in which case all systems
in Q would have the same spectrum D = {0, 4,22, - - :}.
Therefore, it is important to know that any collection
of systems Q, which we may wish to consider can be
enlarged to obtain a collection Q satisfying Axioms 1
through 4, provided only that Q, satisfied Axiom 1.

Theorem 4: Let Q, be any collection of systems
satisfying Axiom 1. Then there exists a second col-
lection Q which contains Q, and satisfies Axioms 1
through 4.

Proof: Let D, be the union of all Hamiltonian
spectra of systems in Q,. Enlarge D, to obtain the set
Dy={mh+ - +nipk=12---;

n=0,+x1, £2,--- forallj=1,2,--- k;
4; € Do}
LetD, = {A:4€D,,1 > 0}. Foreachie D, 10,
adjoin to Q, the harmonic oscillator whose Hamil-

tonian spectrum is {#nd:n=0,1,2, -} and denote
the enlarged collection by Q, . Let Q] be the collection
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obtained by noninteracting pairwise composition of
members from Q, and define Q; = @, U Q;. Now, for
each integer m > 1, let Q,, be the collection obtained
by noninteracting pairwise composition of members
from Q,, and define Q,,, =@, U Q,,. Then 0 =
Uz, 0., satisfies Axioms 1 through 4.

4. THE FUNCTIONAL EQUATION

It follows from Axiom 6 and Theorem 3 that to
each pair of systems (X,, H;) and (¥,, H,) in Q
there corresponds an operator equation D, =
D, x D,, or equivalently,

Sr(Hy X I + I, x Hy)) = fi(Hy) X fo(Hy) (4.1)

everywhere in J; ® J¢,. From the spectral expansion
of both sides of (4.1) one obtains

flz(}u + 4) =f1(11) 'f‘z(lz) (4-2)

for all 4,, 4, € S(H,), S(H,). By considering every
pairwise combination of systems in Q, one obtains a
system of functional equations

Jonw + 22) = fru(An) * (), (4.3)

which holds for all 4, € S(H,) and all 1, € S(H,).
The subscripts index the systems in Q and range over
a possibly nondenumerable set. Our objective is to
solve this system of equations to obtain the equilib-
rium density operator for each member of Q.

We first note that if f is any function specified by
Axiom 35, then f(0) # 0. Consider first the harmonic
oscillators of Axiom 4. For two identical oscillators
one obtains

Sr2(nd + mi) = f(n2) « f(mA).

Consequently, if f(0) = 0, then f;, is zero everywhere
on S(H,,), which contradicts the fact that Tr D,, = 1.
If f(0) =0 for an arbitrary system (¥, H) with
D = f(H), there exists a A’ € S(H), A’ > 0, such that
S(X') # 0. By considering the composite system com-
posed of (¥, H) and the harmonic oscillator (3€', H')
having S(H') = {nd':n=0,1,2,---}and D' = f'(H"),
one obtains. f,(2) = f'(0) - f(X) =f'(X) - f(0). If
J0) =0, then f'(X') - f(0) is zero but f(0) - f(X) is
not, which again is a contradiction.

The fact that f(0) # 0 for every system in Q allows
one to replace the system of equations (4.3) by a single
functional equation.

Lemma 2: Consider the set D which is the union of
all Hamiltonian spectra for all systems in Q. There
exists a function F, defined on D, satisfying the
functional equation

F(2y + 4g) = F(4y) - F(Ay) 4.4)
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for all 4;, 4, €D and the initial condition F(0) = 1
such that for each system (¥, H) in Q, with equilib-
rium density operator D = f(H), the function f

satisfies
S = f0) - F(2)
for all A € S(H).

Proof: By considering two systems in Q with
D, = fi(H,) and D, = f,(H,) which may have a
characteristic value A common to both S(H;) and
S(H,), one obtains from (4.2) £,(1)/f1(0) = £,(1)/£>(0).
Consequently, (4.5) defines F uniquely on D. To obtain
(4.4), substitute (4.5) into (4.2) and use (4.2) with
M=24=0.

(4.5)

Lemma 3: 0 < F(4) < 1 for all positive 1 € D.

Proof: Consider the harmonic oscillator having
S(Hy={nA:n=0,1, 2, --}. Then, by induction from
(4.4), one obtains F(nl) = [F(A)]*. Since

Te D = 3m, (1) 2 /O 3 AT,
we must have 0 < F(1) < 1.

The next lemma defines the canonical state of zero
absolute temperature, or equivalently, the micro-
canonical state of zero energy. It is convenient to
include this limiting state in the family of canonical
states. We note that the canonical density operator
corresponding to an absolute temperature T is

©
— 4, [T
o HIET 2 ehitp,
D _ _ n=0
T Tr e—H/kT @ )
2 mne—l”/kT
n=0

Since we require 4, = 0, we have

lim Dy = Dy = - P,,

T-0 my
where P, is the projector of J onto the null space of
H.

Lemma 4: If F(1) = 0 for some A > 0, then F(A) =
0 for all A > 0 and each system in @ is in its canonical
state of zero absolute temperature.

Proof: The proof depends on the fact that D is
closed under positive differences. Let F(4,) = 0 and
let A, be any positive number in D.

Case I: If 2, > A,, then 1, — 4, €D and F(,) =
F(4,) - F(4; — 4;). Hence F(4,) = 0.

ROBERT E. KVARDA

Case II: If 2, < A, then, for some positive integer
n, we have ni, > 4, and by Case I we have F(nl,) =
[F(4;)]" = 0. Hence F(4;) = 0. Consequently, F(1) = 0
for all 2 > 0, and if (X, H) is any system in Q with
equilibrium density operator D = f(H), then

fw=L, it a=a=0,

my

fAy=0, if A0
This implies D = Dy = (1/mg)P,.

The next lemma considers the alternative to
Lemma 4. In this case, F(0) =1 and 0 < F(A) < 1
for all positive A € D. It is convenient to define the
function y(i) = In F(1) and work instead with the
functional equation

YA+ 4) = y(A) + y(4e). (4.6)

By defining y(—4) = —y(4), it is straightforward to
show that every such extended solution satisfies (4.6)
forall 4;, A in the extended domain D U —D and that

y(mi) = my(2) 4.7)

for any integer m and all 1€ D U —D. We may now
prove the following:

Lemma 5: Consider the case where 0 < F(4) < 1
for all positive 4€ 9. Then there exists a positive
constant 6 such that F(1) = exp (—04) and each
system in Q is in the Gibbs canonical state with the
density operator

D = ¢ ?H|Tr ™8,
Proof: We prove that y(4)/A = —8 for all positive
A €D. Suppose that y(4)/4 is not a constant. Then,

for some 4;, A, € D and any two positive numbers a
and b, the equations

xy(d) + fy(d) = a,
0(}.1 + ﬂlz = b
can be solved for the real coefficients « and 8. More-

over, we can always find rational numbers r,/s, , ry/s,
with s, s, > 0, such that

(ra/sy(A) + ("2/32)}’(}*2) >0,
(rifs)2y + (rofs)hs > 0.

Multiplying by 5,5, and using (4.6) and (4.7), these
inequalities become

y(mi, + mydy) > 0,
myy + mydy, > 0,

where m, and m, are integers. This contradicts the fact
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that 0 < F(1) <1 for all positive A€d. Hence
y(4)/A is a constant and the result follows.

We summarize the results of Lemmas 4 and 5 with
the following theorem:

Theorem 5: Let Q be any collection of quantum
systems, each in an equilibrium statistical state, satis-
fying Axioms 1 through 6. Then each system is in a
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Gibbs canonical state at some absolute temperature
T 2> 0. The temperature is arbitrary, but it is the same
for all systems in Q.
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We show that the unrenormalized Hamiltonian in quantum field theory is unbounded from below
whenever lowest-order perturbation theory indicates that this is true. We conclude that perturbation
theory is an accurate guide to the divergence of the vacuum energy in quantum field theory.

In this paper we show that the unrenormalized
Hamiltonian is unbounded from below when lowest-
order perturbation theory predicts that this is true.

The proof is a simple calculation. The unrenormal-
ized Hamiltonian H is a densely defined bilinear form
on Fock space.! We choose a sequence Q, of unit
vectors in the domain of H. As « — o, the expecta-
tion values of the Hamiltonian in the vectors £, tends
to —co. The ground state of H given by first-order
perturbation theory motivates our choice of the
vectors Q, .

We concentrate on the boson self-interaction
®** in (s + 1)-dimensional space-time. The second-
order vacuum energy has a momentum divergence for
s>2,n>2and for s > 3, n =1, and these cases
will be treated first. Afterwards, the remaining cases
(which have a volume divergence) will be treated.,

The Hamiltonian that we study is

H=H,+ lf:d)(x)z": dx = Hy + AH;. (1)

The methods and the results hold equally for the
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spatially cut-off Hamiltonian:

H(g) = Hy + A f D(x)P":g(x) dx, 0 < g(x) < 1.

@)
We work on the Fock space; H, is the free-field
Hamiltonian for mass m > 0, and @ is the standard
boson field.
We study first the cases s > 2, n > 2 and s > 4,
n > 1. The vectors L, are defined by

Qx = C(Wo - 2‘/’27;),

where v, is the Fock no-particle vector and vy,, is a
2n-particle vector. The constant ¢ is chosen so that
Q] =1, and

Yanlkys * 5 Kap)
= (Su0) @vtn( 3k T -t @

Here u(k) = (k® + m®?} and 4 is a smooth, positive,
rapidly decreasing function. The function , (k) equals
unity if |k] < «; it equals zero otherwise. We choose

e+ 2
2n

b

T=—(s—1)<1—i)+
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that 0 < F(1) <1 for all positive A€d. Hence
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boson field.
We study first the cases s > 2, n > 2 and s > 4,
n > 1. The vectors L, are defined by

Qx = C(Wo - 2‘/’27;),

where v, is the Fock no-particle vector and vy,, is a
2n-particle vector. The constant ¢ is chosen so that
Q] =1, and

Yanlkys * 5 Kap)
= (Su0) @vtn( 3k T -t @

Here u(k) = (k® + m®?} and 4 is a smooth, positive,
rapidly decreasing function. The function , (k) equals
unity if |k] < «; it equals zero otherwise. We choose

e+ 2
2n

b

T=—(s—1)<1—i)+
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where e is in the interval 0 < € < 3. We remark that
the choices # =4, « = o0, =0 would give the
ground state in first-order perturbation theory. With
the above restrictions on 7, §, and €, we have 7 < —4.
Furthermore,

e=2nr+ 2n— s — (2n+ 1).

THeorem 1:
lim(Q,, HQ,) = — .

K=+
Proof: We compute the inner product as
(Qy, HQ,) = c¢¥{Py + APy + A°P, + A°Py}.
In this expansion it is easy to see that
Py=P, =0
and that
Py = (Yon> Hopan) = (Wor Hyzn) — (2> Hryo)-
The proof is completed by showing that, for large «,
=14 2|yul* = 001),
(Yo > Hopn) = O(1),
Py = 0(1),

and that for some positive constant D,

D« < (wo, Hywsy) = (Y2n» Hrwo)-

These orders of growth are established by standard
power-counting arguments.? This completes the proof.
The remaining case n = 1, s = 3 is handled by similar
methods, modified to deal with a logarithmic diver-
gence.

In the cases not covered by Theorem 1, perturbation
theory predicts no momentum divergence. Thus, when

3 §, Weinberg, Phys. Rev. 118, 839 (1960).

J. GLIMM AND A. JAFFE

g has compact support, perturbation theory predicts
that H(g) is bounded from below. This lower bound
has been proved rigorously.® Perturbation theory
predicts that A has a vacuum-energy divergence which
is linear in the volume, and thus it predicts a lower
bound for H(g) which is linear in the volume. (The
“volume” here is the area of the support of g.)

It is known that the true bounds are no worse than
this prediction. Thus, for s =1o0r s =2,n =1, the
lower bound diverges no faster than a constant times
the volume.? We now show that, for s = 1, the H
defined in Eq. (1) is unbounded from below. The same
proof shows that the lower bound on H(g) in Eq. (2)
tends to —oo as g — 1, and similar results hold for
the case s =2,n = 1.

Let

hy(k) = Vh(kV).

In the definition (3) for y,,, we substitute sy for h
and set 7 = 0, xk = o0. We define

Qp =y, — V_*/-L%n .

As before, one proves the following theorem:

Theorem 2:
lim (Qp, HQp) = —~ o,

V-

lim sup |Qy]? < .
Voo’

We conclude that perturbation theory is an accurate
guide to the divergence of the vacuum energy in
quantum field theory.

% For the case s = 1, any n, see E. Nelson in Mathematical Theory
of Elementary Particles (M.1.T. Press, Cambridge, Mass., 1966);
J. Glimm, Commun. Math. Phys. 8, 12 (1968); J. Glimm and A.
Jaffe (to be published). The case s = 2, n =1 can be computed
explicitly or estimated. )
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The relativistic effect of strong binding on the equations of motion of slow particles is derived by taking
the appropriate limit of classical relativistic equations of motion of interacting particles. The expected
effect on the total mass of the system is verified. The relative motion is also affected—in a model-

dependent way.

1. THE MASS OF BINDING ENERGY

Einstein derived his famous formula?
(1.

by. kinematic arguments showing that the emission of
electromagnetic radiation carrying energy E reduces
the mass of the emitting system by E/c®. The conserva-
tion of energy then leads to the general relation
between energy and mass, Eq. (1.1). This argument
cleverly evades the problem of actually computing the
energy of a relativistic system of particles. In fact,
most theories are not able to predict the total energy
of a system of particles without encountering infinite
self-energies.

One common application of Eq. (1.1) is to a system
of slowly moving particles. One uses the Newtonian
equations of motion and separates them nonrela-
tivistically into center-of-mass motion and relative
motion. One then uses the energy of the relative
motion to correct the total mass via Eq. (1.1) in
violation of the equation for the center-of-mass
motion. Most calculations of nuclear structure start
from this rather arbitrary premise, namely, that the
defect in the total nuclear mass is not accompanied
by any change in the equations of the relative motion.?

Recently, an attempt was made to extend this
approach to the quark model,?® i.e., to the systems
of quarks that supposedly made up nucleons and
mesons. In this case the effect of the relativistic
connection between mass and energy became quite
dramatic, since the mass defect was almost equal to
the total original mass. A slight change in the param-
eters (or in the number of quarks grouped together)
would send the mass of the system through zero and

E = mc?

* This research has been sponsored in part by the Air Force Office
of Scientific Research through the European Office of Aerospace
Research, OAR, U.S. Air Force, under Contract F-61052-68-C-0070.

! A. Einstein, Ann. Physik 17, (1905) [English transl.: The Principle
of Relativity (Dover Publications, Inc., New York, 1923), p. 67].

2 E.g., K. A. Brueckner in The Many-Body Problem, Notes of
the 1958 Les Houches Summer School (John Wiley & Sons, New
York, 1959).

3 G. Morpurgo, Physics 2, 95 (1965).

into the negative range. Still, the equations of relative
motion were assumed unchanged.

No experimental vzsification of the assumptions of
the quark model is probable short of the discovery
of quarks. Also in the nuclear case, the connection
of theory and experiment is not quite direct. A
theoretical study thus seems indicated.

The natural way to verify a nonrelativistic approxi-
mation is to derive it from the full relativistic theory.
This could not be done until recently for want of a
suitable relativistic theory of interacting particles.
The only theory free of infinite self-energies was the
Fokker-Tetrode®® formulation of classical electro-
dynamics in terms of action at a distance. This theory
was considered useless because it led to half-retarded-
half-advanced interactions. In any case, neither this
form of electrodynamics nor related formulations of
meson theory® allow the coexistence of slow motion
with strong binding by virtue of the virial theorem
(see below).

Recently, Van Dam and Wigner’ proposed a
classical dynamics of interacting particles that is a
natural generalization of the Fokker-Tetrode theory
but features an arbitrary function characterizing the
interaction. A corresponding ‘“‘scalar” theory has
been proposed by this author.® Either of these theories
reduces in the classical limit to Newton’s equations
with an interparticle potential depending only on dis-
tance. A situation of slow motion and strong binding
may be arranged by adjusting the arbitrary function
in the relativistic theory so as to make the limiting
classical potential a deep well with a flat bottom. This
may be done in either the Van Dam-Wigner theory
or the scalar theory. In this paper we use a linear
combination of both to demonstrate that the effect of

4 H. Tetrode, Z. Physik 10, 317 (1922); A. D. Fokker, Z. Physik
58, 386 (1929); Physica 9, 33 (1929); 12, 145 (1932).

5J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 21, 425
Y Havas, Phys. Rev. 87, 309 (1952).

?H. Van Dam and E. P. Wigner, Phys. Rev. 138, B1576 (1965).
8 A. Katz, J. Math. Phys. 10, 1929 (1969).

2215



2216

strong binding on the relative motion is model-
dependent.

The relativistic theory is introduced in Sec. 2. The
notation is that of Ref. 8 and the results of that
reference are recalled. Section 3 explains the limit of
slow motion and strong binding. Like the ordinary
classical limit,it involves letting ¢ tend to infinity.
However, certain interaction terms are assumed of
order c2 In Sec. 4 the limiting procedure is applied
to the relativistic equation of motion. The limiting
equations of motion [Egs. (5.1), (5.2)] are discussed
and separated into center-of-mass and relative equa-
tions in Sec. 5. The limits of validity of the limiting
procedure are discussed in Sec. 7. It turns out that
the case in which the contribution of the binding
energy completely cancels the rest mass cannot be
discussed within the present scheme. The relativistic
dynamics we use is not the most general possible. In
Appendix A we refer to a different form of dynamics,
which, however, becomes identical with ours in the
limit of slow motion but strong binding.

The limiting equations of motion [Eqgs. (5.1), (5.2)]
are the main result of the present paper.

2. RELATIVISTIC DYNAMICS AND
CLASSICAL LIMIT
Consider a system of classical relativistic particles.
Let x(r;) represent the world line of the ith particle
(x, is a four-vector and 7, a parameter). We derive
our dynamical equations from the action

A = mc f GO dry + myc? f @2t dr,
~3 f 2O — X2y - %y dry dry
~3 f Wy — %G drydry. 1)

X; is the derivative of x; with respect to =,. The
generalization for more than two particles is obvious.
% and y are functions describing the two-particle
interaction. They are subject only to the restriction

x(p) =v(p) =0, when p>0. (22)

Our metric is gy = %, gor =0, gr, = —9,,; the
interaction thus occurs at spacelike separations,
which is the relativistic generalization of an instan-
taneous interaction. [Condition (2.2) may be weakened

to require only that y and y tend to zero as p — oo fast

enough for the integrals used to converge.]

The x and y terms correspond to interactions of
the Van Dam-Wigner? type and of the “scalar’ type,®
respectively. It has been shown in Ref. 8 that, in the
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ordinary nonrelativistic limit, both interactions reduce
to Newtonian potentials depending only on the
interparticle distance r given by

V() =3 f 26% — 1) db, 2.3)

Ur) = 3 f w(6® — r*) db. 2.4)
The full relativistic equations of motion for the
action (2.1) are

1
(m1 + - f’(/) de)X‘«:l
2c

107, .. . .
= Zfl d’Tz{xl “Xa(Xy — Xg) — (X3 — Xg) x1x2}

+ %J"»V d”'z{cz(xl — X3) — (X1 — xg) * J'515‘1}
2.5)

and the equation obtained by exchanging the particle
indices 1 and 2. x" and ¢’ are the derivatives of y and
with respect to their arguments, the arguments still
being (x; — xp)% In Eq. (2.5) the arbitrariness con-
nected with the choice of the parameters 7, and 7, has
been removed by enforcing the requirement

B=c i=12

(2.6)
This turns 7, into the proper time of particle i.

3. THE LIMIT OF SLOW MOTION BUT
STRONG BINDING

The procedure for obtaining the limit of slow
motion while retaining the effects of strong binding
is to let ¢ tend to infinity while assuming that the
classical potential energies V(r) and U(r) of Egs.
(2.3) and (2.4) are large of order c¢% This means that
quantities such as V(r)/c* and U(r)/c?* cannot be
neglected. Terms proportional to any power of X,/c
will be discarded.

The above prescription assumes that the potential
energy V(r) + U(r) is of order ¢* while the kinetic
energy 3mx} + im,x? is of order 1. However, the
virial theorem?®:1° connects the average kinetic energy
to the average of (x; — X,) - (9/0x)[V(r) + U(r)).
For consistency we therefore assume that while V(r)
and U(r) are of order c?, their derivatives dV(r)/dr
and dU(r)/dr are of order 1. This means that we

% H. Goldstein, Classical Mechanics (Addison-Wesley Publ. Co.,
Inc., London, 1959), Secs. 3-5.

10 The virial theorem in Ref. 9 applies to ordinary Newtonian
mechanics. We anticipate that a similar relation obtains also in the
case of the equations of motion of strongly bound slow particles
that we are about to derive. This assumption may be verified a
posteriori by inspecting Eqgs. (5.1) and (5.2).
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consider motions where each particle is near the
bottom of a deep potential well where the “floor” of
the well is not steep.11:12

As the changes in U(r) and ¥(r) during the motion
are of order 1, the limits

v = lim V(r)/c?, 3.1
u = lim U(r)/c? (3.2)

for a given solution are constants independent of .

Our next task is to expand the equation of motion
(2.5) in powers of 1/c. Terms containing y and y must
be expanded up to order (1/c)%. In fact, by our
assumptions

V) =} f (6% — 1) db = — J (6% — )62 db
~3 f L6 — )0 do = - -, (3.3)

U(r) = 3 f W6 — 1) df = — f W(O* — )6 db

—3 f Y6t — )0 df = - - - (3.4)
are of order ¢2, but
1-_ dl;(r) — _fxr(oz _ r2) de
r dr
=2 f L6 — PP do =, (3.5
ldi(r) — _le(az _ r2) de
r dr
=2 J YO — PP do = (3.6)

are of order 1. Therefore, integrals of the form (3.3)
and (3.4), when multiplied by 1/c2, will be replaced by
v and u, respectively; integrals of the form (3.5) and
(3.6), when multiplied by powers of 1/c, will be
discarded.

Up to the order 1/c?, the time coordinates of the
particles may be expressed as

Xir) =7 + f(r), i=12.

The condition (2.6) then requires

/;(Ti) = %"‘i('ri)z' (3-8)
The argument of the function y and vy, when expanded
to the same order, becomes
(x1 — xz)z = Cz("'l - "'2)2 + 2(7'1 - Tz)[f1(“'1) — fu(m)]
— [xy(r) — xo(r2)1; (3.9)

11 Quantum-mechanical considerations allow slow motion in a
deep potential well only if it is wide enough (cf. Ref. 4).

12 The prescription for obtaining the y or % corresponding to a
given V(r) or U(r) is given in Ref. 8.

(3.7)
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also
(xy = x9)* Xy = 02("'1 — 79) + fi(t) — folr)
+ 3(r; — 7'2)’.‘1(7'1)2
— [xy(m) — xo(7)] - X4(7y), (3.10)
kv ke = ¢ 4 Hk(r) — Xo(r)]n (3.11)

Equations (3.10) and (3.11) may be obtained from Eq.
(3.9) by taking its derivatives first with respect to 7,
then with respect to 7,.

4. THE LIMIT OF THE EQUATION
OF MOTION

In this section we apply the preparations of the last
section to the equation of motion (2.5).
Let us first change the variable of integration in all

the integrals in Eq. (2.5) from 7, to
6= c(ry, — 7).

@.1)

This together with the expanded expressions (3.7)
through (3.10) turns the space components of Eq.
(2.5) into

(m1 + 3—2le dﬂ)il

=f(x’ + w')[xl(ﬁ) - Xz(ﬁ + g)] dd
s Hfrofunsfosd)]
<Jr-sfur ]

- 215 J [X2(71 + %)x + 5&1(71)?"}

x [0+ 1m0 — f (m+ g) + 225

- [xl(fl) - x2(71 + g)} . xl(f,)] 9, (4.2)

where the argument of the functions x, v, ¥, and ¢’
is

(6 — X' = 0 + 2 g[fl(rl) - f( + -2-)}

_ [xl(fl) - XZ(T1 + g)]z (4.3)

One should now complete the expansion to order
1/c? by applying the Taylor expansion to all functions
the arguments of which contain parts proportional
to O/c:

xy(11 + 0/¢) = Xo(71) + (6/c)%y(ry) + 36/ C)ziz(Tl),
4.4)
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etc. The functions x, v, ', %’ should also be expanded.
When this process is finished, all the 6 integrals are of
the form

f M@ — O™ df or f PO — 11)6™ 6, (4.5)

where y™, ™ are the nth derivatives of y, y with
respect to their argument and

rf = [x(r) — x2(1'1)]2. (4.6)

Of these integrals, the ones with odd m vanish by
symmetry. The others are either of the form (3.3),
(3.4) or of the form (3.5), (3.6). The latter, when
multiplied by 1/c%, are discarded; the former are
replaced by v or u. This turns Eq. (4.2) into

@u+m&+%@-uﬁf=—£jww+um1
' 4.7

In the last equation both x; and x, depend on 7y,
which becomes the common time. It may be checked
that the time component of Eq. (2.5) is satisfied
identically.

5. CENTER-OF-MASS AND RELATIVE
MOTIONS

Let us reproduce the equations of motion in the
limit of slow motion but strong binding:

(my + w)%, + (v — W)k,
=_§Wm+wm+n(u)

X1
o — Wk, + (my + W)X,
=~ L) + U+ Ry (52)

0x,

We have tentatively included external forces F,, F,
acting on particles 1 and 2. These forces could be
produced by interaction of the two particles with a
third particle that is extremely heavy and extremely
far away. They are necessary in order fully to appreci-
ate the effect of strong binding on the center-of-mass
motion. Otherwise, Eq. (5.1) is identical with Eq.
(4.7) and Eq. (5.2) is obtainable from it by exchanging
the indices 1 and 2. Both x; and x, depend on a
common time; dots denote derivatives with respect
to this common time.

When the two equations (5.1) and (5.2) are added
together, the interparticle force cancels and we find
that

MX =F, + F,, (5.3)

AMNON KATZ

where
M=m+m+v+u 5.4

and

MX = mix; + moX, + 3(v + w)(x; + x,). (5.5)

Obviously, X plays the role of a center-of-mass
coordinate and Eq. (5.3) shows that M is the inertial
mass of the two-particle system.

For the purpose of studying the relative motion,
let us neglect the external forces F, and F, and define
a relative coordinate

E=x; — X,. (5.6)
Equations (5.1) and (5.2) then lead to
W= - Z VG + UGEDL )
where
om0 —Ho =0

m+m+v+u

The last equation replaces the usual expression for
the reduced mass.

Note that the total mass (5.4) agrees with Einstein’s
formula (1.1) regardless of the part of the potential
energy contributed by the y and yp terms of the inter-
action. The effect of strong binding on the reduced
mass (5.8) is crucially model-dependent. It may
altogether disappear for a suitable choice of ¥ and v,
e.g., when m; = m, = m, and v = 3u, the reduced
mass retains its usual value $m although the total mass
is shifted to 2m + 4u.

6. TOTAL ENERGY AND GRAVITATIONAL
MASS

It might be of value to compare the total mass M
of the last section with the zero component of the
energy-momentum vector [cf. Egs. (3.1) and (4.4) of
Ref. 8]. One finds that the total energy is equal to
Mc? in leading order.

Another approach to the total energy is to con-
sider space-time as infinitesimally curved and to
evaluate the stress-energy tensor as

84
0gu(x, 1)’

where A is the action (2.1). The energy calculated as
the integral of T™ over all of space also agrees with
Mc? in leading order. The mass obtained in this way
may be considered the active gravitational mass of
the system, since the T** serves as the source in
Einstein’s equations of gravity.

T™(x, f) = (6.1)
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7. LIMITS OF VALIDITY

The equations of motion (5.1) and (5.2) relate a
linear form in the accelerations to the forces. For some
values of v and u the linear form may become singular,
forcing certain components of the acceleration to
become infinite. When this happens, we have exceeded
the limits of validity of our assumptions. The moment
one of the eigenvalues of the matrix multiplying the
accelerations becomes small of order 1/c, accelerations
of order ¢ are indicated and our assumption of slow
motion is violated.

The vanishing of the determinant of the linear form
in Egs. (5.1) and (5.2) occurs on a hyperbola in the
v, u plane described by

(my + u)(m, + 1) — v —u)* =0 (1.1

(see Fig. 1). This coincides with the vanishing of the
reduced mass u. The total mass M vanishes on the
straight line

m+m+ov4+u=0. (7.2)

It is not possible to connect continuously the origin
v = u = 0 with the points of the line (7.2) without

N )

FiG. 1. The straight line m; + my + u + v = 0, on which the
total mass vanishes is an asymptote of the hyperbola

(my + w)(my + u) — o — u)* =0,
on which the reduced mass vanishes.
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cutting the hyperbola (7.1). Therefore, the vanishing
of the total mass occurs outside the region of validity
of our approximation of slow motion and strong
binding.®® For the case of equal masses, the hyperbola
degenerates into its two asymptotes, one of which is
(7.2).

APPENDIX A

In this appendix we consider an action of the form
A=mc* f (i) dry + myc? f (i) dry

—3 f f (52 — X))y - 5 GG dir, diry.

(A1)
The corresponding equation of motion is

([ ot [ dmia- 5072 |ot — att — e

N o \—1— . 1 2 .
X %f“ oy + Xp) a(xg - x{‘)xzv}x{

C

= f o dryy - %)

x [xf— Xt (g — x) - x(1 — 4y ix)}

Xy )'62 C
(A2)

The present theory depends on a continuous param-
eter g. For ¢ = 0 we recover the Van Dam-Wigner
theory, for ¢ = 1 the scalar theory.

For g # 0, 1 we have a new theory distinct from the
combination of Van Dam-Wigner and scalar theory
considered in this paper. However, in the limit of slow
motion and strong binding this new theory becomes
identical to our mixed theory of Sec. 2 with

x =1 - g)o, (A3)
y =qo. (A4)

12 There is one case in which the approximation of slow motion
involves no error: It is the case of two particles at rest, each at the
bottom of the potential well created by the other. This situation is
an exact solution of the full relativistic equation of motion (2.5).
The energy taken as the zero component of the energy-momentum
vector of Ref. 8 is, in leading order, (m, + my + v + u)c?, and can
be made to vanish by increasing the interaction terms by a factor.
This approach neglects questions of stability. Also the case of
stationary particles may be exceptional.
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A method for solving various half-space multigroup transport problems for the case of a symmetric
transfer matrix is explained. This method is based on the full-range completeness and orthogonality
properties of the infinite-medium eigenfunctions. First, the albedo problem is considered. A system of
Fredholm integral equations is derived for the emergent distribution of the albedo problem, and it is
shown that this system has a unique solution. Then, by using the full-range eigenfunction completeness,
the inside angular distribution is obtained from the emergent distribution. Finally, the Milne problem
and the half-space Green’s function problem are solved in terms of the emergent distribution of the
albedo problem and the infinite-medium eigenfunctions.

1. INTRODUCTION

In recent years much effort has been given to solving
the energy-dependent Boltzmann equation. Various
approximations have been used. The most rewarding
approximation to date has been the multigroup
technique, and often the diffusion-theory approxi-
mation is employed to simplify the calculations
further. However, there is a definite need for exact
solutions of the multigroup transport equations,
since these solutions serve as a standard against which
one can compare the approximate results.

Recently, the solution of the infinite-medium
Green’s function has been obtained explicitly for the
two-group! and N-group®® cases. Several two-group
half-space problems have been investigated,*~® and
in a paper by Siewert and Zweifel” a special N-group
Milne problem for radiative transfer was solved. The
general case of N-group half-space problems with
symmetric transfer matrix was studied by Leonard and
Ferziger®; they proved full- and half-range complete-
ness of the N-group transport-equation eigenfunc-
tions. In all these works, the solution of a half-space
transport problem is expanded in terms of the eigen-
functions and then a set of equations for the expansion
coefficients is derived.

In this paper we consider also N-group half-space
problems for a symmetric transfer matrix. This form
of C is not so restrictive as may appear at first
glance. For instance, all two-group problems (see
Appendix B) and the N-group equations for thermal

* Work supported by the National Science Foundation, and
based, in part, upon a Ph.D. thesis of one of the authors (J. K. S.).

+ On leave from the University of Ljubljana, Yugoslavia.

t Present address: Dept. of Nuclear Engineering, Kansas State
Univ., Manhattan, Kansas.

1 C. E. Siewert and P. S. Shieh, J. Nucl. Energy 21, 383 (1962).

2 T, Yoshimura and S. Katsuragi, Nucl. Sci. Eng. 33, 297 (1968).

3 A. Leonard and J. H. Ferziger, Nucl. Sci. Eng. 26, 170 (1966).

4 R. Zelazny and A. Kuszell, Ann. Phys. (N.Y.) 16, 81 (1961).

5 D. Metcalf, Ph.D. thesis, University of Michigan.

8 C. E. Siewert and P. F. Zweifel, Ann. Phys. (N.Y.) 36, 61 (1966).

7 C. E. Siewert and P, F. Zweifel, J. Math. Phys. 7, 2092 (1966).

neutrons may be transformed into such a case (see
Appendix A and Ref. 3). Symmetric transfer also
appears in special astrophysical radiative transfer
problems for a medium in local thermodynamic
equilibrium.”

In our approach, we do not need the half-range
completeness property of the eigenfunctions. We
solve half-space transport problems in two steps:
First the emergent distribution is calculated and then
the distribution inside the medium is evaluated by
using the full-range completeness and orthogonality
properties of the N-group eigenfunctions. These
eigensolutions to the N-group isotropic transport
equation and their full-range completeness theorem
have been known for several years,® while their
orthogonality relations have recently been obtained
by Leonard and Ferziger® and Yoshimura.?

Section 2 briefly summarizes the N-group eigen-
functions and their full-range orthogonality relations
as described by Yoshimura.? In addition, it is shown
for symmetric C that the discrete eigenvalues are real
or purely imaginary. In Sec. 3, a system of Fredholm
equations is obtained which uniquely determines the
emergent distribution for the albedo problem. It is
shown that the uniqueness of solution of this system
of Fredholm equations also implies half-range
completeness of the eigenfunctions. Finally, in Sec.
IV, the emergent distributions of the Milne’s- and
Green’s-function problems are expressed in terms of
the emergent albedo-problem distribution and the
complete solutions obtained from the full-range
completeness and orthogonality properties.

2. INFINITE-MEDIUM EIGENFUNCTIONS

The linear Boltzmann equation for N energy
groups in plane geometry and with isotropic scattering

8 R. Zelazny and A. Kuszell, Physics of Fast and Intermediate
Reactors (1AEA, Vienna, 1964), Vol. 11, p. 55.
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can be written in the form?*

b2 b, + 240, = €[ dwdn). @)
Ox =)

The vector Y (x, u)is an N-component vector, of which
the ith component, y,(x, ), is the angular flux of the
ith group. The components of the diagonal matrix, the
Z, are the 0,0,;, where o, is the total interaction cross
section for the ith group. The elements C;; of the
transfer matrix C describe the transfer of neutrons
from the jth group to the ith group. In some problems,
for instance, thermal neutron-transport theory, C
can be written as a product of diagonal matrices D,
and a symmetric matrix A (see Appendix A), as

C = D,AD,. 2.2

Equation (2.1) can then be so transformed that the
elements of the transformed X matrix are ordered as

012032 " 20y, @3

and the new C matrix is symmetric (Appendix C). It
will be assumed for the remainder of the paper that
the transport equation has this special form of an
ordered Z matrix and symmetric C matrix. Finally,
by measuring distance in units of the smallest mean
free path, we can set oy = 1.

Using the analogy of the one-group problem,® we
seek a set of eigenfunction solutions (v, x, u) to
Eq. (2.1) of the form

q"('ys X, ;u) = e_Z/v¢('V’ :u)

Substituting Eq. (2.4) into Eq. (2.1), the self-adjoint
equation for the eigenvectors ¢ (v, ) is obtained as

(2.4)

= @R = €[ didt). @9)

where E is the unit matrix. The explicit form of
these eigenfunctions has been obtained by several
authors.!3# We will use, with slight changes, the
notation of Yoshimura.?
The eigenvector spectrum is divided into two regions.
(a) Region I: v ¢ (—1, 1). In this region there may
exist an even number, say 2M, of discrete eigenvectors,

which are written in component form as
¢i(v03’ ,u) = V()sbi(v()s)/(o'ivos - /l,), i=1,-- , N,
(2.6)

where b(¥,,) is a well-defined vector.? It can be shown
that if »,, is an eigenvalue, then also —», and »%

® K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison-
Wesley, Reading, Mass., 1967).
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(complex conjugate) are eigenvalues with

b(¥5,) = b(—7,,) = b*(3,,)-

For our case of symmetric C, the discrete eigen-
values v, are either real or imaginary—never complex.
To see this, multiply Eq. (2.5) by ¢*(», u) and inte-
grate over u. (Here the superscript tilde denotes the
transpose.) In this way one obtains the equation

Q.7

—1- J d[u[l&J*(’Vog > ,u)cb("’Os ’ /l)
Vog V-1
=J‘_1d,u&'>*(1’03 s ﬂ) z¢(7’03 s lu‘)

—f_fw@ *(vos, 4)C f_ ldu’¢(vos, ©). (2.8)

Since X is diagonal and C is symmetric, the right-
hand side of Eq. (2.8) is real since it is a sum of
products of complex-conjugate terms. The integral
on the left-hand side of Eq. (2.8), which in view of
Eq. (2.6) can be written as

[ o0, w650,

1

p dp
~1 (90,0; — ) (v050; — )
2.9

N
= 1’031’0*; '21 bi('VOs)b;* (1’03)

is also real.

If the above integral (2.9) is not zero, it follows
then that the eigenvalue v, must be real! It will now
be shown that this integral can vanish only for purely
imaginary eigenvalues.

Let us assume, for the sake of the argument, that
v, is complex and Re {»o,} > 0. It can easily be veri-
fied that in this case

0 < (90,0; — W(¥es0; — 1) < (40, + l‘)(”gjﬁi + ),
u>0, i=1,---,N. (2.10)

Hence, each integral in the sum on the right-hand side
of Eq. (2.9) is strictly positive and, since at least one
of the terms b,(vo,)b¥(vy,) is also strictly positive in
view of Eq. (2.7), the sum is strictly positive for
Re {y,} > 0. Similarly, it can be proved that for
Re {r,;} < 0 the sum is strictly negative. Thus the
integral (2.9) never vanishes if Re {»,;} # 0.
However, if »,, is purely imaginary, we have

(v0s0: — W) (v050; — p) = (v9,0; + H)(”(:;Ui + ) (2.11)

and each integral in the right-hand side of Eq. (2.9)
is zero. Thus, we conclude, the discrete eigenvalues
¥y, lie on only the real or imaginary axis.
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(b) Region II: This region is divided into N
subintervals »;,j=1,--+, N, such that for v e »,,
1/o;_y < |v| < 1/o;, where oy = 1. For the jth sub-
interval, there are (N — j + 1) linearly independent
eigenvectors ¢7*(v, ), whose ith component has the
form

[$7(», w)]; = P—>

0‘,4’—,14

b7 + (o — WIATW),

m=j--+,N, j=1,---, N, (2.12)

where P indicates the Cauchy principle value is to
be used when these functions are integrated. The
vectors b7(v) and A7(v) are also defined by
Yoshimura.?

From the eigenvalue equation (2.5), one finds that
the eigenvectors are orthogonal in the following sense:

Lﬂm&%m¢W40=0 it o % (2.13)

Moreover, it is possible to choose particular linear
combinations of eigenvectors for the independent
eigenvectors of each subinterval #;, such that all the
“continuum” eigenvectors are orthogonal in the
following sense:

f_ldw&;"(iv, T (' 1)
= ENT()8,b(r — ¥). (2.14)

Similarly, for the “discrete” eigenvalues we have

1 ~
f Ao B0 ) = EN B,
s=1, -+, M. (2.15)

The functions N, and N}*(v) are given by Yoshimura,?
and it can be shown that N7*(») is positive for » > 0.

Finally, there is one more relationship between the
eigenvectors which we will need later. From Yoshi-
mura’s work,? the functions b7*(») and A7'(v) are even
functions of », and it follows that

(=7, ) = (v, —p).

3. THE ALBEDO PROBLEM

(2.16)

In this section we will consider the albedo problem
for a half-space. This problem will be shown to be
important because the solutions of all other half-
space problems can be expressed in terms of the
albedo solution.

A. Emergent Distribution

Let us now consider the albedo problem for which
the incident neutron beam belongs solely to the ith
energy group. In this case the angular flux will be

S. PAHOR AND J. K. SHULTIS

denoted by (0, po; x, u). It is the solution of Eq.
(2.1) with the boundary conditions

¢i(0, Mo; 03 /‘t) = eia(;u - /40), 12 > 09 Ho > 0,
(1)

lim (0, 103 x, ) = 0, (3.2)
[ Aade]

where e is a vector, all of whose components are zero
except the ith, which is unity. Since our eigenfunctions
are complete,® the solution for this albedo problem
can be expanded in terms of the eigenfunctions which
satisfy the boundary conditions at infinity:

. M
4"(0, Mos X, /,t) = z “(703)4)(1103, ‘u)e—zlvo,

=1

+3

i=1

n; N
@] 3 A0, e ),
n5-1 m=j

i=1,---,N, (3.3)

where ;= 1/0;, j=1,--+-,N, and 5,=0. We
will assume that all the #,, are real. Clearly, eigen-
functions with imaginary eigenvalues cannot satisfy
our infinity boundary condition. Setting x = 0 and
using the full-range orthogonality relations plus
boundary condition (3.1), we obtain the expansion
coefficients as

0((1)03) = “.;Vo‘, ¢(7’Os s ,uo)ei

- —]\1,— L dppd(vo,, —m O, o3 0, —p)  (3.4)

and
AT = —L2 20, po)e;
N7()
L (" o, —u)(0, 1y 0
_N;.”(v)fo PP (v, —)P0, py; 0, —p).

(3.5)

Substituting these coefficients into Eq. (3.3) with
x =0, we obtain the following inhomogeneous
Fredholm equation for the emergent distribution:

qﬂ(o’ :u'ﬂ’ 0’ _.u)
1
= F(ue, —L d' K, (0, po3 0, —p'),

p>0. (3.6

Here we have defined the matrices

M -
F(p) = po SZIF &(vos, —p)(vos, o)

jdv{lfv: 1

s N™(v)

n

N
+ o),

=1 Jnj-y

7, —)PT, uo>]
(3.7)
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and
My -
K, 1) = 2~ 000, 1), —4)
N ruj p N " - ,
+2, ), |2, gy 70 08700}

(3.8)

It can be verified that K(x', #) and F(u) are contin-
uous functions of their arguments for u, u’ > 0.

One can also obtain a singular integral equation
for ¥, ue; 0, —u) by considering the incident
distribution as given by Egs. (3.3)-(3.5); explicitly,
we have

oy — pole;

= F(—w)e; —L dp' W K@, — )P0, o3 0, —p1").
(3.9)

Either Eqgs. (3.6) and/or (3.9) may be used to
determine the emergent distribution. Case has
obtained the same pair of equations, expressed in
terms of the infinite-medium Green’s function,’® by
using a different approach. When explicit expressions
for the Green’s functions are substituted into his
equations, Egs. (3.6) and (3.9) are obtained.

In the one-speed case, the singular integral equation
(3.9) and the Fredholm equation (3.6) may be solved
together in closed form.1° However, for the multigroup
situation, no closed-form solutions have been obtained,
and numerical procedures must be used to determine
the emergent distribution.

It will be shown that the emergent distribution is
uniquely determined by the system of Fredholm
integral equations (3.6) alone, and this system of
equations can be solved by standard numerical
techniques.

Once Eq. (3.6) has been solved for $#(0, u,; 0, — ),
u > 0, the expansion coefficients can be completely
determined from Egs. (3.4) and (3.5). Then Eq. (3.3)
gives the complete solution for the albedo problem.

B. Uniqueness of Solution of Fredholm Equation

To show that our Fredholm equation has a unique
solution, we consider the homogeneous equation

$'(0, po; 0, —p)

1
- - f AWK, WO, pios 0, —i), > 0.
(3.10)

W K. M. Case, in Transport Theory, SIAM-AMS Proceedings
(Am. Math. Soc., Providence, R.I., 1969).
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Defining
X(w) = (W0, 43 0, ), (3.11)
D', 1) = () K (ut', ), (3.12)

we have
X = - [ DX dw. @1y

Let us assume a nontrivial solution exists. Multiplying
Eq. (3.13) by X*(u), integrating over u, and sub-
stituting explicitly for D(u’, u) from Eqgs. (3.12) and
(3.8), one obtains

1
fo duX*(u)X(u)

M 1 .
) % f A T (vosr —)X*(@)]

1 ~
Xfo dp' (' (o, —)X (W)
N nj d N 1
2 v{m2=i NT()

[ w0, X))

fo du( 0, —w)X*(w)]
(3.14)

Since all the eigenvalues are real, ¢(v, u) is also real,
and hence both sides of Eq. (3.14) are composed of
terms which are products of complex conjugates. Thus
we have a contradiction: the right-hand side of
Eq. (3.14) must be real and negative, while the left-
hand side is real and strictly positive. Hence X(u)
must be identically zero, or equivalently, the homo-
geneous equation (3.10) has only the null vector as a
solution.

Because a system of integral equations may be
transformed into a single integral equation,! it
follows from the known properties of Fredholm
integral equations that the solution of Eq. (3.6) exists
and is unique since the homogeneous equation has
only the trivial zero solution.!?

An immediate consequence of this result is that the
eigenvectors (v, u), » > 0, u € (0, 1), are half-range
complete in the sense of Case.® In fact, with
$i(0, uy — 0, — ) being uniquely determined by Eq.
(3.6), we see that Eq. (3.9) is just the half-range
expansion of the vector d(u, — we,.

4. SOLUTIONS OF TYPICAL HALF-SPACE
PROBLEMS

By using the results of the previous section, it will
be shown how the emergent distributions for various

11 S. G. Mikhlin, Integral Equations (Pergamon Press, Inc., New
York, 1964).

12 W. Pogorzelski, Integral Equations and Their Applications
(Pergamon Press, Inc., New York, 1964).
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half-space problems may be expressed in terms of
the emergent distributions of the albedo problems,

q)i(o’ Mos 0, '_,u')’ = 1’ tte >N'
A. Generalized Milne Problem

For every positive eigenvalue v € (0, 1) or v = »,,,
s=1,+-, M, we define a Milne problem ¢, (x, )
by Eq. (2.1) and the following boundary conditions:

$,0,) =0, p>0, CRY)
lim l‘pv(x: ru) = 4)(—'”’ ﬂ)e+a:/v, (42)
where ¢(—», u) may be any of the eigenvectors—
regular or singular.
First let us determine the emergent distribution
$,(0, —pu). Consider a solution (x, ) of the trans-
port equation defined as

Y(x, ) = P, (x, 1) + Polx, p),

where ,(x, u) is also a solution of the transport

(4.3)

equation with the boundary conditions
$.0, 1) = d(—»,4), >0, (4.4
lim Yy(x, u) = 0. (4.5)

[ amdle ]

From (4.3), therefore, Y (x, #) must have the boundary
conditions

$(0, —p) = (—w,p), p>0,

lim Q(x, ) = P(—, w)e™.

[ Amde s

(4.6)
4.7

Clearly the unique solution for Y (x, u) is
Y(x, @) = P(—, we .
Equations (4.3) and (4.8) then yield, for x = 0,

¢("'v9 —,M) = q)v(0> —Au) + q)a(o’ '—‘Ll,),
—1<u<l.

(4.8)

4.9)

Using the results of the previous section, the reflected
distribution ,(0, —u), # > 0, can be expressed in
terms of the incident distribution p(—», u) as

N M
"‘l)a(oa _;u) = gl 0 d‘uI [¢(—’l’, #')]i‘l’i(O, :ula 0’ _:u')’
©>0. (4.10)

Thus the emergent distribution for the Milne problem
becomes, in view of Eqgs. (4.9) and (2.16),

q’v(o’ —p) = ¢(1’$ ©“)

N 1
- 21 . du'[$(—», ,“’)]i’*l"i((), u'; 0, —uw).
] 4.11)
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Finally, to obtain the complete solution for the
generalized Milne problem, we use the following
expansion:

M
"‘pv(x’ :u) = ¢(_7” [u)e:t/v + 21 m(7’03})4)("’03: H)e—w/vo.

N n; N
+3 |7 & 3 476050, e
i=1 Jnj—1 m=j
(4.12)

The expansion coefficients are obtained by applying
full-range orthogonality relations and Eq. (4.11).
Explicitly they are

O((’VOS) = = ]\]}-—s J; d/l[la;('l’()s, _:u)

N 1
% [4»@, REDA R ACEY)

x Y0, '3 0, -m] (4.13)
and

A7) = — —

N7 ()

N 1
x [w, W= 3 | (= 1)l

| o, =i

x PO, '3 0, —m]. (4.18)

B. Half-Space Green’s Function

In a manner similar to that used for the Milne
problem, the emergent distribution for the half-space
Green’s function can be expressed in terms of the
emergent albedo-problem distributions. The half-space
Green’s function, with the source neutrons belonging
to the ith group G*(x,, uo; x, u), is defined by the
equation

P .
(u a_)ZE + Z)G‘(xo,ﬂo; 0, 1)

1
= " G, o . 1) + o = 000x — 300

Xo >0, (4.15)
with the boundary conditions

G'(xo, 10;0, 1) =0, >0, (4.16)

lim G¥(x,, o3 X, p) = 0. 4.17)

a— o
To determine this function, we will assume that the
infinite-medium Green’s function Gi,(xq, g} X, 1),
which also satisfies Eq. (4.15), is known.2 This
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infinite-medium Green’s function can be expressed in
terms of the half-space Green’s function as

Gio(xO’ /"0’ X, lu) = Gi(x()’.uo; X, ;u) + q)a(x’ /‘)’
xo >0, (4.18)

where ) (x, ¢) is an albedo-problem solution satis-
fying Eq. (2.1) with boundary condition

"l’.a(oi :u) = Gio(xD’ /"0’ Oa ;u)a ,u > 0,
lim q"a(xs :u) =0.

Eamdoo)

(4.19)
(4.20)

Expressing the emergent distribution for this albedo
problem in terms of the known incident distribution
and the vectors Yi(0, po; 0, —pu), Eq. (4.18) yields

G'(xo, i3 0, —p0)
= G,éo(x(), Hos 0, —‘u)
N 1 ) .
B Z1 J:) A [Go(Xo o3 0, )] p7(0, '3 0, — ).
P
(4.21)

Since the angular flux for the half-space Green’s
function is now known at x = 0 for all u, the com-
plete solution can be found by using the full-range
completeness and orthogonality theorems. Explicitly,

G'(xq, o3 X, 1)
: M
= Gfb(xl)s Mos X, ‘u,) + 21“("’03)4’(1’05’ ‘u)e—-w/vo,

N ni N
+2 [ af 2 rore wle, @22

i=1 J1j—1 i
where

Lt ,.
d("’Os) == _]V— J; dlu'/“q)(vo:n ‘u’)Goo(xo » Mos 0: ,u)
s
1t ¥
+ __J’ d 8y
N, Jo (v, ©)
N 1 .
X Zl , du'[G(xo, fo; 0, )]
k=

x $H0, 4’5 0, —p), (4.23)

1 ! im i
A70) = = i | 50, 196, o 0.9
1 tooos
duud™ (v, —
+ N;,.(v)fo i (v, —u)

N 1 4
x 3 [ dw1GL 0, i 0,

x $H0, '3 0, —p). (4.29)
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5. SUMMARY

It has been shown that the solutions of all multi-
group half-space problems involving a symmetric
transfer matrix can be expressed in terms of the
emergent albedo-problem distribution and the infinite-
medium eigenfunctions. This emergent albedo distri-
bution is uniquely determined by the Fredhoim
equation (3.6), which can be solved by standard
numerical procedures.

In this paper, attention was restricted to those
cases which could be transformed such that the
transfer matrix was symmetric. This assumption was
necessary to prove that (i) the eigenvalues of the
transport equation are real or imaginary, and (ii) the
emergent albedo distribution is uniquely determined
by Eq. (3.6). In a future paper, this restriction will be
relaxed and the case of a general transfer matrix will
be discussed.
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APPENDIX A. THERMAL REACTOR MODEL

The linear Boltzmann equation for a homogeneous
nonmultiplying medium in plane geometry and with
isotropic scattering may be written as

(.u 24 5(B) s 1, )

= fjldy’Lst(E’ — E)y(x, u', E), (Al)

where y(x, u, E) is the angular flux, and 2(E) and
X(E'— E) are the total and differential scattering
cross sections, respectively.

Using the usual multigroup technique,® the energy
variable is split into N regions; integrating Eq.
(A1) over the ith region, we obtain the ith multigroup
equation

a N 1
(u Z az-)wi(x, W=3Cs f 'y 1), (A2)
X j=1 -1

13 J. H. Ferziger and P. F. Zweifel, Theory of Neutron Slowing
Down in Nuclear Reactors (MIT Press, Cambridge, 1967).
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where we define
v = [ dyie, ), (A3)

1

g, = dEX(E)y(x, u, E),  (A4)
P, p) JAE,

Cpy = — dE| dE'S(E'— E)y(x, u, E').
w0 1) Jam) dam,

(A5)

To make the multigroup constants o; and C;
independent of x and y, it is usual to assume that the
energy dependence of the angular flux is separable.
Further, for a system in thermal equilibrium, a good
first approximation is to assume this energy depend-
ence is Maxwellian with some effective temperature 7.
With these assumptions the multigroup parameters
are given by

Cy =, L s L E.dE’E,(E’ —~E)M(E', T), (A6)

o, =0, L _dEL(E)M(E, T), (A7)

1_ j dEM(E, T). (A8)
®; JAE

The cross section Z(E’ — E) must obey the detailed
balance relation™

S(E'—>EM(E',T)y=2Z(E—~EYM(E,T) (A9)
or

0,Cy; = o;C;5. (A10)
Finally, defining the symmetric matrix A as
[A}; = 5'Cy, (Al1)

the transfer matrix can be written in the special form
C = AD, (A12)

where D is a diagonal matrix with elements «; > 0.

APPENDIX B. THE TRANSFER MATRIX

In certain physical models, the transfer matrix
may be written as C = D,AD,, where D, and D, are
diagonal matrices with strictly positive diagonal
elements and A is a positive symmetric matrix. The
elements of the & matrix generally will not be
ordered, but will be arranged as

“kZO'LZ"'ZO'm>0, 1Sk,1,"',mSN-
(B1)

14 M. M. R. Williams, The Slowing Down and Thermalization of
Neutrons (North-Holland Publishing Co., Amsterdam, 1966).
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It is possible to transform Eq. (2.1) into a form which
has a purely symmetric transfer matrix and an
ordered matrix. First, we construct a permutation
matrix P, such that

[Plx=1, [Pl;=0, iz#k,
[P]2l = 1’ [P]Zi = 03 l # l:

(B2)

[P]Nm"_‘l, l;ém

By multiplying Eq. (2.1) from the left by P, one
obtains

[P]Nl = 09

a ! I3 ’ ! ’ 1 7
[ﬂ P E+ Z }l) (x, ) = DjA DzLdﬂ*l) (x, m),
(B3)
where
¢l(x’ .u) = Pq’(xa ;u)9

2 =PIP

A/ = ] AP—I (B4)

D, =PDP!, i=1,2

Since P-! = P, it can be shown by inspection that
Z' is a diagonal matrix with ordered elements

012032 " 2 0y. (B5)

Furthermore, D, and D, are diagonal matrices with
positive diagonal elements and A’ is symmetric.

Now we define the diagonal matrices D} and D;%
as

D], = (D), i=1,2 (B6)

Multiplying Eq. (B3) from the left by D; D}, we have
a ! " " ! 1

12+ = |V =& [ dnm, @)

where
$"(x, g) = DyIDIY (x, p),
A’ = DiD}A'DID! = A" (B8)

For the two-group model, there exists a transforma-
tion S which will symmetrize any strictly positive C
matrix and leave & diagonal, namely,

S=( 0 (cm)%).
Cwt 0

On the other hand, if one or both off-diagonal ele-
ments are zero, the resulting multigroup equations
can be solved consecutively by applying one-speed
theory.

(B9)



JOURNAL OF MATHEMATICAL PHYSICS VOLUME 10, NUMBER 12 DECEMBER 1969

Substitution Group and the Stretched Isoscalar Factors
for the Group R;

S. J. ALiSAuskas AND A. P. Jucys
Institute of Physics and Mathematics of the Academy of Sciences
of Lithuanian SSR, Vilnius

(Received 31 August 1968)

The phase relations for basis functions and Clebsch-Gordan coefficients of the representations of the
group R; under the elements of the substitution group are given. The stretched isoscalar factors as well
as the semistretched factors of the first kind are expressed in terms of the quantities of the theory of

representations of SU,.

1. INTRODUCTFION

In contemporary theoretical and mathematical
physics the theory of representations of semisimple
Lie groups assumes ever greater importance. The
simplest of these, SU,, is of the first rank and has
been investigated in detail. Much attention has also
been paid to the representations of the groups of the
second rank, SU, and R;. The Clebsch-Gordan
coefficients of the representations of these groups are
under intensive examination. For SU; they have
been examined in a more detailed way than those
of R;.

The representations of R; are considered in a
review paper by Behrends et al.! and in a paper of
Hecht.? In the latter, expressions are given for the
isoscalar factors (i.f.) of the Clebsch-Gordan coeffi-
cients when one of the representations is a funda-
mental, or the regular, one. In this paper we are going
to find expressions for more general i.f. However,
we are limiting ourselves to particular types of them.
These will be the stretched ones and one kind of
semistretched i.f.

For SU, and SUj, the substitutions of the param-
eters characte;izing the representations were very
useful.®4-® These substitutions constitute the group
isomorphous to the Weyl group of the same Lie group.
In this paper we are going to find such a substitution
group, the corresponding phase relations for the
basis functions and its connection with the contra-
gredience operation for R;. We give the phase
relations for those Clebsch-Gordan coefficients which
are to be used for the simplification of the calculations
to be carried out in order to obtain the formulas for
some of the i.f.

! R. E. Behrends, J. Dreitlein, C. Fronsdal, and W. Lee, Rev.
Mod. Phys. 34, 1 (1962).

2 K. T. Hecht, Nucl. Phys. 63, 177 (1965).

3 A. P. Jucys and A. A. Bandzaitis, The Theory of Angular
Momentum in Quantum Mechanics (‘“Mintis,”” Vilnius, 1965), in
Russian.

4 8. J. Alifauskas, Z. D. Rudzikas, and A. P. Jucys, Dokl. Akad.

Nauk—SSSR 172, 58 (1967).
5 S. J. AliSauskas and A. P. Jucys, J. Math. Phys. 8, 2250 (1967).

We use methods similar to those of Sharp and
von Baeyers® and of AliSauskas and Jucys? for
obtaining the recurrence formulas for the i.f. of the
stretched Clebsch-Gordan coefficients. By the term
“stretched’” we understand such a coupling in which
the highest weight of the resulting representation is
equal to the sum of highest weights of the representa-
tions being coupled. The i.f. obtained from the
stretched ones with the help of the elements of the
substitution group are considered as stretched i.f.

In obtaining the expression for semistretched
i.f. of the first kind (a concept to be introduced in
Sec. 7), we use the formulas for those of the stretched
ones. In all cases the i.f. are expressed in terms of
quantities of the theory of representations of SU,,
which are examined in detail in Ref. 3.

2. THE SUBSTITUTION GROUP OF THE
GROUP R,

The group R; is isomorphous to the symplectic
group Sp, and has 10 infinitesimal operators. The
notations and commutation relations are given in
Ref. 2. We denote the representations by the symbol
(KA) which corresponds to (J,A,,) of Ref. 2; K
and A may take on integer or half-integer values
independently of one another. They are related to
integers 4; and 4, by the expressions

K=10+ 1), A=1h, M

A, and Z; being the coefficients in the expression for
the dominant weight in terms of the fundamental
dominant weights [formula (III.1) of Ref. 1].

For labeling the basis functions we shall use the
reduction scheme

R; > SU, x SU,
rather than
R; > Ry > Ry = R,

because in the last case we lose one weight component.
We label the representations of the subgroups SU,

8 R. T. Sharp and H. von Baeyers, J. Math. Phys. 7, 1105 (1966).
7 S. J. AliSauskas and A. P. Jucys, Preprint, 1968,
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by I and J and their basis functions by M and N,
respectively. The basis functions of the representa-
tion of R; are
(KA) \
IMIN /°

They are invariant (up to a sign) under the substitu-
tions

@

KA — —K — 2, A, (3a)
S K, —A—1, (3b)
—A-}, K+, (3¢)

and their compositions. All eight substitutions
(including identity) constitute the substitution group
isomorphous to the Weyl group of R;. To these
substitutions corresponds the similarity transforma-
tion of basis functions, i.e., the passage to the equiva-
lent representations. These similarity transformations
reduce to the phase relations between the basis func-
tions of equivalent representations. These phase
relations may be found by the use of the explicit
expressions for the matrix elements of the infinitesimal
operators of the group.2 It is easy to see that the phase
factors depend on the parameters I, M, J, and N in
the following way:

<KA> \ ( 1)1—J+K—
IMIN/ IMIN
— 1rr-xa| (=K — 2, )\
(-1 IMIN / (4b)
| (A =2 K+ D\
== IMJN (40)
_ r+r-ia | (K —A — 1>\
(-1 IMIN (4d)
o arla- -9
= (~—1) IMJN > (4e)
=(— 1)I+J—-K+A (=K —-2,—A - 1>\
IMJN /
(4f)
s (A =3 —K — 3\
= (~1) IMIN / (4g)

It must be noted that these phase relations enable
us to compare two basis functions, one of which is
defined by parameters in the normal region, the
parameters of the second one being subjected to the
transformation according to the elements of the sub-
stitution group. The parameters K and A are in-
cluded in the phase factors in order to make them
real. The dependence of the phase factors on X and
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A is connected with the phase system of the repre-
sentations.

Realizing the mirror-reflection symmetry transfor-
mation® in SU,, we obtain the phase relations

' (KA)

IMJN
- -y iKlAiw JN> (s)
=GO ilez 1, N> )
= (e N>, (50)

where the dependence of the phases on K and A is
brought into accordance with the phase system of
Ref. 2. It is appropriate to mention that, upon
performing several substitutions in succession, the
resultant factors are not simply the products of the
individual phase factors.

Of particular importance is the relation

(—K—2,—A—1) \
—I—1,M,—J—1,N/
_( 1)I+J+M+’v

(KA)
IMJN> ©

Here the phase factor is equal to the phase factor of
the contragredience transformation. For this reason
we obtain the relation

EKM\'_| (=K~2,~A-1 \
IMIN/ | =I—1,-M, ~J =1, =N/’

in analogy with that for the representations of SU,
(Ref. 5). The substitutions

M,N— —-M, ~N

(M

(82)
mean the inversion of the weight space and

KALJ—>—K—2 —A—1,
—I—1,-J—1 (8b)

is to be interpreted as the reflection of the coordinate
system of the weight space or that of the coordinates of
commuting infinitesimal operators with respect to the
rest of the whole space. This constitutes the generalized
mirror reflection symmetry.®

3. THE STRETCHED ISOSCALAR FACTORS
OF SYMMETRIC REPRESENTATIONS
The symmetric representations are (K0) and (AA).
The first one we shall call the representation of sym-
metrized spinors and the second one that of sym-
metrized vectors. In both cases the parameters I and
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J of the basis functions are linearly dependent. In
the firstcase I + J = K, and inthesecond I/ =J < A.
The aim of this section is to find explicit expressions
for the i.f. giving the coupling of two representations
of the maximal highest weight.

We denote the general Clebsch-Gordan coefficient
of R; by

[(K1A1> (KyA) <KA>m]

LMJ,N, I,MJ,N, IMJN

- |:<K1A1> (KaAy) (KA>,,,:|[ I 11 :H:J1J2J2i|.
IJ, LJ, 1J JLMM,M]||N,N,N

®

The first factor of the right-hand side is the i.f.,
and the remaining two factors are the Clebsch—
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Gordan coefficients of the subgroups SU,. The index
 labels the representations in the case of multiplicity.
In this paper this index will not be needed.

We use the method of Ref. 6 to obtain the recur-
rence formulas; it is based on the fact that the result
of the coupling of three basis functions into a maximal
one does not depend on the coupling scheme. The
generalized Clebsch-Gordan coefficients must be
equal to each other, independently of the coupling
scheme. Both sides of the equality are to be multiplied
by two Clebsch-Gordan coefficients of SU, of such a
kind that subsequent summation with respect to
parameters M and N leaves only isoscalar factors
on the one side and the same number of i.f. and two
recoupling matrices of SU, on the other side.

For representations of symmetrized spinors one
obtains the recurrence formula

,: (K; — 3,00 (30 (K0 ][ (K,0) (K50) (K, + K, 0) ]
-3, K,—1, 30 L,Ki—LillL,Ki—1, I,,K—1, L+1,,K,+K,—1, — I,
=[ (K;0) (Kz — %,0) Ky + Ky — 4,0)
L,Ky—1, I,—% K, — 1, Il+12—%’K1+K2_11_]j
[ Ky + K; — 4,0) (30) (Ky + K;, 0)
L+L-3K+K -5 -1, 10 11+12,K1+Kz-11—[z]

X Iy, I, — 33 + I, I LI, — I, + I, — DL + ).

(10)

(Here one of two recoupling matrices of SU, equals unity.) The parameters of the types I and J satisfy
the relations I =1, + I, J =J, + J,. Taking the expression for the i.f. containing the representation
(3, 0) from the table of Ref. 2 and then using the recurrence formulas of the type (10), one obtains the
expression

[ (K40
11, K1 - I1

(K50)

(Ky + K3, 0) :\
12, K2 - I2

L+, K+ K — 1, — 1
_ [(2K1)! (2K (21, + 21,)! (2K, + 2K, — 2I; — 212)!T (1)
(2K, + 2K5)! (21)! (2K, — 21! (2I,)! (2K, — 2I,)!] °
which is normalized (equals unity when I, = K, and I, = K,).
For the i.f. coupling the representations of symmetrized vectors we obtain
[<A1A1> (Ahg) (A4 Ag, Ay + A2>:l
LI LI, I

- ])M,r,[ 2021, + DI, + DA, + D! (4A; + DA, + 2A, — 2D 2A, + 2A, + 21 + 2)!
Q21 + 1)(4A, + 47, + DA, — 2I)1 A, + 21, + 2)!1 (2A, — 20)! (2A, + 21, + 2)!]‘

(12)

Using the recurrence formula
[<A1A1> (Apgy Ay +Ag, A+ A2>] [(Az -HA—-D @D <A2A2>]
L1 L1, I L1, 00 LI,
— [(A1A1> (As — 1, Az -b <A1 + Az - %’ Al + Az - %)
LI, LI, I
X [(AI + A2 - %’ Al + A2 - %) <%%> <A1 + Aza A1 + A2> (13)
') 00 I
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(with recoupling matrices of SU, equal to unity) and the recurrence formula obtained by transposition of
Ay I, Ay, I, expression (12) is brought to the form in which I; = A, and I, = A;. Afterwards, we take
the formula, analogous to (13), in which one of the basis functions of the representations (}, }) has
iy = i, = }. These operations lead us to expression (12).

It is more difficult to prove the expression

[ (KO (ML) (K +A, A>] — (- DM,_I-JFAM (KO) (K +A, A>} (142)
K—Jy,J; Ll i LI, K~—1J,,J, 1J
_ BUK + A, AUIV(KL)) [ 221, + DK (4A + D 7} (14b)
V(K — Jy, L, DV DL QA = 21)1 QA + 21, + 2) J '

Here and in the following text we use the notation

- =) _ | _ \ ‘

QA QK + D) (Q2K — 2A)! (2K + 2A + 2)!
(15)

(16)

V(abc)=[(“‘*‘b"c)f(a-b+6)!(a+b+c+1)1]}
* (—a+b+ o) :

In order to prove expression (14b), we first obtain a formula similar to (13), and with its help we express
the i.f. (14b) through the one with A = I,. Afterwards, in analogy to (10), we obtain the recurrence formula

(KO) (AN) (K +A,A>} ) . "
[K —J,J AA 1y (@@ + DIRK + 2A + DK + 4A + 1))

=[(K=—=I+NEK-L,+A-DU+JTJ—~K+DI-K+J,+A+1
X(K+2A~I—~DCA+K—I+J+ DP

K—J,~3J, AA  I+4J

+[(K+T+J+DEK+T-NE~J,—A+DK—-J+A+1+1)
XA+ K+I—J+DCA+K+T+J+ 2P

x[ K =40  (Ad) <K+A—%,A>]

17
K~J,—3J, AA I1—13,J 47

diminishing the parameter K.

Formula (17) resembles the recurrence formula (23.16) of Ref. 3 for the 6 coefficient of SU,. Dis-
regarding the last two factors under the square roots in the terms on the right-hand side, we observe that (17)
is satisfied by the stretched 6j coefficient

{K"‘ Jl Jl K}

J I 1 (3

The remaining two factors give no complementary selection rules. This shows that the i.f. (14b) is pro-
portional to (18). To complete the demonstration of formula (14b), several other recurrence formulas must
be used until the maximal weights are obtained.

4. THE STRETCHED ISOSCALAR FACTORS OF THE GENERAL FORM

By the methods of Ref. 6 we are going to find the expression for general stretched i.f. of R;. We couple
basis functions of four symmetric representations by two different coupling schemes with the help of the
formulas of Sec. 3 and the Clebsch~Gordan coefficients of SU,. Then we compare the coefficients at the
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functions with the same coupling scheme relative to subgroups SU,. The result is

[<K1A1> (KoAg) (Ky + Kgy Ay + A2>:| [(Kl — A, 00 (AAY) <K1A1>} [<K2 — A5, 00 (AAy) <K2A2>}

I,Jy IJ, 1J i iyiy I,J, i2Js izly I,J,
=|:<K1“A1,0> <K2—A2’0> <K1+K2"‘A1_A2,0>j|
i1j1 izjz "1 + iz:j1 + jz
X3 [<A1A1> (Aahg) Ay + Ag, Ay + Az)]
Loy i rr
% [<K1 + Ky — A — A3, 00 (Ap+ Ay, A+ Ay (K + K, Ay +A2>]
i1+i23j1 +]2 IIII IJ

x (iyia(iy + 1)iig(I | iy (1iais(I)Dnja(y + Jiis(I | i) ais(Ta)T). (19)
Here i, + j, = K; — A, and i, + j, = K, — A,. Expressing the i.f. according to the formulas of Sec. 3
and using the definition (27.4) of Ref. 3, we obtain the stretched 15/ coefficient of the type {2, 2}. Bisecting
the diagrams of this coefficient by the methods of Ref. 3, we reduce it to a 9j coeflicient because many of the
triads are stretched. In this way we finally obtain the expression
[<K1A1> (KaAg) (Ki+ Ky, Ay + A2>:|
J, IJ, 1J
= (= 1)t B(K, + K3, Ay + AlJ]
BI(K AN B[(K2Ap)IJ)
% [(211 + D)(2J, + D@L, + DQ2Js + DK, + 2K, — 27, — 24, + I)T
(2K, — 2A)! (2K, — 2A,)!
Kl_'A'l Kz—Az K1+K2"-A.1_A2
x I, I, I : (20)
Js T J
The stretched 9j coefficient may be expressed with the help of formula (25.20) of Ref. 3 or by the corre-
sponding formula given by Sharp.® Such an expression contains two summation parameters. In more special

cases this 9j coefficient turns into a 6j coefficient (which contains one summation parameter only) or into a
double stretched 9 coefficient (which contains no summation parameters at all).

5. THE PHASE RELATIONS FOR THE ISOSCALAR FACTORS UNDER THE SUBSTITUTION GROUP

We confine ourselves to giving the phase relations for the i.f. under three elements of the substitution group
and for one substitution of parameters of the subgroups SU,. These relations are

[(KA) (K'A"y (K +a,A+ bq (21a)
1J ry I'ta,J+p —K—2,A) (K'AN) (=K —2—a,A+b)
=2 %o (=1 _'“'_b[< u I+ai+ B w} 1o
-3 63)w,(_1)a+p-a+n.[<xl —A-b @E4) & o —;‘J—:ﬁ— b>w] 210)
’ -1 i A -1 3
- I)J,_m_b[l’ <_KJA1 1 <11<’ﬁ> 1<f :j} A_+1 bi“’,g]- (22)

When multiple representations are labeled in a proper way, the 6% . are diagonal. This will be discussed in
our next paper. The dependence of the phase factors on the parameters characterizing the representations of
R; are coordinated with the phases of i.f. containing fundamental representations, as given in Ref. 2,

8 R. T. Sharp, Nucl. Phys. A95, 222 (1967).
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From the expression (20), together with the phase
relations (21), we obtain the i.f. having these resultant
representations:

<K1 + A2a Al + K2>, <Kl - Kz: A1 + A2>,
<K1 - Kz, A1 - A2>s <K1 - Az, Al + K2>,
Ky — Ag, Ay — Ko), (Ky + Ky, Ay ~ Ay),

Ky + Ay, Ay~ Kp). (23)

Whenever factorials of negative numbers appear,
these are to be transformed by the methods given in
Sec. 10 of Ref. 3. In some cases the 9j coefficient
undergoes no change when its parameters are reflected
in the ordinary way, according to formulas (24.19)-
(24.31) of Ref. 3. For several substitutions two of the
parameters exceed in absolute value the sum of two
other parameters of corresponding triads. These 9j
coefficients we call nonstandard. However, they have
definite values and may be calculated with the help
of corresponding algebraic expressions. It must be
emphasized that substitutions can be applied only in

S. J. ALISAUSKAS AND A. P. JUCYS

those columns of i.f. in which the parameters I, J, X,
and A are linearly independent.

6. ISOSCALAR FACTORS COUPLING TWO
REPRESENTATIONS OF SYMMETRIZED
SPINORS

By graphical methods! it may be shown that
(K,0) x (K0)
= > Kt Hm =), Ky — 3(m +n)) (24)

m>0,n2>
m+n<2Kg

when K, > K,.

Particular cases of (24) will be the representations
(Ky + K,, 0), (Ky — K,,0), and (K,K,). The i.f. for
the first case is given by formula (11), the second may
be obtained easily from formula (A22) of Ref. 2 by
permutation of parameters, and the third is obtained
by applying relation (21d) to a particular case of (20)
after performing a simple transformation according
to the methods of Ref. 3.

For a more general case we obtain

[ <K10> <K20> (Kl + Kz - A, A>:|
LK.~ I, I,,K,—1I, 1J
— 1),1”2_,[(21(l + D! (2K, + D! (2K, + 2K, — 4A + 1)!]*
(21! (2K, — 2I)! QI 2K, — 21,)!
I I, I
X B[K, + Ky — A, VKK, — I, K,— I, J (25)
K, K, K,+K,—2A

In order to derive this formula, the representation (K;0) is constructed from two representations. The
resultant representation will be produced by coupling three representations. This may be done by the
stretched Clebsch-Gordan coefficients. Then we take the scalar product of basis functions of initial and
resultant representations which is proportional to the Clebsch-Gordan coefficient of R;. After multiplica-
tion by Clebsch-Gordan coefficients of SU, and summation with respect to parameters M and N, we obtain
a relation, which, after substitution of the expression for the stretched i.f., resembles one of the expressions
for the Clebsch~Gordan coefficient of SU,. This last fact allows us to obtain Eq. (25).
The most general case under consideration is
K—A
K; - Kj
K+A+1

l: (K,0) (K,0) (KA>] = (- 1)11+12+J—K—AI: I J
IL,Ki—=1, Ii,Ke~1, IJ IL—I, Ki—Ky—1+1,
[ K, + Ko =1 —J) K, + Ko+ T+ D)+ 1
I-J

. (26)
%‘(K1+K2+I—‘J)_I1—Iz I1+Iz+%(I_J—K1"K2) :I

7. SEMISTRETCHED ISOSCALAR FACTORS
OF THE FIRST KIND

When the parameters of the representations satisfy
the condition

K+ A +K+A=K+A, )

we call the corresponding multiplicity-free i.f. semi-
stretched of the first kind. I.f. of the second kind will

The derivation of Eq. (26) is similar to that for the
preceding formula. The resultant representation may
be expressed as (K; + K, —m — A, A) and con-
structed with the help of representations (K;0),
(Ky — ¥m,0), and (}m,0) (where m = integer).
Coupling the three representations to the resultant
one, we obtain (26) in a way similiar to that described
above.
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be those with

K1+K2=K.
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(28)

This term includes all i.f. obtained with the help of the substitution group.

For the i.f. under consideration we obtain

[<K1A1> (KoAg) (K; + Ky — 3m, Ay + A + %m>:|

LJ, ILJ, 1

= (_1)11+Iz—

7 B(K; + K, — im, A, + A, + dm)lJ]

B[(K\ A1, J,1B(K2Ap)] )]

% [(211 + D(2J, + D@L + DRJ, + DRK, + 2Ky — 24, — 24, —2m + 1)!]1}

Kl - Al K2 - A2
x{ I I
Jy Jo

Here m is an integer.

To derive Eq. (29) we use techniques similar to those
used in obtaining (19). In the formula obtained in this
way, which resembles Eq. (19), we substitute the
expressions for the i.f. already obtained. The trans-
formation matrices involved are expressed in terms
of 3nj coefficients. The resulting sum must be dealt
with by the methods of Ref. 3 in order to obtain
Eq. (29).

It is easy to see that the preceding expressions for

(2K, — 2A,)! (2K, — 2A,)!
Ki+K,—A —Ay—m

I . (29)
J

the i.f. are particular cases of Eq. (29). The only
exception is formula (26).

The elements of the substitution group bring us to
another i.f. of the same kind (with different values
of m) or to that obtained by transposition of the
first and third columns of (17.22) of Ref. 2 with
subsequent renumbering of parameters. Some of the
elements of the substitution group transfer the 9j
coefficient to the nonstandard form, as indicated in
Sec. 5.
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It is shown here that the Liouville operator, which governs the development in time of a classical
one-particle system, has an absolutely continuous spectrum for a large class of attractive central force
potentials, It follows that every absolutely continuous initial distribution of a monatomic ideal gas
enclosed in a spherical container must approach a steady-state distribution in time.

INTRODUCTION

It was first observed by Koopman! that the motion
of a classical mechanical system of point particles,
regarded as a motion of its phase space, preserves the
volume element of the phase space, and so induces
a motion on the space of square-integrable functions
which preserves the norm. Koopman showed that
statistical properties of the motion of the phase space

1 B. O. Koopman, Proc. Natl. Acad. Sci. U.S. 17, 315 (1931).

were reflected in the spectral properties of the induced
motion of the function space. Subsequent develop-
ments have established the fundamental importance
of this observation. In particular, the study of the
ergodic and steady-state properties of the system has
found a natural expression within this framework
and has yielded a considerable body of results.

If the spectrum of the motion in the function space
is absolutely continuous (apart from the zero eigen-
value), then the statistical approach to steady state of
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the system takes a particularly simple form.? It is
therefore of interest to determine for which system
the spectrum of the motion is absolutely continuous.
We have already verified that this is the case for a one-
dimensional particle subject to a nonlinear restoring
force.? In this note we show that this is also the case
for a three-dimensional particle subject to a non-
linear central restoring force, by relating the spectrum
to the fundamental periods of the motion.

It follows that every absolute continuous initial
distribution on the phase space of this system ap-
proaches a steady-state distribution in the far reaches
of time, and that the entropy of the initial distribution
ultimately increases to the entropy of the steady-state
distribution. An extension of the same arguments to
the analogous n-body problem shows that the same
conclusion holds for a monatomic ideal gas enclosed
in a spherical container.

1. THE CENTRAL FORCE SYSTEM?

For our canonical coordinates of the one-particle
central force system, we shall take the spherical co-
ordinates (7, 0, ¢) of the particle position and the
conjugate momenta (p,, py, p,), With

—mr
Pr dt’
Pe = mrz-ff, (1.1)

. do
= mr®sin® 6 -,
Pe dt

where m is the particle mass. In these coordinates the
total energy of the particle is

H=T+YV, 1.2)
where the kinetic energy 7 is given by
T = 2m) (9} + polr® + pg/r®sin®6), (1.3)

and the potential energy V is a function of r alone.

We shall assume throughout that V(r) is a differ-
entiable monotonic increasing function of 7, defined
for all r % 0, so that

V() >0, 0<r< oo. (1.4)

In this case, the particle is subject to the central
restoring force — V’(r) directed toward the origin.
It is known that if the total energy E of the particle
does not exceed the limiting value

V() = lim V(r)

1 R. T. Prosser, “An Example of Irreversibility,” submitted to
Am. Math. Monthly.

3 The development in this section is orthodox and may be found
in any standard text on mechanics; see, e.g., Ref. 4.

R. T. PROSSER

of the potential, then the motion of the particle is
bounded and multiply periodic, and thus may be
compactly described in terms of the associated action
and angle variables. We now proceed to exploit this
knowledge directly.

We first introduce Hamilton’s principle function
S(r, 8, @, t) for the problem. This function generates
a canonical transformation of the coordinates such
that the transformed coordinates are constants of the
motion.* It is obtained from the Hamilton-Jacobi
equation

0S\: 1 /9S\ 1 2S\?
(ar) + r2(80) + r?sin® 0(8(p)

+ 2m(V(r) + %—j) =0. (1.5)

If we assume for S the form
S(r, 0, ¢, 1) = S,(r) + Sp(6) + S,(9) + Si(t), (1.6)

then (1.5) separates into ordinary differential equa-
tions

ds,
— = —FE, 1.7
ot 1.7
ds,
—=aq,, 1.8
= (18)
d59 2 az 2
—\+ = a,, 1.9
(de) sintg (19)
2 2
(15‘_,) + 2 4 omv() — E1=0,  (L10)
dr r
which can be solved for the derivatives of S, giving
das,
H= ——=+E, 1.11
o (1.11)
as
Pp=—"=a,, (1.12)
de
ds, 0 a® \}
=0 = (al - 2], 1.13
Po="26 (ao sin® 0) (1.13)

_ds,
="

23
- (2m[E — V()] — %) . (L14)

Of the three integration constants, E denotes the
energy, a, the angular momentum about the polar
axis (6 = 0), and g, the magnitude of the resultant
angular momentum.*

An analysis of the motion now shows that, under
our assumption (1.4) on ¥, the variables (r, 6, @) are
all periodic variables whenever V(0) < E < V().

4 H. Goldstein, Classical Mechanics (Addison-Wesley Publ. Co.,
Inc., Reading, Mass., 1950).
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It follows that they may be compactly described in
terms of the action variables (j,,J,,j,) and their
conjugate angle variables (w,, w,, w,), defined as
follows?:

o= pidai=§dsi, i=rb.p (119
0S

i = r’ 0, (P. (1.16)

w, = —%,
Lo
Here the integrals defining the j; are each extended
over one period of the running variable, and hence
are constants of the motion. The motions of the w;
are determined from

dw; _OH _ (1.17)
dt  9j;

where the »; are also constants of the motion; hence
w, = vt + 0. (1.18)

Thus the »; are the frequencies of the angle variables
and the g, are the initial values.

Substituting from (1.12)-(1.14) in (1.15), we find
that

Jo= jﬁ a,de, (1.19)

jo = ff (a2 — a¥fsin® )2 do), (1.20)

j, = #; @2mlE ~ V()] — aZirYdr.  (1.21)

The first and second of these integrals may be per-
formed explicitly (see Ref. 4), yielding

(1.22)
Jjo = 2m(ag — a,). (1.23)

The third depends on the form of V(r). If we solve
(1.22) and (1.23) for a, and @, and substitute in
(1.21), we find

Jo = 2ma,,

Je= 55 2m[E — V(1)) — (jo + J,)Y4nr "} dr.
(1.24)

Finally, we introduce the new variables (j,, jz, ja)
and their conjugates (w,, wy, ws) via

j1=jr +.’0 +j¢’

Je=Jo+Jo> (1.25)
j3 =J ’
and ¢
Wy = W,
Wy = Wy — W,, (1.26)

W3=W¢'_We.
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Then (1.24) becomes
ji= § @mlE = V)] ~ jHantE dr +j,. (1.27)

From this equation we see that the total energy E,
and hence the Hamiltonian, depends only on j; and j,
and is independent of j; and the w;. It follows that
the j; and w, are constants of the motion, while w,
and w, depend on time through (1.18) with the
frequencies »; given by (1.17).

Thus we have obtained a set of canonical variables
whose dependence on time is particularly simple. It
can be shown that each has a simple interpretation in
terms of the motion of the original particle. Specifi-
cally, 2nj, is the magnitude of the total angular
momentum, and 27, is its component along the polar
axis. Apart from additive constants, 27w, is the angle
of the perihelion (r,;,) from the line of nodes, and
27w, is the angle from the line of nodes to the axis
@ = 0. Finally, 2nj, is proportional to the area
enclosed by the orbit in the (r, p,) plane, and, apart
from an additive constant, 27w, is the angular mean
anomaly of this orbit.*5

From these identifications, it is easy to see that the
variables j; and w; are independent and assume the
following ranges of values:

0 .é_]l < o0,

0<Jj, < o, (1.28)
—<Jjs S +Jas
—0 < w; < +oo. (1.29)

Since the original position and momentum variables
are periodic functions of the angle variables, however,
it suffices to restrict the ranges of the w; to

0<w <1 (1.30)

It is now quite straightforward to verify that every
point in the phase space admits a unique description
in terms of the action and angle variables lying
within the ranges (1.28) and (1.30). Moreover, the
motion of this point in time is completely described
by the equations of motion

Ji= (1.31)
w; = vt + B, (1.32)

Here, the «; and f§; are the initial values of the j; and
w;. According to (1.27), the Hamiltonian H may be
expressed in terms of j; and j, alone. It follows from
(1.17) that the same is true of the frequencies »,, with
vy = 0.

mod 1.

5 M. Born, The Mechanics of the Atom (Frederick Ungar Publ.
Co., New York, 1960).
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Finally, since the action and angle variables are
canonically conjugate, the differential form dr =
djy dj, djs dw, dw, dw, is invariant under the motion,
and hence is related to the volume element dV by the
formula

dV = pdr, (1.33)

where the weight function p is a constant of the
motion.

The form of p may be determined as follows. From
(1.15) we see that j, is simply the area enclosed by the
orbit in the (r, p,) plane, and w, is the fraction of this
area mapped out in time z. It follows that the change
in area induced by a change in j, and w, is simply
dA = dj, dw,, from which we conclude that

(1.34)

A quite similar argument shows that the same relations
hold for the (6, py) plane. In the (¢, p,) plane, the
orbit is periodic rather than closed, but the same
argument applies. Combining these results, we find
that

dp, dp, dp, dr d9 dp = dj, dj, dj, dw, dw dw,,. (1.35)

Since the Jacobian of the transformation (1.25)-
(1.26) is identically unity, we see finally that the weight
function p is identically unity, and

dr = dvV.

dp,dr = dj. dw,.

(1.36)

2. THE SPECTRUM OF THE MOTION

We now turn to our analysis of the spectrum of the
motion.

If P is any point in the phase space, then the motion
of the system in time may be completely described as
a motion of P through the phase space. If P is given
in terms of the action-angle coordinates, then its
dependence on time may be expressed in terms of the
transformation T,: P — P,, where

T,P = P, = P(j, vt + B). @2.1)

Now let ¥ denote the space of all complex-valued
functions defined on the phase space and square-
integrable with respect to the volume element dV =
dr. Then J becomes a Hilbert space under the inner

product

f. ) = f f 16, weG, wdwd.  (2.2)

The motion T, of the phase space induces a motion
U, of the function space according to the formula
U )P) = fi(P)=f(P_) =f(, —vt + B). (2.3)

Since T, preserves the volume element of the phase
space, U, preserves the inner product of J. It follows

R. T. PROSSER

that U, is a unitary operator on J which may be
expressed in the form

U, = exp (—iXt), 2.9
where X is the self-adjoint generator with the property

ixp=4

dt (2.5)

To determine X, recall that the motion of f; in time
is given by

df

-~ ={H,f}, 2.6
=) @9
where {, } is the Poisson bracket. In terms of the
action-angle variables, (2.6) becomes

af 2 (aH of oH af)' @n

dt iS\dj; ow; ow,dj,

Since H depends only on j; and j,, this expression
reduces to

df _OH of | oH of
dt  0j, 0w,  0jy Ow,
of of
=y, — —_, 2.8
i ow, * ow, 238)

for all differentiable functions fin J.
Now let ¥,, ,, be the subspace of J consisting of
all functions of the particular form

S G, W) = [, ws) exp [2mi(mw, + nwy)],  (2.10)

for fixed integers m and n and arbitrary functions
f @, ws). From (2.9) and (2.10) we find

Xf = 2m(myy + nvy)f. @.11)

On the subspace &, ,,, then, X acts like multiplication
by the function 27 (m», + nv,). Since », and v, depend
only on j, and j,, it follows that X leaves this subspace
invariant, and on this subspace the spectrum of X
consists of all real numbers of the form 27 (my, + nv,).

A standard Fourier analysis now shows that these
subspaces are pairwise orthogonal in J¢, and together
they span J. We conclude that the spectrum of X
consists of all real numbers of the form 2m(my; + nv,),
for arbitrary integers m and n and all admissible
frequencies »; and »,.

Now let f and g be any two functions in J, and
consider the inner product (U(t)f, g). The asymptotic
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behavior of this inner product as ¢ — £ oo is deter-
mined by the spectrum of X. In fact, we have

v, g) = Z(U(t)fmn’ Emn)s

mn

(2.12)

where f,,, and g, are the components of f and g in
X,.... But

(U Sfmns &mn)

= f f exp [~ 2mi(mvy + 1)) fonalis Wg (s W) dW di.
(2.13)

Hence the time dependence of (U(t)f, g) devolves
upon the behavior of the exponent 2mi(mv, + nv,)t.

If myv, + nv, = 0, then X vanishes identically on
¥, and (2.13) is independent of ¢. In this case we
have

lim (U(t)fm", gmn) = (fmn s gmn)'

t—*+o0

If mv, + nv, # 0, then X does not vanish identi-
cally on X, ,. In this case we introduce a change of
variables in the (j;, j.) plane:

GG =0"0)
J J Je
With this change of variables, (2.13) becomes

= [[ a3, W i i i s,
(2.16)

(2.14)

(2.15)

where J is the Jacobian
a(&s ]2) = 26_
a(fujz) a.]l

In this form we see that U(t) acts on X, , like
multiplication by e~2"%*, with a spectral measure of
the form J='(j) dw d¢ dj, dj;. If the Jacobian J(j,, j,)
is continuous and vanishes only on a set of Lebesgue
measure zero in the (j,,j,) plane, then the spectral
measure of U(t) is absolutely continuous with respect
to Lebesgue measure. It now follows from the
familiar Riemann-Lebesgue lemma that the right-
hand side of (2.16) vanishes asymptotically for large
times. Thus we have

im (U(") fuun > 8mn) = O-

t—=+to0

J(jr:J2) = 2.17)

(2.18)

If the Jacobian J(j,, j,) vanishes identically in the
(j1,/j2) plane, then we redefine the change of variables
(2.15) so that the roles of j, and j, are interchanged:

()= () = G )

(2.19)
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With this change of variables, (2.16) and (2.17) are
replaced by similar formulas with j; and j, inter-
changed. In particular,
.oy _ 001, 8) _ 0
Ui =2 "—"-=5""
. 0(j1>j2) O

If this Jacobian is continuous and vanishes only
on a set of Lebesgue measure zero in the (jy,j»)
plane, then the preceding analysis leads again to
(2.18).

If both Jacobians 0£/0j; and 0&/dj, vanish identi-
cally in the (j;,/») plane, then &= my, 4+ ny, is
actually independent of j; and j,. Since »; = 0E/0j;,
it follows in this case that

(2.20)

o’E 0°E
m—+n =0,
oj3 0j10js
°E 0°E
—— +n— =0. (2.21)
0j20j, 3

In this case, then, E as a function of j; and j, must
satisfy (2.21). If m,n % 0, this means that E =
ajy + bj, + ¢ for suitable constants a, b, and c. If
m =0, then E = ¢,(j;) + bj, + ¢, while if n =0,
E = gj, + ¢,(j,) + ¢, for suitable functions ¢, and
@s. f m=n=0, then £ =0, and X vanishes on
Kopn-
We conclude from this analysis that if m 7 0 and
0&/0j, = 0£/0j, = 0, then E depends linearly on
J1, and #; is independent of j;. In particular, this
remains true if we put j, = 0. But if j, = 0, then the
angular momentum vanishes, and the motion reduces
to that of a simple oscillator of constant frequency.
It has been shown by Levin and Shatz® that such an
oscillator must be harmonic, i.e., that we must have
V(r) = kr®. In this case it is well known that E =
aj,, and v, = const, ¥, = 0.

If m = 0 but n # 0, and 0£/9j, = 0£/9j, = 0, then
E depends linearly on j,, and », is independent of j,.
In particular, this remains true if we put j, = 0. But
if j, = 0, then the angular momentum again vanishes,
and the motion again reduces to that of a simple
oscillator. In this case there can be no precession,
and we conclude that », = 0. Since m = 0, it follows
that £ = 0, and X vanishes identically on ¥, ,,.

Summarizing briefly, we have shown that if either
0£/0j, or 0&/9j, vanishes only on a set of Lebesgue
measure zero in the (j;,j,) plane, then (U(?)f,,,
gmw) —0 as t— foo. If both 9£/dj, and 0&/9f,
vanish identically.in the (j;, j;) plane, then, with one
exception, £ =0, and (U(t)frn> Emn) = Fonns Emn)
as t - =+ oo0. The single exception is the case of simple

¢ J.J. Levin and S. S. Shatz, J. Math. Anal. Appl. 7, 284 (1963).
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harmonic oscillator, where V(r) = kr2, and » =
(2n[mk)t, v, =0. In this case (U(t)fpn»Zren) =
(fnns 8mn) @8 t— F o0 if m =0, but behaves like
exp aimwv,t) if m # 0.

We have not yet exhausted all possibilities. It may
happen that both 0¢/0j, and 0&/dj, vanish on a set
whose Lebesgue measure differs from zero, but do
not vanish identically. In this case we must divide
the (j;, j») plane up into measurable subsets, such that
on each subset the Jacobians 9£/0j, either vanish only
on a subset of measure zero or else vanish identically.
The preceding analysis can then be applied separately
to each subset. In the general case we cannot put
Ja=0 in each subset, and the analysis becomes
quite complicated.

We notice, however, that if we assume that the
potential V(r) is an analytic function of r, then it
follows that E(j,j.) is an analytic function of both
1 and j,. In fact, the relation (1.27) defining j; in
terms of E and j, can then be rewritten as a contour
integral in the complex r plane:

= § {amlE = VO = et ar, @22
T

where the closed contour I' surrounds the interval
on the positive r axis on which the integrand is real
(see Ref. 4, p. 302). If the potential is analytic, then
the integrand is analytic on this contour, and the
integral defines j; as an analytic function of E and j,.
It follows that E may be expressed as a (locally)
analytic function of j, and j,. (It is obvious from the
physical interpretation of these variables that £ can
have no singularities in the quadrant j;, j, > 0.)

If E is a (locally) analytic function of j, and j,, then
so is &, and hence so are 0£/0j, and 0&/9j,. It follows
that 0£/0j, either vanishes on a set of measure zero,
or else vanishes identically, and similarly for 0§/0dj,.
Hence, if the potential ¥(r) is an analytic function of
r, then our analysis is complete, and, except for the
harmonic oscillator, either (2.14) or (2.18) holds.
Combining (2.12), (2.14), and (2.18), we can now
draw the following conclusion:

Theorem: If V(r) is an analytic function of r with
V'(r)>0and V"(r)# 0,0 < r < o, then

lim (UD) f, g) = (Pf, g),

t—koo

(2.23)

where P is the projection on the subspace of ¥ con-
sisting of constants of the motion.

Finally, we note that if », # 0, then th