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The partition function for SU(n) is given in terms of that for SU(n - 1) through a recursion formula 
which is derived using the method of generating series. The usefulness of the expression is demonstrated 
in the cases of specific values of the ranle 

I. INTRODUCTION 

It is well known that the multiplicity of a weight 
in an irreducible representation (IR) of a complex 
semisimple Lie algebra is calculable using Kostant's 
formula. 1 This involves the explicit knowledge of a 
certain partition function, the connection of which 
with Diophantine equations has been established.2 

In Sec. II, the corresponding set of equations is 
written down for the algebra Al [,-....., SU(I + 1)] and 
the solution by the method of generating series is 
indicated. In Sec. III, an expression is derived for 
the partition functions for Al in terms of that for 
AI_I' The usefulness of this recursion formula is 
demonstrated in the Appendix in the cases of specific 
values of the rank. 

ll. METHOD OF GENERATING SERIES 

Let G be a complex semisimple Lie algebra and 
let the set of positive roots, with respect to a given 
Cartan subalgebra and fixed lexicographic ordering, 
be ~ == {lXI' ..• ,IXm}. The subset of simple roots 
is {lXI' ••• , IX,}, with Ism. The multiplicity of a 
weight v in a finite-dimensional IR D(A) of G with 
highest weight A is given by Kostant's formula1 

m;.(v) = L 1TSP[S(fJ + A) - (fJ + v)]. (1) 
SEW 

Here, Wis the Weyl group and 1TS = ± 1 according 
to whether S is an even or odd reflection, respectively. 
Also, P is half the sum of the positive roots. The 
partition function P(p,) is the number of ways3 of 
writing the weight p as a linear combination over ~ 
with nonnegative integral coefficients. Also, P(O) = 1, 
and pep) = 0 unless p = !~=1 kiIXi' where the k i are 
nonnegative integers. In short, the function is given 

1 B. Kostant, Trans. Am. Math. soc. 93, 53 (1959). 
I D. Radhakrishnan and T. S. Santhanam, J. Math. Phys. 8, 2206 

(1967). 
a N. Jacobson, Lie Algebras (lnterscience Publishers, Inc., New 

York, 1962), p. 260. 

by the number of ways of writing 
I m 

L ki C1.i = 1 a,C1.i, (2) 
;=1 i=1 

where the ai are nonnegative integers. 
It is known that 

I 

C1.;=LCjiC1.;, j=I+I,···,m, (3) 
i=l 

the C;i being nonnegative integers. From (2) and (3), 
we see that Pcp) == P(kl , ••• ,k,) is given by the 
number of solutions in nonnegative integers of the 
Diophantine equations 

m 

ki = at + l a;Cu , j = 1, ... , I. (4) 
i=I+1 

In the case of the algebra AI' the positive roots are 
of the form 

e, - ek , i < k = 1, ... , I + 1, 

and are t/(1 + 1) in number. The simple roots are 

where the ei are unit vectors in a (I + I)-dimensional 
real linear space. The roots (and weights) are con­
sidered to lie in a hyperplane L:!~ Xi = 0 of this 
space. 

Expression (2) in the case of Al can be written as 

I I I-r+l r 

! ki C1. i =! L arB! C1.s+t - l , (5) 
;=1 r=l 8=1 t=l 

where a double-index notation for the a's has been 
chosen for convenience. Then, Eq. (4) for AI becomes 

i I-i+r 

ki =! ! aJ;i--r-tl, i = 1, ... , 1. (6) 
r=l ;=r 

In the case of A3 [,-....., SU(4)], for example, we have 

kl = all + a 21 + a3l' 

k2 = a 12 + a 21 + a 22 + a 3l , 

k3 = a13 + a22 + a 3l • 

(6') 
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The number of solutions of (6) is given by the·method 
of generating series4 as follows: Let Xl,' •• , X I be 
I real variables and define a generating function Fl 
for AI as 

FI(XI, ... , Xl) = il elr (1 - ITo XHkrlJ. (7) 

Then the partition function P(kl' ... , k l) is given by 
the coefficient of IT:=1 x~; in the power-series 
expansion in Xl> ••• ,Xl of Fl' (The convergence of 
the series is assured by a suitable choice of values for 
the x-variables.) 

The expression (7) in the case of A2 is of the form 

F2(XI, x2) = {(I - XI)(1 - x2)(1 - XIX2) }-l. 

III. RECURSION FORMULA 

Obviously, 

FI(XI' ... ,Xl) = D lFl- l (Xl , ... ,Xl-I), (8) 

where F l_ l is the generating function corresponding 
to the algebra A l - l and 

(9) 

We split DI into partial fractions as follows: 

VI = (1 - Xl)-l fi (1 -JJkXiTl 

+ it Ti( 1 -i=itlxirl, (10) 

where 

i-I [( , )-lJ Ti = (_1)1-1 IT X:-i 1 - IT Xl-k 
i=1 k=I-1 

(By convention, those x-variables with undefined 
indices are ignored. Thus the product involving s 
does not occur in Tl') 

Now, the coefficient of xf' in VI is 

1-1 ( 1-1 )-1 
II = II 1 - II Xi 

k=1 'i=l-k 

I i-I [ ( i )-IJ +I(-I)i-1 IT X~.:.~i 1- II X l - k 
i=2 i=1 k=J-l 

1-; ( l-i )-1 
X II 1 - II Xr • 

8=1 r=l-i-8+1 
(11) 

Noting that the first term on the right of (11) is 
D l- 1 , we substitute for it from (10) and, after simp1i-

'P. A. MacMahon, Combinatory Analysis (Chelsea Publ. Co., 
New York, 1960), Vol. II. 

fication, obtain the recurrence relation 
kl 

II = I XLII1_l , 
t=O 

where we have used 
1 _ Xk+l k 
--- = I x t

, X;O!: 1. 
1 - X t=o 

It follows from (12), with t = iI-I' that 

kl '1-1 'a 

(12) 

II = I xb.1 I X~~2a ••• I X~I. (13) 
il_l=O '1_2=0 '1=0 

The coefficient of X~I in Fl is then given by IIFI- l • 

Let the coefficient of n~:~ x~; in F l - l be P(kl' ... , 
k l - 1) , the partition function corresponding to AI-I' 
It follows that the coefficient of n~=l X~i in FI is 

P(k1,"',kl ) 

kl '1-1 1. 

= I I· .. I P(k l - ii, k2 - i2 , ••• , k l _ l - ii_I), 

'1_1=0 '1-2=0 il=O 

(14) 

which is the required partition function. 
Thus, knowing the function for a given I, that for 

1 + 1 can be calculated recursively. Knowing P, one 
can calculate the multiplicity of a weight for Al using 
Kostant's formula (1). We demonstrate the usefulness 
of (14) in the Appendix. 
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APPENDIX 

The usefulness of the recursion formula (14) can 
be demonstrated vividly in the cases of A2 and Aa. 
For the former, (14) takes the form 

k. 

P(kl' k 2) = I P(kl - i), (A1) 
,=0 

where P(k) on the right is the partition function 
corresponding to Al given by the coefficient of Xk 
in the expansion in power series of F(x) = (1 - X)-l, 

and is always unity. 
It is not difficult to see that 

P(kl' k 2) = 1 + min (kl' k 2), (A2) 

which is a well-known result.5 

In the case of As, Eq. (14) becomes 
k. i 

P(kl' k2' ka) = I I P(kl - i, k2 - j), (A3) 
i=Oi=O 

6 B. Gruber, J. Math. Phys. 7,1797 (1966). 



                                                                                                                                    

ON THE CHAIN SU(n) ;:, SU(n - 1) ;:, ... ;:, SU(2) 2131 

where P(k, k') on the right is given by (A2). Since When k2 > ka > kl' we have that 
k2 -J' ~ kl - i when kl ~ k 2• we find that, for P(k k k) 

1, 2, a 
kl ~ k2 ~ ka, 

ka 

P(kl' k2' ka) = 2(j + 1)(1 + k2 - j) 
;=0 

= ¥1 + ka)(2 + ka)(3 + ka) 

+ tckz - ks)(l + ka)(2 + ka)· (A4) 

Since P vanishes for negative arguments, the sum 
over j in (A3) is only up to kz when ka > k2 • Thus, 
for kl ~ ka > k2 and ka > kl ~ kz, 

When kz > kl ~ ka, we have that 

P(kl' k2' k s) 

= (1 + k1)(l + k.t, - k 1) + t(k2 - k 1) 

X (k2 - kl + 1)(2kl + k2 + 2) 

+ ![(kl - k2 + ka){kl + k2 + 2 - (kl - k2)2} 

+ k 2(kl - k2 + k a)(1 - kl + k2 + k a) 

- ika(l + ka)(l + 2ka)], when ka > k2 - kl' 

= (1 + k 1)(l + ka) + ika(l + k a)(3kl - ks + 1), 

when ks ~ kz - k 1 • (A6) 

= (~ i + . ~ ~)P(kl - i, k2 - j). (A7) 
,=0.=0 ,=kt+lo=O 

The first part on the right is given by Eq. (A6) with 
ks -- kl . For k2 > ka > kl' the second part is given hy 

P/(kl' k2' k s) 

= !(ka - k l){2 + k2 + kl(kl + 2) - (kl - k2)2 

+ i(2k2 - 2kl - 1)(1 + kl + k a)} 

+ 112{kl(kl + I)(2kl + 1) - ks(ka + 1) 

x (2ks + I)}, when k s > kz - kl' 

= t(l + k 1)(2 + k1)(ka - k l), 

when ka ~ kz - k l . (A8) 

Finally, when ka ~ kz > kl' the sum over j in 
(A3) is only up to k 2 • Splitting (A3) as in (A7), the 
first part is known, while the second part is obtained 
from (A8) with ka -- k2 . 

It has been correctly pointed out that the case 
ka ~ kz > kl can be derived from (A4) with kl ~ k s • 
Also, (A7) is given by (A6) under the same exchange. 
This is seen from the symmetry of the Diophantine 
equations (6'). However, the purpose of this Appendix 
is only to demonstrate the usefulness of Eq. (14). See, 
however, Ref. 6. 

6 B. Gruber, Nuovo Cimento 48A, 23 (1967). 
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The properties of a class of homogeneous spaces of the Poincare group are discussed. An 8-dimensional 
space appears especially promising and the explicit unitary irreducible representations corresponding to 
physical particles are given using scalar wavefunctions on this space. 

INTRODUCTION 

The concept of wavefunction has played a para­
mount role in particle physics since the advent of 
quantum mechanics. A wavefunction is first of all a 
representative of the state of the physical system. 
Thus it is an element of the Hilbert space of state 
vectors. But it has not only this abstract property. It 
is an explicit function on coordinate space obeying 
certain differential equations. These equations often 
form the starting point for the introduction of inter­
actions. The best known example in relativistic 
quantum mechanics is the Dirac wavefunction obeying 
the Dirac equation. It gives an explicit realization of 
the state vector in the Hilbert space defined by spino! 
mass-m (> 0) unitary irreducible representation of the 
Poincare group. The great importance of the Dirac 
equation lies in the ease by which the electromagnetic 
interaction is introduced. 

The impact of the Dirac theory on the research on 
wave equations and wavefunctions for free relativistic 
particles has been enormous. Thus almost all work in 
this field has started from the assumption that a 
wavefunction is a spinor- (tensor-) valued function 
on the Minkowski space.1•2 All this work on relativ­
istic wave equations has, despite its elegance and 
beauty, so far not contributed in a significant way 
to the solution of the theoretical problems of under­
standing elementary-particle interactions other than 
the electromagnetic ones. It is, therefore, natural to 
ask whether one could widen the concept of wave­
function. Two generalizations are close at hand. 

1 P. A. M. Dirac, Proc. Roy. Soc. (London) A155, 447 (1936); G. 
Petiau, these (Masson & Cie., Paris, 1936); R. G. Duffin, Phys. Rev. 
54,1114 (1938); N. Kemmer, Proc. Roy. Soc. (London) A173, 91 
(1939); M. Fierz, Helv. Phys. Acta 12, 3 (1939); M. Fierz and W. 
Pauli, Proc. Roy. Soc. (London) A173, 211 (1939); w. Rarita and J. 
Schwinger, Phys. Rev. 60, 61 (1941); L. de Broglie, Thiorie generale 
des particules a spin (Gauthier-Villars, Paris, 1943); H. J. Bhabha, 
Rev. Mod. Phys. 17, 300 (1945); 21, 451 (1949); S. N. Gupta, Phys. 
Rev. 95,1334 (1954); H. Umezawa and A. Visconti, Nucl. Phys. 1, 
20 (1956); S. Weinberg, Phys. Rev. 133, B1318 (1964); 134, B882 
(1964). 

• V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci. U.S. 34, 
211 (1948). 

The first one consists in considering so-called infinite­
component wavefunctions. Then we are concerned 
with functions on Minkowski space with values in an 
infinite-dimensional representation space of the homo­
geneous Lorentz group. During the last few years this 
possibility has been the subject of many investiga­
tions.a The second generalization consists in replacing 
the Minkowski space by a larger space on which the 
Poincare group acts. If this action is to be transitive, 
one is lead to consider the homogeneous spaces of the 
Poincare group. Such a generalization has been 
proposed by Finkelstein and others.4- 8 Of course, 
there is nothing preventing us from considering both 
generalizations at the same time, i.e., infinite-compo­
nent functions on a homogeneous space. However, as 
we shall see in Sec. I, the spin degree of freedom is 
naturally connected to certain coordinates in the 
homogeneous space and therefore we may completely 
avoid components or indices as long as we deal with 
one single particle. This possibility of having con­
tinuous variables describing the spin has been already 
touched upon by Bargmann and Wigner.2 It may help 
to give the spin a dynamical role.6 •7 .9.10 A more far­
reaching generalization of the concept of wavefunction 

3 E. Majorana, Nuovo Cimento 9, 335 (1932); Harish-Chandra, 
Phys. Rev. 71, 793 (1947); Proe. Roy. Soc. (London) A192, 195 
(1948); 1. M. Gel'fand and A. M. Yaglom, Zh. Eksp. Teor. Fiz. 18, 
703 (1948); G. Feldman and P. T. Matthews, Phys. Rev. 154, 5 
(1967); Y. Nambu, ibid. 160, 1171 (1967); Proceedings of the Eighth 
Nobel Symposium, 1968 (Almqvist & Wilksell boktryckeri, Stock­
holm, 1968), p. 105; C. Fronsdal, Phys. Rev. 156, 1653 (1967); 
Proceedings of the Eighth Nobel SympOSium, 1968 (Almqvist & 
Wiksell boktryckeri, Stockholm, 1968), p. 119; T. Takabayasi, 
Progr. Theoret. Phys. Suppl., 339 (1965); Proceedings of the Eighth 
Nobel Symposium, 1968, (Almqvist & Wiksell boktryckeri, Stock­
holm, 1968), p. 157; I. T. Todorov, Proceedings of the Eighth Nobel 
Symposium, 1968 (Almqvist & Wiksell boktryckeri, Stockholm, 
1968), p. 133. 

4 D. Finkelstein, Phys. Rev. 100, 924 (1955). 
II A. Kihlberg, Arkiv Fysik 28,121 (1964); Nuovo Cimento S3A, 

592 (1968). 
4 H. Bacry and J. Nuyts, Phys. Rev. 157, 1471 (1967). 
? F. Lurr;at, Phys. 1, <.IS (1964). 
8 J. Nilsson and A. Beskow, Arkiv Fysik 34, 307 (1967). 
• A. Kihlberg, Arkiv Fysik. 39,77 (1969). 
10 A. Kihlberg, "On a New Field Theory," Report No. 68-9, 

Institute of Theoretical Physics, Goteborg (1968). 
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has been recently proposed by Finkelstein,ll but we 
shall not consider it here. 

The construction of wavefunctions for free rela­
tivistic particles is only the first step towards a particle 
theory. Interactions have to be defined. Since particles 
are created and destroyed, one has to perform second 
quantization and define fields using creation and 
annihilation operators in a Fock space. An example 
of such a field theory has been constructed and shown 
to lead to many unconventional features such as loss 
of the spin-statistics connection, nonlocality, and 
unusual analytic properties of the scattering ampli­
tudes.lO On the other hand, it seems promising for 
hadron physics since it has built-in decreasing form 
factors. 

In Ref. 6 a homogeneous space is used to build 
wavefunctions for particles with nonzero mass and 
spin. These wavefunctions satisfy two differential 
equations corresponding to the two invariant oper­
ators of the Po; 'care group. In other words, they 
satisfy one equll. m for the mass and one for the 
spin. A combination of the two equations is derived 
from a Lagrangian theory which leads to a mass-spin 
relation. 

This paper contains two parts. The first one is 
general in character. We classify all homogeneous 
spaces of the Poincare group P which "contain" the 
Minkowski space and which have continuous sta­
bilizer groups. The natural action of P on these spaces 
is given. It is shown that the generators of P can always 
be split into an orbital part and a spin part which are 
mutually commuting. We examine which spaces 
admit an invariant measure and which admit half­
integral-spin wavefunctions. The homogeneous space 
of lowest dimension having these properties is of dimen­
sion 8 and it is therefore natural to consider this space 
first. This is done in Sec. 2. After a description of the 
space with the aid of the coset variables defined in 
Sec. 1, an equivalent description is given in a spinor 
formalism. The generators and the fundamental 
invariants of the Poincare group are calculated. After 
these general features, the different physical cases are 
discussed, namely massive spinning particles, massive 
spinless particles, and massless particles. In each case, 
a complete set of wavefunctions is explicitly given and 
a scalar product defined. 

The so defined unitary irreducible representation 
of P can be extended to representations of the full 
Poincare group including space and time reflections 
We do not discuss this extension here but refer to 
Refs. 5 and 6. 

11 D. Finkelstein, J. Math. Phys. 7, 1218 (1966). 

1. CLASSIFICATION OF HOMOGENEOUS 
SPACES 

A homogeneous space E of a group G has the 
following properties: 

(a) It is a topological space on which the group G 
acts (continuously), i.e., let y be a point in E, then gy 
is defined and is again a point in E (g E G). 

(b) This action is transitive, i.e., if given any two 
points Yl and Y2 in the space, it is always possible to 
find a group element g E G such that 

(1.1) 

There is a one-to-one correspondence between the 
homogeneous spaces of G and the coset spaces of G. 
Denote by So the maximal subgroup of G which leaves 
the point Yo invariant, 

So is called the stabilizer of Yo. Now by writing any 
group element of G in the form g = gcgo, where 
go E So and gc E GjSo, we see that, by virtue of the 
transitivity property (b), any point y E E can be 
given by 

(1.3) 

Thus the elements gc of the coset space give a param­
etrization of E. The mapping E +-)- Gj So is, of course, 
continuous since the group multiplication is con­
tinuous and the action on E by definition is continuous. 
Now the stabilizers S and So of two different points y 
and Yo are conjugate, since from 

SoYo = Yo, 

Yo = g-ly, (1.4) 

it follows that 
gSog-ly = y, (1.5) 

i.e., 
S = gSOg-l. (1.6) 

Therefore the enumeration of the different E of the 
Poincare group P amounts to an enumeration of the 
subgroups of P up to a conjugation. 

We shall now make an important restriction on the 
class of homogeneous spaces we are going to consider 
in this paper. We require that E always contains the 
Minkowski space M which means that four parameters 
of E can be denoted by x(xl'). P must also act on x in 
the usual way. This means that the stabilizer of a 
given point in E can never contain an element of the 
translation subgroup of P. The point x = 0, for 
instance, is invariant under all homogeneous Lorentz 
transformations, but not under any combination of 
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translations and Lorentz transformations. The sta­
bilizer must therefore be a subgroup of the homo­
geneous Lorentz group L. 

The restriction to homogeneous spaces containing 
the Minkowski space is done for physical reasons. 
We think that it would be very difficult to make an 
interpretation if the Minkowski space is not present. 
In this way we are also led to the starting point of 
Finkelstein.4 Thus we can use his classification of 
homogeneous spaces. However, he considers only 
stabilizers which are generated from the Lie algebra 
and therefore, for instance, those spaces which have 
discrete stabilizers are missing. These spaces may be 
interesting since they can have finite invariant meas­
ures.12 We hope to be able to consider these spaces in 
the near future. 

It is also of interest to consider the homogeneous 
spaces of both P and P, the covering group of P. If 
E = PIS, then we write E = PIS, where Sis the corre­
sponding subgroup of P. E mayor may not be topo­
logically isomorphic to E. 

Let us now consider the action of P on the homo­
geneous space PIS. If we parametrize P in the form 

(1.7) 

where g., is a translation xP and g:r, is a homogeneous 
Lorentz transformation, then the points of E are 
parametrized by x and ~ modulo an element of S. 
The action of P is given by left multiplication 

Denotin~ a point in LIS by z we, therefore, have 

(a,A) 
(x, z) ~ (a + Ax, Az) (1.9) 

and the action splits into an orbital part on x and an 
"internal" part on z. For the infinitesimal generators of 

P this means that they can be written as 

P = i..E... 
p oxP ' 

M . 0 . a S 
Py = IXp- - IXy - + Py, 

Ox y OXP 
(1.10) 

where the Spy are differential operators only in the 
variables z. The explicit expression for Spy, of course, 
depends on the homogeneous space at hand. 

We now introduce a parametrization of L(L) which 
serves to induce suitable parametrizations of all the 
homogeneous spaces LIS or LIS. To this end we use 
the Iwasawa decomposition of L. It says that L can be 
written as a product of three subgroupsI3 

L = KAN, (1.11) 

where K is the maximal compact subgroup SO(3) 
[SU(2) for L), A is an Abelian one-parameter sub­
group generated by an acceleration and N is a nilpotent 
(in fact, also Abelian in our case) 2-dimensional 
subgroup. Let the Lie algebra of L be spanned by 
Lpy with the commutation relations 

[Lpy, LpO') = i{gypLpO' + gpaLyp - gppLya - gyaLpp}. 

(1.12) 

Then we can let L12 , L23 , and L3I generate K, Loa 
generate A, and L02 - L2S ' LOI + L31 generate N. 
Introduce now parameters (91, e, 1jJ, s, t, u) in L 
through the formula 
A = e-itpLue-i9L31e-ifllLueiBLoa 

X e-it[Lol+L311e-i,,[Lo.-Lul. (1.13) 

According to the foregoing,91, e, and 1jJ are parameters 
of K, s is the parameter of A,and t, u those of N. By 
putting 

Lij = lEiik<1k' 

LOk = li<1k' (1.14) 

A becomes an SL(2, c) matrix parametrized by 
(91, e,··· ,u). Explicitly, we have 

[

e-ls cos lOe-il(tp+fII) - els(t + iu) sin lOe-il(tp-fII); -els sin tOeil(tp-fII)] 

A = e-ls sin iOeil(q>-fII) + els(t + iu) cos iOeil(q>+'I'); els cos iOeil(q>+'I') . 
(1.15) 

One sees that 91 + 1jJ and 91 - 1jJ are defined only up to 
a multiple of 41r. It is, therefore, natural to require the 
ranges 

o ~ 91 + 1jJ ~ 417, 

- 217 ~ 91 - 1jJ ~ 217 (1.16) 

for L = SL(2, c). By similar arguments it can be 
shown that, if (1.13) is considered to be a parametriza-

U L. Michel (private communication). 

tion of L = SO(I, 3), the 91 and 1jJ can be chosen in the 
interval [0, 217]. The ranges of the other parameters 
are in both cases 

o ~ e ~ 17, 

- 00 < s, t, u < 00. (1.17) 

Notice that topologically the group space of L(L) is 
the product of a Euclidean space in three dimensions 

13 K. Iwasawa, Ann. Math. 50, 507 (1949). 
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and the group space of SO(3) [SU(2)]. The param­
etrization (1.13) is, of course, also a parametrization 
of the homogeneous space belonging to the trivial 
stabilizer consisting only of the unit element. Let us 
calculate the action of L on this space. As an example, 
we choose an acceleration along the z axis. Then from 

eifLoaA(f{J, (), ..• , u) = A(f{J', ()', ... ,u'), (1.18) 

one gets 
f{!'=f{!, 

1p' = 1p, 

-if ' l.(J 
. l.()' e sm ~ 

sm ~ = t' 
(cosh E + cos (J sinh E) 

e8
' = e8[cosh E + cos (J sinh E], (1.19) 

1 -8 sin (J cos 1p sinh E 
t =t+e , 

cosh E + cos () sinh E 

1 -8 sin () sin 1p sinh E 
u = U - e 

cosh E + cos () sinh E 

The infinitesimal generators are 

,(COS () 0 . 0 cos f{! 0) 
S2S = I -- cos f{J - + sm f{J - - -- -

sin () Of{! o() sin 0 01p , 

. (COS (J. 0 0 sin f{J 0 ) 
SSl = I -- sm f{J - - cos f{! - - -- -

sin () oq; o() sin () 01p , 

S ' a 
12=-'Of{J' 

'( sin f{J a a 
SOl = J - -- - + cos f{J cos 0 -

sin 0 of{! 00 

sin f{J cos 0 0 . 0 0 + + sm cos f{!-
sin 0 01p as 

+ e-S(sin f{J sin 1p - cos f{J cos () cos 1p) ~ ot 
+ e-'(sin q; cos 1p + cos f{! cos (J sin 1p) i.), au 

S ,(COS f{J O. (J 0 
02 = J -- - + sm f{J cos -

sin () Of{J o() 
cos f{J cos () 0 + ' (J' 0 - sm SInf{J-

sin (J 01p as 
- e-'(cos f{J sin 1p + sin f{J cos () cos 1p) ~ at 
- e-8(cos f{J cos 1p - sin f{J cos () sin 1p) .E..), au 

SOS = i(-sin 0 ~ + cos () ~ + e-' sin () cos 1p ~ 
00 os ot 

-S'(J'O) - e sm sm 1p - • au (1.20) 

They are defined through the equation 

S,.J[A( f{J, 0, .. ,)] = lim (iIE){J(ei(L"~A) - I(A)} , 
£-+0 

(1.21) 

where L,.o is the corresponding SL(2, c) generator and 
f is an arbitrary differentiable function of A. 

Now the parametrization (1.13) also induces a 
parametrization of other homogeneous spaces. Let, 
for instance, the stabilizer be generated by Loz - Lza. 
Then we simply have to ignore the parameter u since 
we consider A only up to a right multiplication by 
exp [-iu(L02 - L 23)J. A parametrization of E is de­
fined by (f{J, (), 1p, s, t). The action of the group is 
given by (1.19), omitting the last equation. The 
infinitesimal generators are given by (1.20), putting 
a/au = O. In the same way, one gets a parametrization 
of the homogeneous spaces with the stabilizers N, 
KaN, AN, KsAN, where Ks = {exp (-i1p4z)}' Notice 
that KaN and AN form groups with N as an invariant 
subgroup. Also Ks and A commute. In this way, one 
finds the spaces [5], [4], [30], [3 .. ], and [2] in the 
Finkelstein classification. In Table I, all spaces are 
enumerated and we have also indicated the param­
etrization. The above procedure needs only a slight 
modification to cover also the other cases of Table I . 
Define new parameters 1 and u through 

(1.22) 

Notice that 1(J and s are unchanged, since N is an 
invariant subgroup of KsAN. Comparing Eqs. (1.13) 
and (1.22), we find 

1 = e'[t cos 1p - u sin 1p], 

i1 = e'[u COS"" + t sin ",,]. (1.23) 

Equations (1.19) and (1.20) can be rewritten intro­
ducing 1 and u instead of t and u. The cases [50] and 
W] are now obtained by omitting"" or "" and s. The 
cases [5f 1 and [3f ] need perhaps some further com­
ments. Take first [Sf]' We want to single out a subgroup 
exp IX[COS tfLl2 + sin tfLoa]. Using the identity 

exp ( - i[ ""La - sLoa]) 

= e-iijiLu exp (-iIX[cos t/L12 + sin !/L03]), (1.24) 

where 
IX = -s/sin t./, 
iii = "" - scott/' (1.25) 

we find that iii is defined up to an angle 4'1T or 217', as is 
1p. Therefore, we may choose the same range for iii as 
for 1p and the space [Sf] is in fact parametrized by 
three Euler angles and two real parameters 1 and U. 
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TABLE I. Homogeneous spaces of P and P belonging to continuous stabilizers of Land L. The ranges of the piU'ameters are - (Xl < 
XIl, S, t, U, t, it < (Xl, 0 ~ (J ~ 'IT, 0 ~ fP + 1j! ~ 4'IT, -2'IT ~ fP - 1j! ~ 21T for P and 0 ~ fP, 1j! ~ 21T for P. 

Stabilizer 
generated by Dimension Parameters 

0 10 XIl, fP, (J, 'P, s, t, U 

L1I - L23 9 XIl, fP, (J, 'P, s, t 
L12 9 XIl, fP, (J, s, t, !; 
cos !fLu + sin !fL.s 9 XP, fP, (J, ip, t, u 

o </~ 'IT 

xP, fP, 6, 'P, S L02 - L28 8 
L01 + Ln 
Loa - L18 , L03 8 XIl, fP, 6, 'P, i 
La, L.s 8 XP, fP, (J, t, !; 
L 12 , Las, L81 7 XP, qP, qllqll = 1 
L 12 , L01> L02 7 xP, gil, qllqp = -1 
L 12 , L02 - L28 7 XIl, fP, (J, s 
LOl + LSI 
COS !fLu + sin !fL03 7 XI',fP,(J,ip 
L02 - L23 
LOl + L81 
o <I ~ 1T 

XIl, fP, (J L u , L03 6 
L02 - Lu 
LOl + L31 
LI'v 4 xP 

Similar arguments lead to the parameters of [31] in 
Table I. The cases [31 and [3'] are perhaps not so 
conveniently treated using the Iwasawa decomposition, 
but it is well known that the homogeneous spaces 
corresponding to the stabilizer SU(2) [SO(3)] is the 
timelike hyperboloid and that belonging to SU(l, I) 
[SO(1,2)] is a spacelike hyperboloid (cf. momentum 
space and Wigner's little groups). 

When the stabilizer contains a subgroup of SU(2) it 
also contains the two-element group Z2 of matrices 
±1. This means that points in the SL(2, c) group 
space differing by the element -1 must be identified 
so that one is lead to the SO(l, 3) group space and 
further on to a homogeneous space of L = SO(1, 3). 
Therefore, these spaces cannot carry half-integral­
spin representations. In Table I, we have denoted those 
spaces which admit half-integral-spin representations. 

Besides the topological properties, a homogeneous 
space is characterized by its invariant measure if it 
exists. Since we know explicitly how the group acts on 
the space through equations similar to (1.18), finding 
the explicit form of the measure is straightforward. 
They are given in Table I. The existence of such a 
measure may be important for the possibility of 
defining interactions in a field theory based on a 
homogeneous space.10 

If we now choose to work with scalar wavefunctions 
on the homogeneous spaces, the number of param­
eters is related to the number of wave equations and 

Notation 
Half-integral of 

spin Invariant measure Finkelstein 

Yes d·xe2• ds dt du dfPd cos (J dIP [6] 
Yes d'xe2• tis dt dfPd cos (J d'P [5] 
No d'x tis it du dfPd cos (J [5.] 
Yes d'x it du dfPd cos (J dip [Sf] 

Yes d'xe2• tis dfPd cos (J d1j! [4] 

Yes No [4'] 
No d'x dt d!; dfPd cos (J [4"] 
No d'x (d3q/q.) [3] 
No d'x (dq0 dql dq2Jq8) [3} 
No d·xe2• tis dfPd cos 6 [30) 

Yes No [3,] 

No No [2] 

No d'x [0] 

the type of particle.14 Call the dimension of the space 
d and the number of wave equations e. Then d - e = 4 
for a massive particle with spin and d - e = 3 for a 
massive particle without spin and a massless particle. 
Looking at the table we then see that the case [4] 
requires a minimum number of wave equations if we 
insist on the existence of an invariant measure and 
half-integral-spin representations. This space is ex­
actly the one which has been suggested by US5.6 and 
which will be treated in more detail in the next section. 

2. MODELS BASED ON THE 8-DIMENSIONAL 
HOMOGENEOUS SPACE [4] 

As it has already been emphasized, the homogeneous 
space [4] is the smallest one which satisfies the two 
following conditions: 

(a) it possesses an invariant measure, 
(b) it can be used to describe half-integral spins by 

means of scalar wavefunctions. 
Hereafter we will refer to this space as the space R, 
each point of which is parametrized by the vector x 
and the set {s, rp, 0, ",,}. The bar on Ii is to recall that 
we are concerned with a homogeneous space of P, the 
covering group of the Poincare group P. The corre­
sponding homogeneous space H of P is obtained by 
identifying points of Ii pairwise. {s, rp, 0, ""} and 
{s, 'rp', 0, 1p'} are considered as identical when rp' - rp 
and ",,' - "" are multiples of 27T. 

14 H. Bacry, Commun. Math. Phys. S, 9S (1961). 
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Besides the above parametrization of the space ii, 
another one appears to be very useful. 6 It consists in 
labeling each point of ii by a two-dimensional spinor 
~ = (m ¥= 0 in the following way: 

~l = ehei!'I' cos lOei!tp, 

e = ehei!'I' sin tOe-i!tp. (2.1) 

Our four variables are now ~i, ~2, e, and ~2, where 
~<X denotes the complex conjugate of ~a. The param­
etrization of the Minkowski space is made in an 
analogous way, using spinor indices 

x = I XO + x3 
Xl - iX

2
\ = I Xli x

H I 
Xl + ix2 XO _ x3 X2i X22' (2.2) 

The action of P is simple. Let [a, A] be an element of 
P. Then 

[a, A](x, ~) = (AxA+ + a, A~) (2.3) 

or, in making use of spinor indices, we have 

x,a(J _ AaxY{'At(J + aa(J 
- Y ~ , 

fa = A~e. (2.4) 

The invariant measure is the volume element d4x d4~, 
where d4~ stands for d~l d~2 d~i d~2. 

Any function/(x, ~) is transformed as follows: 

[a, A]/(x, g) = I([a, A]-l(X, g». (2.5) 

and 

D - !(e 1..- 21- i 1..- 1:21-). (2.8) 
- 2 O~l + ~ O~2 + ~ O~i +,. O~2 ' 

the latter is the generator of dilatations in the spinor 
space. ~ and D commute with SL(2, c) and with each 
other. They form together with the SIlV the Lie algebra 
of GL(2, c), the group of all linear transformations on 
the spinor space. Using transformations (2.1), the 
generators (2.6)-(2.8) become 

23 . cos rp 0 .' 0 . cos 0 0 
S = -I -- - + 1 sm rp - + 1 cos rp -- -

sin 0 O'IjJ 00 sin 0 orp , 
31 . sin rp o. 0.. cos 0 0 

S = -I -- - - 1 cos rp - + 1 sm rp -- - . 
sin 0 O'IjJ 00 sin 0 orp , 

S12 = -i~, 
orp 

S
10 .' cos 0 o. 0 0 = I sm rp --- + 1 cos rp cos -

sin 0 a'IjJ ao 
. sin rp a. . II a 

- 1 -- - + 1 cos rp sm u -
sin 0 arp as ' 

S
20 . cos () a .' 0 a 

= -I cos rp --- + 1 sm rp cos -
sin 0 O'IjJ ao 

. cos rp a .' . II a + 1 -- - + 1 sm rp sm u - , 
sin 0 arp os 

(2.9) 

It is very easy to derive the following generators of S30 = - i sin 0 ~ + i cos 0 ~ , 
SL(2, C )15: oe as 

S23 _ !(el- ~21- _ ~i ~ _ ~21-) 
- 2 a~2 + ae a~2 a~i ' 

S31 = _ J.(e ~ _ e 1- + ~i ~ _ ~2~) 
2, ae ae a~2 ag1 ' 

S12 = !(gl ~ _ ;2 ~ _ gi ~ + g2~) 
2 ae ae a~i O~2 ' 

SlO - S - ~(e 1- e ~ ;1 1..- ~21..-) 
- 01 - 2 ae + agl + a~2 + a~i' 

S20 - S - !(e ~ _ e 1- _ ~1 1- ;2 ~) 
- 02 - 2 a~2 ae a~2 + a~i' 

S30_S -~(el--el- ~11-_;21-) 
- 03 - 2 ae oe + O~i ag2 . 

(2.6) 

Two other operators, induced by linear transforma­
tions on the spinor space, can be defined. They are 

(2.7) 

16 H. Bacry and A. Kihlberg, Commun. Math. Phys. 1, 150 (1965). 

a D=­as' 

(2.10) 

(2.11) 

The relations (2.19) were already obtained in Sec. 1: 
Replace the terms a/ot and a/au by zero in Eqs. (1.20). 
The generators of the Poincare group are 

PIl = i a~Jl ' (2.12) 

M llv = xJlPV - XVPJl + SIlV' (2.13) 

The Pauli-Lubanski vector WJl, defined as 

WIl = !eIlVPAMpAPV = tellvPASpAPV' (2.14) 

is easily computed in a spinor basis.15 One gets 

Wa(J = (E~ - tt5~Eg)Py(J + (E~ - tt5~E~)pay, (2.15) 

where 

(2.16) 
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[To be more precise, one should write Ea
y 

= ~a(ala~Y), 
which cannot be confused with E/ = ~ia/a~r.J] One 
readily obtains 

Wli = S12 pli + ~1 1.- p2i _ ~i 1.- p12 
ae a~2' 

W22 = _S12p22 + e 1.- p12 _ ~21.- p21 
a~1 a~i' 

W12 = iS03p12 + ~11.- p22 _ ~2 ..E.-. pli 
a~2 a~i' 

(2.17) 

W2i = _ iS03p2i + e ~ pH _ ~i ~ p22. 
ae a~2 

A somewhat tedious calculation leads to the following 
expression for the invariant Wi< Wi< = l W .. P Watl: 

Wi<Wi< = -Pi<Pi<D(D + 1) + (p .. p~a~P)(py;S ()~Y a~~). 
(2.1S) 

Note that this invariant is expressed in terms of four 
invariant operators, namely Pi<Pi<, D, Patl~a~P, and 
pyd(ala~Y)(ala~J). Note also that ~ .. ~P are the com­
ponents of a lightlike vector k in the future half-cone. 
The components of k are, according to Eqs. (2.1) and 
(2.2), 

k = leB(1, sin (J cos cp, -sin (J sin cp, cos (J). (2.19) 

The angle VJ is not involved and, taking into account 
the range of cp, one can say that "a spinor up to a 
phase" is a double-valued function of a future lightlike 
vector. In other words, {x, k, VJ} is a parametrization 
of the homogeneous space H which is covered twice 
byH. 

The fact that Wi< Wi< is built with many invariants is 
not surprising: The number of degrees of freedom is 
larger than the one which is required for a single 
elementary particle. If we want our wavefunction to 
describe an elementary field, it is necessary to have an 
irreducible representation of the Poincare group. This 
is obtained by having the wavefunction satisfy some 
differential equations. According to Ref. 14, it is 
necessary to require four equations for the general 
case (nonzero mass and nonzero spin) and five 
equations in the case of a massless or a spinless 
particle. These three cases are now discussed succes­
sively. 

Case A: Mass and Spin Different/rom Zero. Even if 
mass and spin are fixed, that is to say even if the 
wa vefunction/ is an eigenfunction of P i<Pi< and Wi< Wi<, 

Pi<PIj(x, ~) = m"l(x, ~), (2.20) 

Wi<Wi<I(x, ~) = _m2j(j + l)j(x, ~), (2.21) 

one is left with "internal" degrees of freedom. This 
means that the representation is reducible. One needs 
two extra conditions to get a specific particle in the 
Wigner sense. We require / to be an eigenfunction of 
D and 6. which both commute with the Poincare 
group 

aj 
Dj= a; = rJ.f, (2.22) 

6.f = - i aj = nf. 
oVJ 

(2.23) 

Therefore, an elementary particle is labeled in this 
way by its mass m, its spin j, and the two quantum 
numbers rJ. and n. The parameter rJ., which is related to 
a noncompact group, can take any complex value. 
The number n can only take integral or half-integral 
values because of the periodicity condition in the 
angle VJ. A complete set of solutions of Eqs. (2.20)­
(2.23) can be written in the form Im,j, n, rJ.; p, (J), 
where p and (J are eigenvalues of momentum and the 
third component of spin, respectively. 

Two models have been built on such a scheme. In 
the first one,9.10 a field describes a particle with a given 
mass and spin, but the field functions also depend on 
the new quantum numbers rJ. and n. These may turn 
out to be connected to known elementary-particle 
quantum numbers or merely to be phenomenological 
parameters. 

In Ref. 6, a slightly different aspect is discussed: 
One thinks of rJ. and n not as arbitrary numbers but 
fixed by some natural condition. In fact, the wave­
function is required to be analytic in the ~ variables. 
In other words, (2.22) and (2.23) are replaced by 

oj _ oj _ 0 
a~i - a~2 - . (2.24) 

Using (2.1S) and (2.21), one readily sees that D 
coincides with the spin operator. Equations (2.24) are 
equivalently written as 

af = _ i af = jf, 
as a'IjJ (2.25) 

where j is the spin of the particle described by the 
wavefunction. Consequently, this theory appears as a 
particular case of the first one, choosing n = rJ. = j. 
The fundamental physical difference between the two 
models is that there is no place for internal quantum 
numbers in the second one. 

As far as we are concerned with free particles, we 
must explicitly build the complete set of kets Im,j, rJ., 

n; p, (1) as functions of x and ~ and define an invariant 
scalar product. Any wavefunction I(x, ~) of a single 
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particle in the Wigner sense is a solution of the four 
Eqs. (2.20)-(2.23): 

(a) I(x, n satisfies the Klein-Gordon equation. It 
is, therefore, convenient to introduce the Fourier 
transform !(p, ~). The Klein-Gordon equation re­
quires! to have its support on the mass shell. [Note 
that/(p, ~) is not a scalar function under the Poincare 
group since under a translation it is multiplied by a 
phase factor. Moreover it is not a function on a 
homogeneous space since the quantity Pap~a~P is an 
invariant. The homogeneous space defined by the 
couples (p,~) with the restriction Pap~a~tJ = m2y, 
where y is a positive constant, is isomorphic to the 
group SL(2, c).] 

(b) Consider now the equation involving the W/L W/L 
operator. It is convenient to "boost the ~'s to the rest 
frame." Let Ap be any transformation which maps a 
given four momentum p of mass m on the vector 
(m, 0) and let Ap act on ~, 

(2.26) 

Since AI> acts linearly on the spin or space and is a 
unimodular transformation, the operator D is un­
changed. On the other hand, after this transformation, 
only Pli and P22 are nonvanishing. Consequently, the 
operator W/LW/L ofEq. (2.18) becomes 

W/LW/L = _m2
[ D(D + 1) _ (1;,11 2 + 1;'212) 

X --+--( 
02 (

2
)] 

OflO~ri 0~'20~'2 
(2.27) 

or, equivalently, making use of the other parametriza­
tion, 

W W/L = m2[_I_ ~(sin O'~) + _1_ 
/L sin 0' 00' 00' sin2 0' 

X (~+~ -2COSO'~)]. 
0"P,2 Orp,2 orp'0"P' 

(2.28) 

Equation (2.21) then shows that!(p, s', rp', 0', "P') is a 
linear combination of Wigner functions D~n ("P', 0' , 
rp').16 They also satisfy 

. 0 Di Di 
-I - an = (J an' 

orp' 
(2.29) 

. 0 Di Dj 
-1- un = nan" 

o"P' 
(2.30) 

(c) The wavefunction! must be an eigenfunction 
of the operator ~ = -i(oj0"P). This operator com­
mutes with the Lorentz group and, consequently, it 

16 See, for instance, A. R. Edmonds, Angular Momentum in 
Quantum Mechanics (Princeton University Press, Princeton, N.J., 
1957), Chap. 4. 

is not affected by the transformation (2.26). Therefore 
the equation ~l = n! is given by (2.30). 

(d) The wavefunction must be an eigenfunction of 
the dilatation operator D. Therefore, finally, one is led 
to the following expression for the kets (not yet 
normalized) : 

Im,j, IX, n; p, (1) = eas't5(p - q)D~nC"P" 0', rp'). (2.31) 

Let us look for a scalar product of two wavefunc­
tions corresponding to the same mass. It must involve 
an integration over the p and ~ variables. The trans­
formation (2.26) being unimodular, one has d4~ = 
d4~'. In order to get a nondivergent scalar product, 
one can choose, as was done both in Refs. 5 and 6, the 
following definition: 

(j, g) = II ~: d4~t5(Pap;a;P - m2y)!*(p, ~)g(p,~) 
(2.32) 

or, equivalently, using the coset variables (s, 0, "P, rp), 

(j, g) = III d;: e
2s 

ds do.t5(p· k - m
2
y) 

. J*(p, s, "P, 0, rp)g(p, s, "P. 0, rp), (2.33) 

where k is the vector (2.19) and dO. is the measure 
sin 0 dO drp d"P. Since k is a future lightlike vector and p 
a future timelike one, the scalar product (p. k) is 
positive. Consequently, the constant y must be positive. 
If we introduce the following vector K collinear to k, 

K = (1, sin 0 cos rp, -sin 0 sin rp, cos 0) 

(2.34) 

and if we perform the integration in s, we obtain 

If d3p dO. J* ~ 
(j, g) = y - ( /)2 g, 

Po p. K m 
(2.35) 

a formula which can be used to normalize the states 
(2.37). 

Case B: Spinless Particles. This case is very close to 
the preceding one. The Eqs. (2.20)-(2.23) are kept 
(withj = 0). The Wigner functions D~n for j = 0 are 
constants and (1 = n = O. This means that the W/L W/L 
equation implies 

oj = o! = oj = O. 
orp' 00' o"P' 

The only extra quantum number left is IX. For a more 
detailed discussion, see Refs. 5 and 9. 

Case C: Massless Particles. We are interested only in 
the physical case where W/LW/L = O. Looking at Eq. 
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(2.8), one immediately sees that this equality is 
satisfied if one imposes the analyticity condition. This 
means that the wavefunctions do not depend on 
~1 or ~2. However, this property is in itself not sufficient 
to guarantee that we have the physical case, since the 
requirement of having normalizable vectors may put 
further restrictions on the wavefunctions. Instead we 
shall start from the equation 

(2.36) 

where L is the helicity operator which has a given 
eigenvalue A in an irreducible representation. In the 
special frame where p22 = p12 = p21 = 0 (pI = p2 = 
pO _ p3 = 0), the helicity operator coincides with S12, 
as can be seen from Eq. (2.17). It is always possible by 
performing a Lorentz transformation A (for instance, 
a rotation) to make the momentum satisfy the con­
ditions p22 = p12 = p21 = O. Such a transformation 
maps the spinor ~ into another spinor ~'. 

The little group associated with a massless particle 
is isomorphic to the 2-dimensional Euclidean group 
£(2). The generators of £(2) corresponding to our 
particular momentum are 

L = S12 = !(fl~ - f2~ - c.c.), 
2 ofl o~'2 

Al = _i(~'2 o~'l + c.c-)' (2.37) 

A2 = (~'2~ - c.c.). 
o~'l 

In the physical case, Al and A2 vanish. Therefore our 
wavefunctions do not depend on the ~'l and ~'1 
variables and the helicity operator L becomes 

(2.38) 

which coincides with the operator -~. Since L is an 
invariant operator, the quantum number -n coincides 
with the helicity A. 

Any wavefunction which is an eigenfunction of D 
must be of degree IX in ~'2 and ~'2. As an eigenfunction 
of L, it must be of the form 

(2.39) 

Therefore a complete set of states will be given by the 
kets lit, IX; Pl. Only one value for the helicity is per­
mitted for an irreducible representation since we are 
not interested in parity transformations. Before looking 
for a scalar product for our wavefunctions, it is 
natural to write them in terms of the coset variables 

(s, "P, 0, rp). One finds,. up to a normalization factor, 

lA, IX; PI = e''''(1 - cos O')"ei).(Ip'-II")t5(p - q). (2.40) 

As inCase A, the analyticity condition requires the 
equality IX = -A. 

In building the scalar product of two wavefunctions, 
we cannot introduce the t5 function already used in the 
massive case, namely 

tJ(p"/J~IT.~/J - m2y) = tJ(p' k - m2y), 

since p . k is now a product of two lightlike vectors 
which vanishes when p becomes parallel to k. For­
tunately, there exists another invariant t5 function, 
namely tJ4(p - k), and we define the following scalar 
product: 

(j, g) = J J d4p d4~t54(p - k)/*(p, ~)g(p, ~). (2.41) 

The use of this tJ function suggests to us a new kind 
of model for the wavefunction of a massless particle, 
which does not satisfy our basic requirement but 
which seems to be interesting enough to be mentioned 
with some details in this paper. Let us consider 
functions on a spinor space. Such a function can 
always be expanded in terms of Wigner functions as 
follows: 

f(~) = 'IJ;;.(s)D;;.( "P, 0, rp). (2.42) 
i,a,;' 

Now let us make the Poincare group act on these 
functions as follows. We describe the action for the 
infinitesimal generators. Put first 

plT./J = ~IT.~/J, (2.43) 

i.e., the momenta are multiplicative operators. The 
Mllv's are chosen to be the SIlV'S given by Eqs. (2.6). 
They are no longer split into an orbital and a spin part. 
What kind of representations do we get? Obviously 
PIlPIl is zero. Using (2.17), we compute easily the 
components of Wil. One gets 

WIT./J = ~IT.~PA, (2.44) 

where A = -i(%"P). Consequently, only physical 
particles are obtained. The only nontrivial invariant is 
the helicity operator A. Any wavefunction of helicity 
it will be given by 

f;'(~) = '2J ~(s)D;;.( "P, 0, rp) (2.45) 
i.a 

or equivalently 
(2.46) 

The "usual" wavefunction on Minkowski space is 
obtained by Fourier transformation, 

f (x) = _1_ fd4~ei§a§/J"'rx/J e-iAlP'f (n (2.47) 
;. (27T)3 ;. 
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It is natural to look for an analogous treatment of 
massive particles. Since it is not possible to build a 
timelike four-momentum from only one spinor, one 
must take a larger homogeneous space. One possi­
bility consists in taking the Lorentz group itself. A 
complete set of functions on this space has been given 
by Str_omp in terms of matrix elements D~~Ymm'(CP' (), 
ex, 1p, (), ip). (Strom's angles (J and yare here replaced 
by 0 and ip, respectively.) The Lorentz group is acting 
on this set of functions according to the generators 
given in the appendix of Ref. 17. If we choose the 
translation generators P" to be the following multi­
plicative operator ; 

pP = m(cosh ex, sinh IX sin () sin cp, 

sinh ex sin () cos cp, sinh ex cos (}), (2.48) 

where the mass m is given, one has a complete pre­
scription for the action of the Poincare group. By 
computing the helicity operators and the spin oper­
ators, one gets 

~ i€if~Mik . 0 
... = = 1 - (2.49) 

IPI 01jl , 

W. WI' = m2[~ O_(sin (j 0_) 
,.. sin () o(} o(} 

+~(~+ ~- 2COS{j~)J. 
sin 2 () 01jl2 0 ip2 01p0 ip 

(2.50) 

This last operator is identical to the Wigner operator 
(2.28). A complete set of invariant operators is given 

17 S. Strom, Arkiv Fysik 29, 467 (1965). 

by P,.P", W,.W", i %1jl, the eigenvalues of which are 
m2

, -m'j(j + 1), and n, respectively. Therefore the 
wavefunctions of an elementary particle characterized 
by m, j, n are of the form 

r::,i(p, 1jl, 0, ip) = "2.f'I',J(p)Din( ip, fJ, 1jl), (2.51) .. 
where A. is the eigenvalue of the helicity operator. 

It is interesting to note that these wavefunctions are 
closely related to those one obtains by using the 
Mackey method of induced representations. IS This 
remark is not too surprising. All ways of building 
wavefunctions for elementary particles are equivalent 
since we are concerned with the kinematics of free 
particles only. This is in fact a consequence of the 
Wigner definition of an elementary particle as an 
irreducible representation of the Poincare group. 
Nevertheless, the explicit way of constructing wave­
functions may have important consequences when 
interactions are introduced. Different kinematical 
frameworks may suggest different dynamical postu­
lates. In order to test our model, it is therefore neces­
sary to look for dynamical schemes. An attempt in this 
direction was made in Ref. II. We hope to continue 
these investigations. 
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The degenerate case in the SchrOdinger perturbation theory has been treated by use of the partitioning 
techn!que.dev~l.oped by.Lowdin. In or~e~ t~ simplify the concept and treatment, the repeated partitioning 
technique IS utilized. ThiS repeated partitlOnmg allows us to use a one-dimensional reference space and to 
determine the correct zero-order wavefunction <PA • 

1. INTRODUCTION 

One of the convenient ways of solving the Schr6-
dinger equation is to use a partitioning process.1.2 
The principal concept embedded in the partitioning 
technique is that one may first concentrate on a 
particular subspace, called a reference space. From 
this reference space one obtains eigenvectors by way 
of an eigenoperator2 and the eigenvalues of a given 
Hamiltonian. For this purpose, we can use an iteration 
method or an expansion method. 

The method of expansion is convenient when the 
expansion converges rapidly. The choice of the refer­
ence space S( 0) for this expansion is arbitrary so long 
as the eigenvector has some component in this refer­
ence space. Let us consider a system whose Hamil­
tonian operator Je = Je0 + V is only slightly different 
from the Hamiltonian operator Je0 of some problem 
which has already been solved. In this case, the method 
of expansion is attractive if we take our reference 
subspace S( 0) to be that composed of all eigenvectors 
of Je0 whose eigenvalue is EO. Then the eigenoperator 
reduces to a wave operator and the energy is expressed 
in terms of the reaction operator.2 

L6wdin has given the relations between various 
types of perturbation and his partitioning technique in 
a series of papers on perturbation theory.1-3 His 
treatment of the SchrOdinger perturbation theory has 
been primarily for nondegenerate cases. 

In this paper, the degenerate case of JeO is considered 
mainly for the Schrodinger perturbation theory.' 
There are two principal types of perturbation, 
Schrodinger and Brillouin.5 Even if their expanded 
forms are different from each other beyond the first 

* Aided by Research grants to the University of Florida from the 
National Science Foundation and in part assisted by grants from the 
National Research Council of Canada. 

1 P.-O. Ltiwdin, J. Mol. Spectr. 10, 12 (1963). 
2 P.-O. Uiwdin, J. Math. Phys. 3, 969 (1962). 
3 P.-O. Lowdin, J. Chern. Phys. 19, 1396 (1951). 
• E. Schrodinger, Ann. Physik (4) 80, 437 (1928). 
5 L. Brillouin, J. Phys. Radium 33, 373 (1932). 

order, their accuracies in terms of the order of 
perturbation V are the same. 

The Schrodinger perturbation scheme is manipu­
lated in such a way that the reduced resolvent2 Ro 
should always exist. Therefore, the reference space 
S( 0) should include all6 eigenvectors '¥~ of Je0 with an 
eigenvalue EO so that the reduced resolvent Ro exists 
in the complementary space S(P). Since S( 0) is 
multidimensional in our consideration, it is necessary, 
first of all, to obtain the zero-order eigenvector CPA' 

g 

CPA = 2 C,'¥~, (1.1) 
,=1 

where the C, are constants and 

Je0'¥~ = EO~, i = 1, 2, ... , g, (1.2) 

<CPA I CPA) = 1. (1.3) 

The constants C, are to be determined by considering 
perturbed terms in the Hamiltonian. In order to 
determine Ci uniquely except for a phase factor, it is 
necessary that the degeneracy is completely resolved 
for the branch we are considering. The problem of 
obtaining CPA is conveniently attacked by the intro­
duction of the repeated partitioning. We perform the 
repeated partitioning until we are able to determine 
Ci uniquely. 

The process of this repeated partitioning is described 
in Sec. 2 and its applications to degenerate cases of the 
Schrodinger perturbation theory is given in Sec. 4 
with accompanying examples in Secs. 4 and 5. 

An advantage of using the partitioning technique in 
perturbation theory is the flexibility of our manip­
ulation and the use of simple notations. This aspect is 
most outstanding in the treatment of degeneracYr' as 

6 In the definition of 0, we do not often have to introduce all 
the 'Y? associated with the eigenvalue EO of Jeo. By considering the 
symmetry of JCo and Je, we could treat the problem in a subspace, the 
dimension of which is h, where h ~ g. As an example, we can 
consider the Stark effect in the excited state of the hydrogen atom. 

2142 
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can be seen from the expressions in Sec. 4 where the 
wavefunction is given correct up to third order. 

2. REPEATED PARTITIONING PROCESS 

For procedural convenience, we first introduce the 
partitioning technique developed by Lowdin.1.2 

Let us divide the Hilbert space in which we are 
interested into two subspaces S( 0) and S(P), asso­
ciated with the Hermitian projection operators 0 and 
P, respectively. 0 and P have the following properties: 

1 = 0 + P, OP = PO = 0, 

0 2 = 0 = ot, p2 = P = pt, (2.1) 

Tr (0) = h, 

where 1 is the identity operator for the Hilbert space 
we are considering. 

If we are interested in particular symmetry with 
respect to Je, then we need only concentrate on the 
subspace associated with this symmetry so that S(O) 
and S(P) together form this particular subspace. 

We consider a Schrodinger equation 

Je'Y = E'Y. (2.2) 

If 0'1' == e/> = 0, one can treat this problem in S(P) 
only. However, if 0'1' = e/> ¥= 0, then one can replace 
(2.2) by 

EO'Y = O(Je + JeT(E)Je)O'Y, (2.3) 
where 

T(E) = P[~ . 0 + peE - Je)PJ-1p, (2Aa) 

with ~ ¥= 0. 
It is convenient to use a symbolic notation, 

T = T(E) = PI(E - Je). (2Ab) 

dimensional, is how to find e/>. In principle, we could 
obtain e/> by solving a secular equation, equivalent to 
(2.6). However, before solving this secular equation 
we have to know the value of E; hence, some other 
method which circumvents this difficulty is necessary. 

If there is any good reason for one to expect that the 
vector e/> is heavily localized in a particular subspace, 
say S(Ol) in S(O), then it is convenient to apply the 
partitioning process again to partition S(O) into two 
mutually orthogonal subspaces S( 0 1) and S(P 1) and 
associate them with Hermitian _projection operators 
0 1 and PI' respectively, so that 

o = 01 + PI' 01P 1 = 0, 

O~ = oi = 0 1 , P~ = pi = Pl' 
(2.8) 

For Tr (01) ~ 2, an occasion might arise that a 
further partitioning of S( 0 1) into mutually orthog­
onal S( O2) and S(P2) would facilitate the treatment of 
our problems. Projection operators associated with 
S(02) and S(P2) are denoted by O2 and P2, respec­
tively. They have the properties 

0 1 = O2 + P2, 02P2 = 0, 

O~ = O2 = oL P: = P2 = pJ. (2.9) 

For the sake of convenience, let us call the partitioning, 
which divides a Hilbert space into S(O) and S(P), the 
unipartitioning; the partitioning, which subdivides S( 0) 
into S( 0 1) and S(P1), we call the bipartitioning; and the 
partitioning, which again subdivides S( 0 1) into S( OJ 
and S(P2) we call the tripartitioning. We can repeat this 
process further. From now on, a bipartitioning, or a 
partitioning of higher degree than bipartitioning, will 
be called the repeated partitioning. 

Denoting 
Jet == Je + JeTJe, 

we can rewrite (2.3) as 

(2.5) B. Bipartitioning 

We now define a resolvent T1 in Sept) as 

Ee/> = OJe10e/>, (2.6) T1 == P1[{3' (01 + P) + P1(E - ,JeJP1]-lP1, (2.10) 

where 
e/> == 0'1'. (2.7) 

Since (2.2), which is an eigenvalue problem in an 
infinite-dimensional Hilbert space, is contracted to 
(2.6), which is an eigenvalue problem in a finite­
dimensional space S(O) with Tr (0) = h, we shall 
call S( 0) an h-dimensional reference space. Equation 
(2.6) is equivalent to an h-dimensional secular 
equation. 

A. Repeated Partitioning 

An eigenvector 'I' of Je, with an eigenvalue E, 
satisfies (2.6) if e/> ¥= 0. One of the problems left to us 
in the partitioning process, when S(O) is multi-

where {3 ¥= 0. Then by the bipartitioning we obtain, 
from (2.6), 

EOl e/> = 01(X1 + JetTtJet)Ote/>, (2.11) 

where it is understood that Jet and T1 involve the 
eigenvalue E. As in the case of T, we can denote Tl 
symbolically as 

E - (Je + JeTJe) 
(2.12) 

Similar symbolic notations Tl , I ~ 2, will be used in 
the following for further partitionings, i.e., 

(2.13) 
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where 
Je, = Je'_l + Je'_lT'_lJet_1' (2.14) 

It is shown,2 in the case of unipartitioning, that 
there exists an eigenoperator 0. satisfying the relations 

Jeo. = En, 0.2 = 0., (2.15) 

C. Tripartitioning 

Following the definitions in (2.13) and (2.14), for 
the case of the tripartitioning, one obtains 

E02'¥ = 02(Je2 + Je2T2Je2)02'¥ 

(2.25) 

provided that 
EO = OJe10 = OJeo.. 

The eigenoperator which satisfies the relation (2.21) 
(2.16) can be defined as 

In order to establish relations similar to (2.15) and 
(2.16) for the bipartitioning, it is convenient to define 

so that 

no == (1 + TJe)O, 

0.1 == (1 + 7;.Je1)01' 

0. == 0.00.1, 

o.~ = no, o.~ = 0.1, 0.2 = 0., 

00.1 = 0.10 = 0.1, 

0.10.0 = 0.1, 

0 10.1 = 0 1 , 

Then it can be shown that 

provided that 

or 

where 

Jeo. = En, 

EOlcP = 01'Jel 0.1 cP 

= 01Je201 cP, 

according to (2.14). 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22a) 

(2.22b) 

(2.23) 

Using the relations in (2.20) and (2.21), this is seen 
as the following: 

Eo.oo.l = JeUoo.l 

= Je(l + TJe)O(l + T1Jel )01 

= Je(l + TJe)(l + T1Je)01 

= Je1(l + T1Je1)OI 

= Je10.1 • (2.24) 

Multiplying 0.1 or 0 1 from the left on both sides of 
(2.24) we obtain (2.22). 

It is important to note here that the condition 
expressed in (2.22) not only determines the eigen­
value E, but it also determines a correct vector 01'¥' 
If the reference space on which the eigenoperator 
acts is multidimensional, an arbitrary vector in that 
reference spact;,in general, will not satisfy the relation 
(2.21) unless Tr (01) = 1. 

0. == .00.010.2 , 

where 0.1 is given by (2.18) and 

0.2 = (1 + T2Je2)02' 

(2.26) 

(2.27) 

Relations similar to (2.20) and (2.22) are satisfied 
for 0.2 , 

The partitioning process could be repeated further 
until one finally obtains a one-dimensional reference 
vector. If the partitioning is performed repeatedly 
n + 1 times, then one can write, in general, 

0. = 0.00.1 ... On, (2.28) 

(2.29a) 
or 

(2.29b) 

3. DEGENERATE PERTURBATION THEORY 

We consider that the Hamiltonian is decomposable 
into two parts Jeo and V, so that Je = Jeo + V, where 
V is small and Jeo has known eigenvectors and known 
eigenvalues. Let us consider a particular eigenvalue 
EO which has degeneracy of order g, 

Je0'Y~ = E°1p~, i = 1, ... , g, (3.1) 
where 

(3.2) 

For this case, it is convenient to define 0 in Sec. 2 by6 

h 

0= L I'Y~) <~I· 
i~l 

Then (2.6) reads 

or 

where 

EcP = O(EO + V + VTV)OcP 

EcP = O(EO + VWo)OcP 

== 0(£0 + 10)04>, 

Wo = 1 + TV, 

to = VWo. 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

The operator to is called the reaction operator and Wo 
is called the wave operator.2 

We restrict ourselves to the case where V is small 
enough to allow the expansion2 

E = EO + fEW 
i~1 

(3.8) 
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and 
ct) 

T = RoI(V'Ro)n, (3.9) 
n=O 

where E(i) denotes the ith~order energy with respect 
to the power of V, 

V' = V - ! E(i), (3.10) 
i=l 

(3.11) 

For simplicity, let us introduce the notation Jew i.e., 

Je(O) = EO, 

Je(l) = EO + V, 

Je(2) = Je(l) + VRoV, 

Je(3) = Je(2) + [-E(l)VR~V + V(ROV)2], 

Jew = Je(3) + [_E(2)VR~V + (E(l»2VR~V 
(3.12) 

- E(l)(VRoVR~V + VR~VRoV) + V(ROV)3], 

where Je(il is an approximate operator of Jel correct 
to the ith order. 

Under the assumption of the validity (3.8), one can 
see that 

O~O = lim OJewO. (3.13) 
i-' 00 

Sometimes the degeneracy remains? in all orders of V. 
If a degeneracy of orderj,j ~ h, remains in all orders 
of V, one can reduce1. 2 the dimension of S(O) so that 
Tr (0) = h - f + I. Hence, in the following process 
we can assume that the degeneracy is completely 
resolved at a certain order of perturbation. 

In the application of the partitioning technique to 
the degenerate case of perturbation theory, we have 
first to decide in which branch of the splitting we are 
interested. Let us assume that we are interested in the 
branch A. We repeat the partitioning process until the 
degeneracy is completely resolved for the branch A. 
Once the degeneracy is completely resolved for the 
branch we are interested in, we are able to determine 
the zero-order wavefunction CPA uniquely except for a 
possible phase factor. Thus the expression for the wave~ 
function and the energy depends on how many times 
we perform the partitioning process, that is to say, the 
degree oj partitioning, and also on the degree of 
resolution at each stage of partitioning. The degree of 
partitioning depends on the resolution and persistency 
of the degeneracy of the branch A only. Even if the 
degree of partitioning is the same, the resultant 
expressions for the wavefunction and the energy vary 
according to the character of persistency. This 

7 As an example, we can consider the Stark effect in the rigid 
rotator, where h = f = 2. 

property can be seen by comparing the results of 
cases 2 and 3 of our examples. 

In order to facilitate the explanation, let us consider 
three different cases. We first introduce h mutually 
orthogonal vectors CPl"", CPh in S( 0) which 
diagonalize an operator 0 VO so that 

(CPi I CPi) = bii , Vii = Viirjii' (3.14) 
where 

(3.15) 

For convenience, it is assumed that CPt is the zero­
order eigenvector for the branch i. Before considering 
the examples, we identify CPA in (1.1) with CPl and 
define projection operators Qi as 

CPA = CPl 
Qi == !CPi) (cpJ 

(3.16) 

(3.17) 

Case 1: Vn ¥: Vii for j = 2, ... ,h: We takeS 
S( 01) to be S(Ql) and apply the bipartitioning tech­
nique with respect to the reference vector S(Ql)' 

Since the degeneracy is completely resolved at the 
first order, the bipartitioning is sufficient for our 
purpose. This case is considered in Sec. 4. 

Case 2: Vu = Vii for all j = 2, ... ,h. For this 
case, the degeneracy persists at the first order for all 
branches, and the operator OJe(2)0 has to be con~ 
sidered in order to determine CPl' We assume the 
degeneracy for the branch A is completely resolved 
at the second order, then the bipartitioning technique 
gives us the desired expressions. For this case, it can 
be seen that 

and (3.18) 
0lVRoVPl = O. 

The results of this case are given in Sec. 5. 

Case 3: It is assumed that the degeneracy for the 
branch A is partially resolved at the first order by 
considering 0 VO and completely resolved at the 
second order by 0lVRoVO l . If the degree of remaining 
degeneracy after the application of unipartitioning 
process is m, one can denote 

m 

0 1 = L !CPi) (CPi!, 
i=l 

so that 

Ii 

PI = L !CPi) (cp;!, 
i=m+l 

m 

P2 = L !CPi) (CPi!' 
i=2 

0=01+PI ,01=02+ P2' 
---

(3.19) 

(3.20) 

8 It is understood in this paper that, if Q is a Hermitian projection 
operator with Tr (Q) = n, the S( Q) is an n-dimensional space 
associated with Q. 
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We perform the bipartitioning process with respect to 
the reference space S( 0 1), and then apply the tri­
partitioning technique with respect to the reference 
vector S( O2), The results of this case are given in 
Sec. 5. 

In the partitioning technique, we have dealt with 
Hermitian projection operators which divide a Hilbert 
space into mutually orthogonal subspaces. Hence, it is 
convenient to have the intermediate normalization 

(CPA I CPA) = 1, (CPA IT) = 1. (3.21) 

4. APPLICATION OF REPEATED PARTITION­
ING TO DEGENERATE PERTURBATION 

(CASE 1) 

In this section, we consider the case where the 
degeneracy for the branch A is completely resolved 
at the first order of the perturbation V. 

Since it is assumed that CPA = CPl' according to 
(3.17) and (2.8) one can write 

0 1 = Q1' 

PI = 0 - Ql' 

(4.1 a) 

(4.1 b) 

Using the relations (2.22), (3.3), and (3.6), one can 
reduce (2.17), (2.18), (2.19), and (2.24) to 

0 0 = (1 + TV)O, (4.2) 

0 1 = (1 + T1VTV)01' (4.3) 

0= (1 + TV)(1 + T1VTV)01' (4.4) 

E01CPl = [(EO + V) + (VTV) 

+ (VTV)T1(VTV)]01CPl> (4.5) 
where 

CPl = 01Tf[(TI 0 1 IT)]l. (4.6) 

After the definition of 0 in (2.19), it is natural to 
define a wave operator W for this case by 

W== WOWl' 

where Wo is given by (3.6) and 

WI == 1 + T1(VTV). 

(4.7) 

(4.8) 

Using the property 0lVPl = 0 and relations (3.6), 
(4.7), and (4.8), one can write (4.5) as 

EOl4>1 = 01[EO + V(l + TV) 
x (1 + T1VTV)]01CPl, (4.9) 

where 

Ecpl = 01[EO + VW]CPl 

= 01[EO + t]CPl, 

t= VW. 

(4.10) 

(4.11) 

We can compare (3.5), (4.5), and (4.9) as follows: 

(a) The multidimensional reference space S(O) is 
reduced to a one-dimensional reference vector S( 0 1), 

Thus we are able to define W which will give us an 

eigenvector of.le. We note here that Wo by itself is not 
able to give us an eigenvector of .le. 

(b) For (3.5), V is a perturbation with a reference 
space S( 0) consisting of eigenfunctions of .leo with the 
eigenvalue EO, whereas, for (4.5), VTV is a perturbation 
with a reference space, or a reference vector, S( 0 1) 

consisting of an eigenfunction of 0.le0 with the 
eigenvalue (EO + Vu ). 

(c) In (4.5), we have an additional term 

(VTV)Tl (VTV) 

which does not appear in the nondegenerate case. 
(d) The operator WI determines a correct reference 

vector in S( 0) from CPl' and Wo determines an eigen­
vector T from cp. 

Eigenvector and Eigenvalue 

Here, we introduce 

(4.12) 
i=m 

where E Cil is the ith-order energy as can be seen from 
(3.8) and E(I)= Vu for the present consideration. 
Using the notations defined in (3.8) and (3.11), and 
using the operator identity 

(A - B)-I = A-I + A-IB(A - B)-I, 

one can write 

T = Ro + Ro[(V - Eh» - d2]Ro 

and 

+ Ro[(V - E(1) - d2]Ro[(V - E(l») - ()2]T 

(4.13) 

152 = E(2) + 153 , 

()i = EW + ()i+l' 
(4.14) 

The relations in (4.13) and (4.14) give us 

TV = RoV + Ro(V - EU)RoV 
+ Ro(V - E<I»Ro(V - E(ll)Ro V 

- E(2)R~V + tl(V4), (4.15) 

VTV = VRoV + VRo(V - E(l»RoV 
+ VRo(V - E(I»Ro(V - E(1»RoV 

- E(2)VR~V + tl(V5
), (4.16) 

E - EO - V - VTV 

(E(l) - V) - (VTV - ()2) 

= Rl + R1(VTV - ( 2)R1 
+ R1(VTV - bz)R1(VTV - ()2)T1 

= Rl + R1(VRoV - E(2»R1 
+ R1[VRo(V - E(l)RoV - E(3)]R1 
+ R1(VRoV - E(2»R1(VRoV - E(Z»R1 
+ O(VZ

), (4.17) 
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where 

Introducing the relations in (4.15)-(4.18) into (4.7), 
one obtains 

w = W(O) + W(1) + W(2) + W(3) + O(V4), (4.19) 

where the superscript i denotes the order of V, 

W(O) = 1, 

W(1) = RoV + RIVROV, 

W(2) = Ro(V - E(I»RoV + RoVRIVROV 

+ Rl V Ro(V - E(1)Ro V 

+ R1(VRoV - E(2»R1VRoV, 

W(3) = Ro(V - E(I»Ro(V - E(1)Ro V 

- E(2)R~V + RoVRIVRO(V - E(I»RoV 

+ Ro(V - E(1)VR1VRoV (4.20) 

+ RoVR1(VRoV - E(2»R1VRoV 

+ R1VRo(V - E(1)Ro(V - E(1)RoV 

- E(2)RIVR~V 

+ RiVRoV - E(2»R1VRo(V - E(1)RoV 

+ R1[VRo(V - E(1)RoV - E(3)]R1VRoV 

+ R1(VRoV - E(2»R1(VRoV - E(2»R1VRoV. 

Equation (4.10) can be written as 

Introducing the results of (4.20) into (4.21), one 
obtains 

E = EO + E(1) + E(2) + E(3) + E(4) + ... , (4.22) 

where 

E(1) = Vn = (V), 

E(2) = (VRoV), 

E(3) = <VRo(V - E(1)RoV) + (VRoVRIVROV), 

E(4) = (V Ro(V - E(1)Ro(V - E(1)Ro V) 
_ E(2)(VR~V) (4.23) 

+ (VRoVRIVRO(V - E(1)RoV) 

+ (V Ro(V - E(I»Ro V Rl V Ro V) 

+ (VRoVR1(VRoV - E(2»R1VRoV), 
with 

(4.24) 

For the nondegenerate case h = 1, Rl = 0, every 

expressions are identical with those of the non degen­
erate case given by L6wdin.2 

5. EIGENVECTORS AND EIGENV ALVES FOR 
CASES 2 AND 3 

Case 2: In this case the relations (3.14) and (3.1S) 
are automatically satisfied for any choice of ortho­
normal set {1>i} in S(O). The set {1>i} are chosen to 
satisfy the relations 

Here we can use the same relations from (4.1) through 
(4.1S) as developed in Sec. 4. However, the expression 
for Tl is different from Case 1: now, 

Tl = SI + SI[VRo(V - E(I»RoV - E(3)]SI 

+ SI[VRo(V - E(1)Ro(V - E(1)RoV 

- E(2)VR~V - E(4)]SI 

+ SI[VRo(V - E(1)RoV - E(3)] 

X SI[VRo(V - E(1»RoV - E(3)]SI + O(V), 

(S.2) 
where 

S = PI - i 11>;) <1>il 
1 - E(2) _ VRoV - ;=2E(2) - <1>;1 VRoV l1>i) . 

(5.3) 

Using (3.18), the expanded forms for the wave 
operator Wand the eigenvalue E are 

W= WOWI 

= W(O) + W(l) + W(2) + O(V3), (5.4) 

where 

w(o) = 1, 

W(1) = RoV + SIVRO(V - E(1»RoV, 

W(2) = Ro(V - E(l)RoV + ROVS1VRo(V - E(l)RoV 

+ SI[VRo(V - E(I»RoV - E(3)] (S.S) 

x SIVRO(V - E(I»RoV 

+ SI[VRo(V - E(l)Ro(V - E(1»RoV 

- E(2) V R~V], 

E = <1>11 EO + VW 11>1) 
= EO + E(I) + E(2) + E(3) + O(V4), (S.6) 

where, using the property (3.18), 

E(1) = (V), 

E(2) = (VRo V) (5.7) 

E(3) = (VRo(V - E(l)RoV), 
term which includes Rl in the expression for the with 
wave operator and energy drops out and the resultant 
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Case 3: For this case, since we use the tripartitioning 
process, Q is given by (2.26); accordingly, the wave 
operator has the form 

W= WOWl W2 

= [1 + TV][1 + Tl(VTV)] 

X [1 + T2{(VTV) + (VTV)T1(VTV))], (5.8) 

where W, WI' Ro, and Rl are given by (3.6), (4.8), 
(3.11), and (4.18), respectively, and 

W2 = 1 + T2[(VTV)T1(VTV)], (5.9) 

T2 = R2 + R2[VRo(V - E(1»RoV 

+ VRoVR1VROV - E(3)]R2 + 19(VO), (5.10) 

R2 = P2/(E(2) - VRoV). (5.11) 

Using the relations in (3.18), we expand Waccording 
to the power of V, 

W = W(O) + W(1) + W(2) + 19(V3), (5.12) 

where 

w(O) = 1, 

W(l) = RoV + Rl(VRoV) + R2(VROV)R1(VROV) 

+ R2 V Ro(V - E(l)Ro V, 

W(2) = Ro(V - E(1»RoV + RoVRl(VRoV) 

Hence, 

+ [RoV + RlVRoV]R2[(VRoV)Rl(VRoV) 

+ VRo(V - E(l)RoV] 

+ R1 V Ro(V - E(l)Ro V 

+ Rl(VRoV - E(2»Rl VRoV 

+ R2(VROV)RlVRO(V - E(l)RoV 
(5.13) 

+ R2VRo(V - E(1»RoVRl(VRoV) 

+ R2(VRoV)R1(VRoV - E(2»Rl(VRoV) 

+ R2VRo(V - E(l)Ro(V - E(l)RoV 

- E(2) R2 V R~V 

+ R2[VRo(V - E(l»RoV - E(3)] 

x R2 [(VRoV)RlVRoV) 

+ VRo(V - E(l)RoV]. 

E = <4>11 EO + VW 14>1) 
= EO + E(1) + E(2) + E(3) + 19(V4), (5.14) 

where 

E(l) = (V), 

E(2) = (VRoV), (5.15) 

E(3) = (VRo(V - E(l»RoV) + «VRoV)R1(VROV», 

with 

6. DISCUSSION 

If the reference space S( 0) is multidimensional, we 
have to first decide on a proper reference vector 4> in 
S( 0) since any arbitrary vector in S( 0) will not satisfy 
the condition given by (2.15). This problem is techni­
cally solved by introducing the repeated partitioning 
and accompanying subeigenoperators Ql, Q2, ... , 

etc. In the Schrodinger perturbation theory, we take 
S( 0) to be the space composed of all eigenvectors of 
Jeo whose eigenvalues are EO in order to eliminate the 
Singularity in Ro. Usually, we can reduce the dimension 
of S( 0) by considering the symmetry properties of 
Jeo and Je. The repeated partitioning is performed in 
such a way that the resolvents Rl , R2 , S1, etc., 
exist. The most important problem is to find a zero­
order eigenvector 4> A' This becomes complicated if the 
degeneracy is not resolved at the first order. We have 
obtained the expressions for the eigenvector and the 
energy by simply expanding the wave operator, 
whereas in the conventional Schrodinger perturbation 
treatment one has to deal with the equations of 
various orders.901o The treatment and notations we 
have used are rather compact which is a characteristic 
of the partitioning technique. One can treat degenerate 
perturbation theory in a multidimensional reference 
space S( 0) without resorting to the repeated parti­
tioning technique,u However, the use of the latter 
process is more simple and convenient. 
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The quasiparticle formalism developed by Armstrong and Judd for atomic shells is extended to 
expose the complete group structure of the quasiparticle eigenfunctions of the equivalent elect~on 
I shell. A simple method for relating quasiparticle states to determinantal states and for calculat~ng 
quasiparticle matrix elements is developed. The need for fractional parentage coefficients in calculatmg 
these matrix elements is entirely eliminated. 

I. INTRODUCTION 

The theory of continuous groups has been used 
extensively both to classify eigenfunctions and inter­
actions.I-4 The orthonormal set of anti symmetrized 
eigenfunctions associated with an equivalent electron 
IN span the {IN} representation of the unitary group 
U41+2' The members of the set of eigenfunctions may 
be classified by considering their transformation 
properties under the operations of the various sub­
groups of U41+2' The chain of groups 

/'
su2 X SU21+1~ 

U41+2 ~SU2 X (R21+l -->- Rs) 
~Sp41H~ 

(1) 

may be used to distinguish completely the eigen­
functions in the d-shells (l = 2). If the exceptional 
Lie group G2 is embedded in R" an almost complete 
classification of the eigenfunctions of the f shell is 
possible. 1 For higher values of I, the above classifica­
tion scheme rapidly proves to give an inadequate 
number of classification symbols to distinguish eigen­
functions associated with the same SL quantum 
numbers. Thus, in the tIS configuration, no distinction 
is possible among the 30 598 14 Estates. 

The chain of groups given in Eq. (1) sheds little light 
on relationships between the properties of con­
figurations involving different numbers of electrons. 
This has led Judd4 to consider the various subgroups 
of the group U

2
41+2, which comprises the group of all 

unitary transformations among the 241H multi­
electron states of the I shell. He haa shown that the 
chain of groups given in Eq. (1) may be replaced by 

• Research sponsored in part by the Air Force Office of Scientific 
Research, Office of Aerospace Research, U.S. Air Force, under 
AFOSR Grant No. 1275-67. 

1 G. Racah, Phys. Rev. 76,1352 (1949). 
2 G. Racah, Ergebnisse der Exacten Naturwissenschaften, Vo!' 37: 

Group Theory and Spectroscopy (Springer-Verlag, Berlin, 1965). 
3 B. R. Judd, Operator Techniques in Atomic Spectroscopy 

(McGraw-Hill Book Co., Inc., New York, 1963). 
4 B. R. Judd, "Group Theory in Atomic Spectroscopy," in Group 

Theory and its Applications, E. M. Loebel, Ed. (Academic Press 
Inc., New York, 1968). 

the chain 

U 241+2 -->- RSI+5 -->- RRI+4 -->- S U~ 

X (SP41+2 -->- SU2 X (R21+l -->- Rs». (2) 

This chain of groups provides no additional classi­
ficatory symbols, but it does, through the introduction 
of the quasispin group SU~, display the N-dependence 
of the multi-electron states in a transparent manner. 

The eigenfunctions of the I shell all transform 
according to the {I} representation of U241 2, which 
under restriction to the subgroup RSI+6 goes down 
irreducibly into the basic spin representation A == 
[(t)41+2] of R S1+5' To obtain further classificatory 
symbols it is necessary to explore the subgroups of 
RS1+5 that are alternatives to those of Eq. (2). 

Judd5 has shown that a much richer classification 
scheme is obtained decomposing the representation 
{IN} of U41+2 under the chain of groups 

t ~ t ~ () U 41+2 -->- U 21+1 X U 21+1 -->- Rs X Rs -->- Rs , 3 

where the orbitally antisymmetrized eigenfunctions 
associated with electrons having their spins "up" 
(ms = +t) transform under Ui.l+l and those with 
their spin "down" (ms = -t) transform under 
U l +1' This chain of groups gives a complete classi­
fication of the eigenfunctions of the configurations 
IN up to 1= 3, and for I ~ 4 proves much more 
successful in distinguishing states with the same SL 
quantum numbers than that of Eq. (1), though it is 
of course no more successful in distinguishing the 
30 598 14£ states of tIS. 

These group structures have all been studied4•5 by 
representing the Lie algebras in terms of the annihila­
tion and creation operators of the method of second 
quantization.s Armstrong and Judd' have recently 
showed that it is possible to develop an alternative 
classification scheme of the I shell by considering the 

5 B. R. Judd, Phys. Rev. 162,28 (1967). 
6 B. R. Judd, Second Quantization and Atomic Spectroscopy 

(Johns Hopkins Press, Baltimore, Md., 1967). 
7 L. Armstrong, Jr., and B. R. Judd, "Quasipartic1es in Atomic 

Shell Theory," Proc. Roy. Soc. (London) (to be published). 
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properties of the basic tensor operators 

~ (l) (2)-![ + ( )/-q ] Aq = ah + -1 a!_q , 

(!) (2)-! [ + ( !-q ] fl" = ah - -1) a!_q, 

v~o = (2)-1[a~h + (-ly-qa_l_q], 

~~o = (2)-t[a~la - (-l)Ha_t_q], 

(4) 

where the subscripts to the annihilation and creation 
operators a and a+ specify m. and m1 for an electron. 
Their results lead to the conclusion that the states of 
the 1 shell can be classified according to the scheme 

Ri(21 + 1) X R:(21 + 1) X R;(21 + 1) X R~(21 + 1) 

(5) 

and its subgroups. There is no basic difficulty in 
extending their method to mixed configurations. 

In the present paper we propose to demonstrate 
that the group structure suggested by Armstrong and 
Judd may be embedded in the group RSH5 in a 
natural manner which sheds considerable light on 
representation of atomic shells in the quasiparticle 
methods familiar in nuclear and superconductivity 
physics.s Mter careful consideration of the defining 
of the vacuum states appropriate to the quasiparticle 
operators, a method for expanding the quasiparticle 
states in terms of the familiar determinantal states is 
outlined. Finally, a method for calculating quasi­
particle matrix elements is developed. The need for 
fractional parentage coefficients in calculating these 
matrix elements is entirely eliminated. 

II. THE BASIC GROUP STRUCTURE 

Armstrong and Judd7 derived the group structure 
of Eq. (5) by showing that the coupled products 

HAW AW)~k), -t(fl(l)fl(l)~k), HV(l)v(l)~k), 

and 
_H~U)~(l)~k), 

with k odd, form the generators of the rotation groups 
R).(2l + 1), R,/2l + 1), Rv(21 + 1), and R.(21 + 1), 
respectively. In this section we show that the group 
scheme of Armstrong and Judd is part of a larger 
structure of the form 

associated with m. = -i. The individual spin spaces 
may be further reduced by examining the subgroups 
of the R21+l groups, e.g., in the spin-up space we have 

R t t t t t ( ) 
;'(2!+1) X R/L(2!+1) -+ R;'(3) X R/L(3) -+ R;'/L(3)' 7 

Equations (4) can be re-expressed as 

ala = (2)-t(;.~!l + fl~o), 
at-a = (2)-t( _l)'-a(;.~O - fl~!l), 
a~tq = (2)-1(v~o + ~~!l), (8) 

a_t_q = (2)-1( -l)!-q(v~o _ ~~!l). 

Judd4 has shown that for the 1 shell the 81 + 4 
annihilation and creation operators affl• ffll 

and tr,;..m" 
together with their (41 + 2)(8/ + 3) distinct nonzero 
anticommutators, close on the commutation algebra 
of the group RS!+5 and thus the construction of the 
group RSI+5 from the operators of Eq. (8) is self­
evident. 

Furthermore, the coupled products H;'(Z>;'(!l)~k) 

and -Hflw fl(!»~k) with k odd, together with the linear 
combinations H;'fl)~k) - (-I)kHflA)~k) for all k even 
or odd have the same commutation relations as those 
of the tensor operators V~k)(lA' IA) and V~k)(l/L' I) with 
k odd and V~k)(lA' I) + (-l)kv~k)(//L' IA) with k even 
or odd and thus form the generators of the group9 
R2U,I+!/L+l), i.e., R4!+2' Since the annihilation and 

creation operators used in constructing this group are 
all associated with m. = +!. we designate this group 
as R4tl+2' The generators of the corresponding group 
Rll+2 can likewise be readily constructed from the 
annihilation and creation operators with ma = -1. 
To develop the group structure further, we must 
consider the group representations that arise in the 
classification of the multi-electron eigenfunctions. 

III. THE BASIC SPIN REPRESENTATIONS 

Having established the existence of the group chain 
RS!+5 -+ Rl!+2 X Rll+2' we show that the basic spin 
representationlO.ll il of RS!+5' under restriction, 
decomposes into the conjugate spin representations 
~l = [! ... t]. ~2 = [t· .. -!] of the R4!+2 groups 
in the following manner: 

~ -+ (ill + il2) t x (ill + il2)~' (9) 
t l t t 

RSI+5 -+ R41+2 X R4H2 -+ RA(2I+l) X R/L(21+1) where ill is to be associated with an even number of 
X R;(2I+l) X R~(2I+l)' (6) quasi particles and il2 with an odd number. 

To establish the above result, we first consider the 
where, as before, the arrow i is associated with eigen­
functions with m. = +! and the arrow! with those 

8 R. D. Mattuck, A Guide to Feynman Diagrams in the Many-Body 
Problem (McGraw-Hill Publ. Co., New York, 1967). 

• J. P. Elliott. Proc. Roy. Soc. (London) A245, 128 (1958). 
10 D. E. Littlewood, The Theory of Group Characters (Oxford 

University Press, London, 1950), 2nd ed. 
11 P. H. Butler and B. G. Wybourne, "Reduction of the Kronecker 

Products for Rotation Groups," J. Phys. (to be published). 
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group Rl1+2 and introduce the quasiparticle annihila­
tion and creation operators 

{3~Zl+ = (2rt [ata + (_I)I-aa !_a] = ;.~!), 
{3~1I = (2rt [ata + (-1)1-q4-a] = (-I)I-q;.~~, 
(1)+ = (2)-![ _ (_l)l-a + ] = _(_I)I-a (l) I' a ah ai-a fl-a' 

(I) ()-![ + (I-a (z) 'Yq = 2 ah - -1) at-q] = fla , (10) 

all of which have q > O. We then use these operators 
to define a normalized quasiparticle vacuum state 
10), which is related to the normal-particle vacuum 
state 10) by 

10) = 2(1/2) II (3~1l II y~ll 10). (11) 
a>O q>O 

The above definition of the vacuum state has the 
necessary property that (3~!) 10) = 0 for all the quasi­
particle annihilation operators. 

By using a natural extension of Judd'sa operators 

WVI'=L(-l)I-V[l-(-l)k]( I k l)v~k)(ll)' 
k.'P -')I q fl 

we find that Weyl's commuting operators12 for the 
group Rl1+2 are, in terms of the quasiparticle 
operators, 

H~ = H~, {3q], H: = -i[yt, yq], 

H~I' = t( _1)1[{30, YoJ, (12) 

where for convenience we now drop the quantum 
number I of the electrons. H: gives eigenvalues +t or 
-t according to whether or not {3~ is or is not con­
tained in the quasiparticle state (3~ ... P:Y~ ... Y~ 10), 
while H: gives eigenvalues -! or + t if 1'+ is or 
• q 

IS not in the state. Our definition of the quasi-
particle vacuum makes it legitimate to include Po or 
Yo in the quasiparticle state, implying that if the state 
contains both Po and Yo or neither of these, H),I' 

• • 0 
gives eigenvalues of H _1)1, while if the state con-
tains only one of these, the eigenvalues become 
-!(-v· 

The operators of R4tl+2' being coupled products of 
the ;"s and fl'S, connect only states differing by two 
quasiparticles (or two ordinary particles) or none. It 
follows that if a state contains an even number of 
quasiparticles (including either Po or Yo), it transforms 
according to the representation Lll = a· .. t] of 
Rll+2' and if an odd number, according to the con­
jugate representation Ll2 = a· .. -H We note that 
our quasiparticle vacuum is proportional to 

II [1 + (-I)l-qa~qa~] 10), 
q 

12 H. Wey\' Math. Z. 23, 271 (1925). 

i.e., contains an even number of real particles, and 
consequently if the quasiparticle number is even 
(odd), then the real particle number is even (odd). 

Under the restriction 

R4l+2 ~ R;.<21 + 1) X Ri21 + 1), 

both Lll and d 2 decompose irreducibly into the 
product representations Ll} x d: ' where d), and Lll' 
are the basic spin representations of the R21+1 rota­
tion group. Similarly, under restriction of Rll+2' d 1 

and d 2 decompose irreducibly into the product repre­
sentation d; X dj of R.(21 + 1) X R;(21 + 1). The 
coupled product t(AWAW)~l) supplies the generators of 
the group R} (3), which is a subgroup of Rl (21 + 1), 
and similarly -Hfl(!'~fl(I»~Il gives the generators of 
R: (3). Thus we may write the complete group structure 
for describing the transformation of the I-shell eigen­
functions in terms of the chain of groups: 

U 241+2 ~ RSl+5 ~ R!I+2 X R!I+2 

--+ (R;,(21 + 1) X R,.(21 + l»t 

X (Ri21 + 1) X Rg(21 + I»! 

~ (R;,(3) X RI'(3»t X (Rv(3) X Ri3)i 

~ Rl,.(3) x Rv!~(3) ~ R(3) ~ R(2)' (13) 

If, under the restriction R21+1 --+ Ra, the basic spin 
representation Ll decomposes into the representations 
of Ra without repetitions, then the chain of groups 
given in Eq. (13) will give a complete set of classifi­
catory symbols to uniquely label all the eigenfunctions 
of the I shell. Methods of determining these branch­
ing rules have been discussed by Butler and Wy­
bourneY As noted by Armstrong and Judd, the 
classification is indeed unique for I :::;; 8. It is interest­
ing to. note that even in the t shell (/ = 14), no repre­
sentatIOn of Ra occurs more than 15 times in the 
decomposition of the basic spin representation under 
R29~Ra· 

It is evident from the nature of the chain of groups 
given in Eq. (13) that eigenfunctions constructed with 
these transformation properties will be characterized 
by well-defined Land M L quantum numbers, but 
will generally not correspond to a definite number of 
particles N or have accessible Sand Ms quantum 
n~mbers. In. trivial cases, some identification may 
still be pOSSible, as may be seen when the quasi­
particle states appropriate to the d shell are expanded 
as linear combinations of determinantal states. 

IV. QUASIPARTICLE AND DETERMINANTAL 
STATES 

The quasiparticle scheme is unlikely to be of 
calculational value if the quasiparticle states have 
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to be first expanded as the linear combinations of the 
usual determinantal states. Rather we would like to 
calculate directly in the quasiparticle scheme. Never­
theless, it is useful in some applications to be able to 
make the transformation from quasiparticle states to 
determinantal states. 

Consider the segment 

Ri(21 + 1) X R:(21 + 1) - Ri(3) x R;(3) - RL,(3) 

(14) 

of the group chain described by Eq. (13). Suppose 

The form of Lo shows that the quasiparticle vacuum 
state is the state having the highest h. or JJJ and the 
lowest mj, or highest mj in the R;.(3) and R (3) 

A JJ It 
spaces, respectively. In obtaining these results we 
have required that the quasiparticle vacuum state 

10»). in the A space and 10)1t in the f-l space may be 

coupled to yield the vacuum state 10»).10)JJ == 10) 
defined earlier for the Rl!+2 space. As a result, we have, 
to within an inconsequential phase, 

10);. = 20
/4) II fl. 10) 

0>0 

under the restriction R2!+1 - R3 we have and 

where gj. is the number of times the [j.J representation 

of R.(3) arises in the decomposition; then the same 
branching rule holds for both Rl (21 + I) and 
R~ (21 + I). Thus the problem of forming eigen­
functions where every electron in the I shell has 
m. = +t reduces to constructing eigenfunctions 
If.i· ; L;. .. M L ) t for pseudo two-particle configura-

I' ~ ;'1' 
tions (j;.j,Y, where j .. and jl' will either be both half­
integral or integral angular momentum. 

For example, for the g shell we find, under R9 - R3 , 

~ - d + h, and hence the LM L states associated 
with all m. = +t will be the same as those arising in 
the three pseudo two-particle configurations d .. dlt ' 
d).hlt' h .. dl" and h;.hlt · 

We now wish to develop a systematic method for 
expanding the typical pseudo two-particle state 
Jj;jItLML) t as a linear combination of determinantal 
states. To do this we first construct a set of angular­
momentum ladder operators in the spaces of R). (3) 
and RIt(3) in terms of the quasiparticle annihilation 
and creation operators. These operators L~ and L: 
must clearly be simply proportional to the coupled 
products (A (z) A(z)~l) and (f-lw f-l(!»~1) and, in detail, 

L~ = 2: qH~ = t 2 q[flt, fl.l, 
.>0 0>0 

L~ = I(-l)H[W + q)(l- q + l)]!A~Z)Al~o 
0>0 

= 2: [t(l + q)(l - q + l)]!Ptflq-1, (l5a) 
q>O 

and 

L~ = - I qH~ = t I q[yt, yq], 
0'<0 0'>0 

U 1 = - 2: (-l)!-a[t(l - q)(l + q + l)]!f-l~!lf-lC!Lq 
.<0 

= I [HI + q)(l - q + t)]iytYo_l. (J5b) 
0>0 

IO)1t = 2(Z/4) II Yo 10). 
0>0 

Having constructed the angular-momentum ladder 
operators, it becomes a trivial matter to construct the 
angular-momentum states Ih.m;.) and Ijltmlt) for 
highest j). and j/J appropriate to the R).(3) and R/3) 
spaces in terms of an even number of quasiparticles 
(remembering to count a flo or a Yo if it occurs). 

The angular-momentum states for values of 
j; < i). or j~ < il' may be constructed by requiring that 
the states Ij; - mj;.,) and Ij~mjlt') be orthogonal to the 

states Ij). - mil) and Ijl'mi/J')' respectively, and to any 
other states having the same -m. , or m, " i.e., we 

1). 'I' 

construct an orthonormal set. 
The states involving an odd number of quasi­

particles in either space may be built up by applying 

the ladder operators to (2)!flo 10»). and (2)!yo 10)1" 
instead of to 10»). and 10)1'. In each case, the normal­
ization is chosen so that (j - iii - j)JJ and (jj IJj)JJ 
are equal to 2-(!/2). 

As an example, consider the case of the d shell, 
where for Rs - R3 we have [ttl - [fl. The propor­
tionality constant required to recover the ladder 
operators is (l0)! and we have 

L~ = Ht + 2H~ and Lt = (2)!fltfll + (3)lfltflo 

(16a) 

and 

L~ = -Hi - 2H~ and L~l = (2)!ytyo + (3)lytyo. 

(16b) 

As a consequence, for n). even (where n). is the number 
of quasiparticles in the A space) we have 

It - th = 10);., If - t»). = -(2)!f1iPo 10»)., 
It t);. = (2)!Ptflo 10);." and It t);. = PtPt 10) .. , 

(17a) 
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while for nil even in the ft space, we have 

It t)/l = 10)/l' It t)/l = (2)t.ytyo 10)/l' 

It - !)/l = (2)!ytyo 10)/l' It - t)/l = ytyt 10)". 
(17b) 

Having constructed the states given in Eq. (17), we 
may perform a vector coupling to produce states 
characterized by the orbital quantum numbers Land 
M L. For an even or odd total number of particles N, 

lj;.j/lL;'/lML;.) = L (m;.m/l I L;'/lML1) Ij;.m;. ,j/lm/l)' 
m;..m/l (18) 

where (m;.m/l I L;'/lML;.) is the usual Clebsch-Gordan 

coefficient and 

Ij;.m;., j/lm,,) 

= [(L~)j;.-m;'(U)i/l+m"jAB] Ij;.mi;.,j/l - mill)' (19) 

with 

and 
A = [(2j/l)! U/l - m,,)!!U/l + mil)!]! 

B = [(2j;.)! U;. + m;.)!jU;. - m;.)!]!. 

If N is even and n). and nil are both even or odd, then, 
apart from an inconsequential phase, 

Ij;. - mi;.,j/lmi) = 10), 
while if N is odd and n;. and nil are of opposite parity, 

Ij;. - mi;. ,j/lm;/l) = (2)!{Jo 10). 

Use of the above results for the particular case of 
the d shell gives 

and 
l~l!);.(t)/lF3) = Mf3t 10) = atat 10) 

1~2(t);.(t)/lF2) = 2(f3t{Jo - ytyofJif3t){Jo 10) 

= at at a!1 10), 
while 

1~2(t);.(t)/lD2)t = 2(f3t{Jo + ytYoMf3t){Jo 10)R 

= -at 10), 

where the creation operators at are all associated 
with m. = +t. 

The construction of the states IjvJsLM L) t in the 
spin-down space proceeds in exactly the same manner 
except that the creation operators at are now all 
associated with m. = -to The states constructed for 
the spin-up and spin-down spaces may be coupled 
by the usual vector-coupling method to give the final 
I-shell eigenfunctions 

1(j;.j/l)Lt).ijvh)L~s; LML ) 

= L (ML)./lMLvS I LML) 
ML;'/l.ML vs 

X 1(j;.j/l)L)./lML;./IUvh)LvsMLv/. (20) 

These resultant eigenfunctions will not in general 
correspond to a definite number of particles, but will, 
however, involve either even or odd· numbers of 
particles. 

It should be apparent from the preceding discussion 
that no significant complications arise when treating 
pseudo two-particle configurations where j). y6 j/l or 
where j;. and j /l occur more than once in the decom­
position of the basic spin representation of R2!+1 to 
the group R3 • 

v. CALCULATION OF MATRIX ELEMENTS 

Any interaction may be expanded in terms of sums 
of products of tensor operators.3 In the case of 
equivalent electron configurations IN, the interactions 
may be expressed in terms of sums of products of the 
double tensor operators W(J<k), where 

and 

N 
W(Kk) = L W1Kk) 

i=1 

(sill W(Kk) Ils'I') = [(2K + 1)(2k + l)]!b(s, s')b(ll'). 

Judd6 has shown that the double tensors W(Kk) may be 
related to coupled products of the usual annihilation 
and creation operators, viz., 

W(Kk) = _(a+a)(Kk) 
"II "11 • (21) 

The annihilation and creation operators in Eq. (21) 
may be re-expressed in terms of the quasiparticle 
annihilation and creation operators using Eq. (8) and 
then decoupled to expose their spin dependence; 
for k odd this gives 

W;~k) = -U(st s! I K1T){(A'JI)~k) - (ft~)~k)} 

+ (s - t s! I K1T){('JI'JI)~k) - (U)~k)} 

- (s! s - ! I K1T){ (AA)~k) - (ftft)~k)} 

- (s - ! s - t I K1T){ ('JIA)~k) - (~ft)~k)}] 

(22a) 
and, for k even this gives 

W;~k) = -U(st st I K1T) 

X {(ft'JI)~k) - (M)~k) + b(k, 0)(21 + 1)!} 

+ (s - i sll K1T) 

x {(~'JI)~) - ('JI~)~k) + b(k, 0)(21 + 1)!} 

- (s! s - ! I K1T) 

X {(ftA)~k) - (Aft)~k) + b(k, 0)(21 + l)t} 

- (s - ! s - ! I K1T) 

X {(~A)~k) - ('JIft)~k) + b(k, 0)(21 + I)!}]. 

(22b) 
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All one-particle interactions can be expressed in 
terms of the quasiparticle operators of Eqs. (22a) and 
(22b) and the relevant matrix elements evaluated in 
the A, fl' '1', ~ spaces, i.e., for the pseudo four-particle 
configurations j;.jlJvig with states as defined in Eq. 
(20). 

The two-particle interactions will involve terms of 
the formI3 

~ [w!l<lkl)W~I<Sk2)](l<k)~ 
i*i 

= [W(/(lkl)W(/(2k2)](ICk)~ _ (_1)2!+2H I<H 

X [(2KI + 1)(2K2 + 1)(2kl + 1)(2k2 + I)]! 
X {ki k2 k}{KI K2 K}W(ICk)K. (23) 

Ills ss Q 

For scalar interactions where K = k = K = Q = 0, 
Eq. (23) reduces to 

2 (W!l<k) • W~"k» 
i*i 

= W(l<k) • W(ICk) _ [(2K + 1)2(2k + 1)2J! W(OO) (24) 
(41 + 2) , 

where KI = K2 and ki = k2 and we drop the subscripts. 
Having expressed the one- and two-particle inter­

actions in terms of quasiparticle operators, the matrix 
elements may be directly evaluated using the standard 
methods of tensor operators and angular-momentum 
recoupling,3 thus entirely eliminating the need for the 
fractional parentage coefficients that arise in the 
traditional evaluation of matrix elements. 

The use of tensor-operator methods requires the 
evaluation of the reduced matrix elements of the 
quasiparticle operators between quasiparticle states. 
The reduced matrix elements of the quasiparticle 
operators will be zero between states containing the 
same number of quasiparticles. The reduced matrix 
elements may be generally evaluated by expanding a 
particular component of the operator, say A~!l, 
together with the states of the bra and ket in terms of 
ordinary annihilation and creation operators, remem­
bering that the states are orthogonal, though not 
usually orthonormal. For the particular case of maxi­
mum i = i M in the space under consideration, a 
simple formula can be found, viz., 

<~ljMII A(!) 1I~2jM) 
= ±( _1)1 (~2IMII A(!) lI~dM) 

= ±( _1)/+2iM[2!(~M 1 ~M)J-I 
JM 0 JM 

= ±(2jM - I)! (2jM + 1+ 1)!j2]!j(2jM)!' (25) 

13 B. G. Wybourne, J. Chern. Phys. 48, 2596 (1968). 

where the plus sign is taken if A is A or 'I' and the minus 
sign if A is fl or r For example, we may readily 
deduce from Eq. (25) that 

<~I-!II A(2) 1I~2-!) = (to)!. (26) 

The matrix elements of the Coulomb repulsion 
may be readily calculated in the quasiparticle scheme 
by first noting that, for equivalent electron configura­
tions [N, we have3 

and, from Eq. (24), 

~ (W~Ok) • W~Ok» = W(Ok) • W(Ok) _ (2k + 1) Woo, 
i*i (41 + 2)! 

(27) 

and then expressing the matrix elements of W(Ok) in 
terms of the quasiparticle operators via Eq. (22b). 

The scalar operator Wci~O) is proportional to the 
number operator6 ~ t¢ar and for the d shell in the 
"spin-up': space will have eigenvalues N/(41 + 2)!, 
where N IS the number of particles, since in this case 
every state corresponds to a definite number of par­
ticles. For more general cases of particles, the eigen­
values of Wci~O) will reflect the mixing of particle 
numbers in the quasiparticle state. This sometimes 
leads to a simple method for expanding the pseudo­
particle states as linear combinations of the usual 
IINSLMsML ) states to within a phase. 

As an example of the above, consider the states of 
the f shell in the spin-up space. The states may be 
constructed in terms of pseudoparticles having 3 and 
o units of angular momentum, since, under R7 ~ R3 , 

we have ~ ~ [0] + [3]. Evaluation of the matrix 
element of w~gO) for the S-states for an even number of 
f-electrons proceeds in the pseudoparticle scheme as 
follows: 

(~1(3M3)1l; SOl W~~O) 1~1(3M3)1l; SO) 

= (2)-! <~1(3M3)1l; SOl (,uA)~O) 1~1(3h(3)1l; SO) + (1:)! 

= (2)-! (~1(3);.(3)1l; SII (,uA)(O) 1I~1(3M3)1l; S) + (14)! 

{

333} 4 
= (2)-! 3 3 3 (~1(3)1l11 ,u(S) 1I~2(3)1l) 

000 

x (~2(3hll A(3) 1I~1(3);.) + (1:). 
(14)! 

=28; 
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and since we must necessarily have 

1~1(3h(3)1'; SO) = a 1/45SMs = 2ML = 0) 

+ b I/° ISMs = OML = 0), 

we find a2 = t and b2 = i. Similarly, for an odd 
number offelectrons, 

1~2(3);J3)1'; SO) = a 1/34SMs = tML = 0) 

+ b 1/7 8SMs = fML = 0), 

where again a2 = i and b2 = k. The above two states 
will be orthogonal to the states 1~1(0).,(0)1'; SO) and 
1~2(0}.(0)1'; SO). 

To summarize, the matrix elements of any inter­
action may be calculated in the quasiparticle formalism 
by the following steps: (1) Express the interaction in 
terms of sums of products of the tensor operators 
W(Kk); (2) express the sums of products of the tensor 
operators W(Kk) as sums and products of the coupled 
products of the quasiparticle operators (AIL)(k), etc.; 
(3) calculate the matrix elements of the quasiparticle 
operators within the pseudo four-particle configura­
tion j).j I'jvj ~, evaluating the reduced matrix elements 
as required. 

VI. CONCLUSIONS 

The establishment of the complete group chain in 
Eq. (13) sheds further light on the role of the quasi­
particle formalism in atomic shell theory. The 
principal disadvantage of the quasiparticle scheme 

would seem to be the abandonment of the spin 
quantum numbers SMs and the formation of eigen­
functions involving an indefinite number of particles. 

The shortcomings of the quasiparticle formalism 
are partially compensated by the establishment of a 
remarkably rich classification scheme. Furthermore, 
the calculation of matrix elements in the quasi­
particle scheme requires little more than a knowledge 
of the theory of angular-momentum recoupling 
coefficients, and, if combined with the powerful 
diagrammatic methods of Jucys et al.,14 becomes a 
trivial problem readily amenable to machine calcula­
tion without recourse to the usual coefficients of 
fractional parentage. 

Finally, we should note that while the methods 
outlined here have been devoted solely to the case of 
shells of equivalent electron orbitals, there is no 
difficulty in extending these methods to mixed 
configurations. 
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A symmetric group analysis of the characters of U(N) and SU(N) representations yields formulas for 
(i) the multiplicities of weights in irreducible and tensor product representations, (ii) the coefficients 
occurring in the Clebsch-Gordan series decomposition of Kronecker products with an arbitrary number 
of factors, (iii) the content of irreducible and tensor product representations of U(~I NI) with respect 
to representations of its direct product subgroup, U(Nl) Q9 U(N2) Q9 ••• == Q91 U(Nj ), and (iv) the 
content of irreducible representations of U(NM) with respect to irreducible representations of U(N) Q9 
U(M). In particular, we exhibit formulas for (i), (ii), and (iii) containing only irreducible characters and 
Frobenius compound characters of the symmetric group. Under the application of an operator of the 
subgroup, Q91 U(Ni ) with ~; N; < N, a vector in a representation of U(N) transforms as a linear com­
bination of vectors in irreducible representations of the subgroup. We give formulas for determining the 
vectors occurring in such a linear combination. They are derived in a similar fashion to the formulas for 
(i), (ii), and (iii). In terms of weight diagrams, the formulas give the number of times a weight diagram 
of the subgroup's algebra occurs in the hyperplane generated by the application of the algebra to the 
weight of the U(N) vector in question. 

I. INTRODUCTION 

The generators of the U(N) algebra A~, i, k = I, 
.. " N, satisfy the commutation relations 

In U(N), the matrices representing the generators 
A~ , for i = 1, 2, ... , N, are diagonal, and we define 
the weight of a vector x in a U(N) representation to be 
W = (WI' W2 , ••• , WN ) with A:x = Wix for i = 1, 
2, ... ,N. In SU(N), the weight of a vector x with 
respect to the generators A! is defined in the same 
manner as for U(N). However, the weight of x with 
respect to the generators Hi' for i = 1,2, ... , N - 1, 
is W' = (W~, W~,···, WN_I ) with Hix = W/x. 
These definitions and Eq. (3) imply 

(1) 

One form of the generators of SU(N) also satisfies (1), 
but in addition must meet the requirements of trace­
lessness and 

N 
'Ai - 0 ~ i- . 
i=1 

(2) 

Another form of the generators and commutation 
relations of SU(N) is the Cartan form 

[Hi' H;] = 0, 

[H, EIX ] = [IXEIX' 

[EIX' E_IX ] = [IX' H, 

[E/X, Ep] = NlXpEIX+p, 

with H = (HI, H 2 , ••• , H N-l) an (N - I)-tuple of 
the generators of the Cartan subalgebra, EIX the 
generator corresponding to the root [IX' and NIXP a 
set of numbers. The generators A~ and Hi of SU(N) 
are simply related by 

W; = ISijW;, 
; 

(3') 

As a result of this simple relationship, we need only 
consider the weights with respect to the generators 
A~ in the remainder of the paper. 

In Sec. II we discuss the structure of the weights 
occurring in irreducible representations of U(N) and 
SU(N), and emphasize their inherent symmetric 
group (Weyl group) structure for later use in our 
analysis of characters. 

The characters of U(N) representations are analyzed 
in Sec. III in order to derive formulas for (i) the 
multiplicity of a weight in a reducible or irreducible 
representation [Eq. (21) below], (ii) the coefficients 

where 

SiS = 0, 

Hi = I S;;A~, 
j 

for j > i + 1, 

(3) occurring in the Clebsch-Gordan series decomposi­
tion of Kronecker products with an arbitrary number 
of factors [Eqs. (27) and (33) below], (iii) the content 
of any irreducible or tensor product representation of 

Si; = -[i/(i + 1)]*, 

Sij = [i(i + 1)r*, 
for j = i + 1, STS = 1, 

for j < i + 1. 

• Research sponsored in part by the Air Force Office of Scientific 
Research, Office of Aerospace Research, U.S. Air Force, under 
AFOSR contract grant number 69-1629. 

U(Ii Ni ) with respect to representations of its direct 
product subgroup U(N1) ® U(N2) ® ... == 0i U(N.) 
[Eqs. (24) and (35) below], and (iv) the content of an 
irreducible representation of U(NM) with respect to 
representations of U(N) ® U(M) [Eq. (36) below]. 

2156 



                                                                                                                                    

CHARACTER ANALYSIS OF U(N) AND SU(N) 2157 

Of course, the results we obtain are not indis­
pensable for present-day physics since the group 
representations of current physical interest can be 
handled quite well by traditional techniques. However, 
besides being useful for more complex cases, our 
results do demonstrate the interesting fact that one 
may obtain all class properties (i.e., properties un­
affected by similarity transformations) of the unitary 
groups from purely symmetric group considerations. 
To be more precise, all formulas developed in Secs. 
III and V can be derived strictly within the theory of 
symmetric functions l and expressed solely in terms 
of characters of the symmetric group. Furthermore, 
one may use the formulas of Sec. III to find the con­
tent of Kronecker products of symmetric group 
representations, and the content of symmetric group 
representations with respect to subgroups. 

The orthogonal and symplectic groups may be 
analyzed in a similar fashion to our analysis of the 
unitary groups with the role of the symmetric group 
assumed by the "octahedral" groups. 

Several papers have appeared2 on formulas for 
weight multiplicities and Clebsch-Gordan series 
coefficients. Kostant derived a formula for the 
multiplicity of a weight in an irreducible representa­
tion of a semisimple Lie algebra. Straumann has given 
formulas for the decomposition of irreducible repre­
sentations of semisimple Lie algebras with respect to 
semisimple subalgebras. Steinberg developed a for­
mula for Clebsch-Gordan series coefficients. Our corre­
sponding results [Eqs. (21) and (25)] for multiplicities 
and Clebsch-Gordan series coefficients are expressed 
in a simpler form and appear to be more useful for 
computational purposes. We obtained simplified 
equations because we dealt only with the unitary 
groups. In addition, we were able to express our 
results solely in terms of symmetric group characters. 
There has been other work done on specific Lie 
groups. Gruber derived formulas for Clebsch-Gordan 
series coefficients for the groups SU(N), SO(2N + 1), 
SO(2N), and G2 • Biedenharn, Gruber, and Weber 
have extended Kostant's formula to the noncompact 
group SU(2, 1). 

Hagen and MacFarlane have developed a recursive 
procedure for calculating the subgroup content of 

1 S. Blaha, "The Calculation of the Irreducible Characters of the 
Symmetric Groups in Terms of the Compound Characters," J. 
Combinatorial Theory (to be published). 

2 N. Jacobson, Lie Algebras (Interscience Publishers, Inc., New 
York, 1962), Chap. 8; B. Kostant, Trans. Am. Math. Soc. 93, 53 
(1959); N. Straumann, Helv. Phys. Acta 38, 56 (1965); N. Strau­
mann, Helv. Phys. Acta 38, 481 (1965); B. Gruber, Ann. Inst. Henri 
Poincare 8, 43 (1968); L. C. Biedenharn, B. Gruber, and H. J. Weber, 
Proc. Roy. Irish Acad. 67A, 1 (1968); C. R. Hagen and A. J. Mac­
Farlane, J. Math. Phys. 6, 1355 (1965); C. R. Hagen and A. J. 
MacFarlane, J. Math. Phys. 6, 1366 (1965). 

representations which is based on an analysis of 
symmetric functions. Our results, besides applying 
to more general cases, are in the form of closed 
formulas and are not of a recursive nature. 

In Sec. IV we discuss an orthogonal tableau basis 
for U(N) irreducible representations (the Gel'fand 
basis of Baird and Biedenharn3) for use in Sec. V. 
We define a U(N) state to be a vector in the orthogonal 
basis of some U(N) irreducible representation. Each 
U(N) state is an eigenvector of the Casimir operators 
of the chain of subgroups U(N - 1), U(N - 2),' .. , 
U(l), and the set of these eigenvalues together with the 
state's weight constitute a complete set oflabels for the 
state. In addition, each U(N) state x transforms as 
a state in an irreducible representation with partition 
flv of the subgroup U(p) with respect to the operators 
of U(p) for p = N - 1, N - 2, ... , 1. The set of 
these (N - 1) partitions flv are an alternate set of 
labels to the subgroup Casimir operator eigenvalues. 
We show how to find the (N - 1) partitions and 
subgroup Casimir operator eigenvalues from the 
numbered tableau labeling a state. 

In Sec. V we find the transformation properties of 
a U(N) state with respect to a subgroup of the form 
®i U(Ni ) with !i Ni ::;; N. In general, the state x 
transforms like a linear combination of states in 
irreducible representations of the subgroup if one 
applies an operator of the subgroup to x. We develop 
a procedure for finding the states occurring in that 
linear combination. The procedure results from an 
analysis of the character of U(N) in a similar fashion 
to the analysis of Sec. III. In terms of weight diagrams, 
our procedure finds the weight diagrams of irreducible 
representations of the subgroup lying in any hyper­
plane of the weight diagram of the U(N) irreducible 
representation. 

II. THE STRUCTURE OF THE WEIGHTS IN 
REPRESENTATIONS OF U(N) AND SU(N) 

In this section, we develop a simple method for 
finding the weights occurring in an irreducible 
representation of U(N) or SU(N) for later use in 
Secs. III and V. 

To the defining representation of the group U(N) 
corresponds an N x N matrix representation of its 
algebra in which the matrix corresponding to the 
generator Ai is given by 

(4) 

with fl and v labeling rows and columns respectively. 
As a result, the N weights Vi, for j = 1, 2, ... , N, 

• G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4,1449 (1963). 
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called the fundamental weights of U(N), are given by 

(5) 

with i = 1, 2, ... , N labeling the components of the 
vector. For SU(N) one need 'only subtract the trace 
~iAlvjN on the right side of (4) to obtain the corre­
sponding representation of its generators A~. Con­
sequently, the N fundamental weight vectors of SU(N), 
W;, have their ith coordinate given by 

(5') 

Before dealing with the weights of other irreducible 
representations of U(N) and SU(N), we make the 
following definitions and conventions regarding 
partitions and Young tableaux. A partition of the 
integer m is a set of integers whose sum is m and is 
written in two forms (following the notation of 
MacMahon4), 

fl = fl1fl2 ••• == 1 k12ks •.• , 

with fllfl2 .•• the set of integers placed in nonincreas­
ing order going to the right (i.e., fl1 ~ fl2 ;;::: ••• ) and 
with k1 of the integers being I's, k2 of the integers 
being 2's, .... Each of the integers fli is called a 
part of the partition. We define the following addition 
and subtraction of partitions for fl = fllfl2 ••• = 
1 k12k2 ••• and v = V1V2 ••• = 1 m'2m2 ••• by 

fl + v = 1X11X2 ••• , (6a) 

fl - v = fM32 ••• , (6b) 

[(fl)(v)] = lk,+m12k2+ms ••• , (6c) 

with lXi = fli + Vi and Pi = fli - Vi' We write fl > v 
if the first nonzero difference fli - viis greater than 
zero. 

Young frames are labeled by the partition of their 
row lengths. A standard tableau is any frame whose 
boxes have been filled with integers in such a way 
that the integers are nondecreasing going to the right 
in any row, and strictly increasing going down any 
column. We define -rz to be the set of all distinct 
standard tableaux which can be formed from the frame 
fl and all choices of integers (with repetitions of inte­
gers allowed) from the set {I, 2, ... , N}. 

To each irreducible representation of U(N) there 
corresponds a unique Young frame; and to each 
irreducible representation of SU(N) there also corre­
sponds a unique Young frame modulo columns of 
length N. In each case we use the frame's partition to 
label the irreducible representation. It has been shown3 

that one can label each of the basis vectors of repre-

'P. A. MacMahon, Combinatory Analysis (Chelsea Pub\. Co., 
New York, 1960), p. 1. 

sentation fl of U(N) or SU(N) with a tableau from 
-rz such that the weight of the basis vector is given 
by 

N 

V = LPiVi 
i=1 

in U(N), and 
N 

W = LPiWi 
i=1 

in SU(N), with Pi being the number of boxes in the 
labeling tableau containing the integer i. If 

N N 
r = L Pi = L fl;, fl-= fllfl2 •• " 

i=1 i=1 

then the jth coordinates of V and Ware related by 

(W); = (V); - rj N. (7) 

Due to the simple relation between the weights of the 
irreducible representations fl of U(N) and SU(N), the 
remainder of Sec. II applies equally well to U(N) and 
SU(N), though we confine our discussion to U(N). 

In Table I we present the representation 21 of U(3) 
as an example of the labeling of states with ~1 and their 
corresponding weights. It is apparent from the 
example and the definition of -rz that more than one 
state in an irreducible representation may have the 

TABLE I. Tableau states and weights of the 
representation 21 of U(3). 

State Weight 

l[p 3 > (2,0, 1) 

1[p 2 > (2, 1,0) 

1 fWJ > (1,2,0) 

1 ill] 3 > 
(0,2, 1) 

1 rniJ > (0,1,2) 

1[p > (1,0,2) 

1~> (1,1,1) 

1 ~iJ > (1,1,1) 
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TABLE II. Weyl class structure of the representations 42 of U(5) and SUeS). 

Weyl class v M42 • U(N) 

42 (4, 2, 0, 0, 0) 

41" (4,1,1,0,0) 

32 (3, 3, 0,0,0) 

321 2 (3,2,1,0,0) 

31" 3 (3,l,I,I,0) 

23 3 (2, 2, 2, 0, 0) 

22P 4 (2, 2, 1, l, 0) 

21' 6 (2,1,1,1,1) 

same weight. The multiplicity of a weight in an 
irreducible representation is the number of states 
which have it as a weight. Thus we have a method3 of 
computing the multiplicity of a weight Y = (VI' 
V2, ••• , V N) in irreducible representation fl by 
counting the number of standard tableaux which can 
be formed from frame fl, and VI ones, V2 twos, ... , 
and V N N's. In Sec. III we present explicit formulas 
for computing multiplicities which do not rely on 
counting tableaux. 

The weights of U(N) representations may be 
divided into equivalence classes using the Weyl group 
which is the group of all permutations of the co­
ordinates of a weight. For U(N) the Weyl group is 
S N' the symmetric group on N objects. All weights 
of an equivalence class are equal to within a permuta­
tion of the Weyl group. As a result, we can define the 
partition of a Weyl class to be the partition whose 
parts are the coordinates of any weight in the class. 
The dominant weight of the Weyl class 11 = 111112' •• 

is ~i lIiyi. The highest weight of the representation 
fl = fllfl2 ... is ~i fliyi. 

We define M: to be the multiplicity of each weight 
in the Weyl class 11 of the representation fl. (All 
weights in any Weyl class of a representation have the 
same multiplicity.) As examples, we give tables of 
M: in Appendix A for each irreducible representation 
of U(N) corresponding to a partition of any integer 
less than eight. 

At this point, we have a simple method of obtaining 
all weights of an irreducible representation fl. The 

Dominant weights 

SU(N) 
SU(N) (Cartan form) 

H4, 4, -6, -6, -6) (y2, y6, y3, :5) 
HI4, -1, -1, -6, -6) (:2 ' J~ , y3, :5) 
-1(9,9, -6, -6, -6) (0, y6, y3, :5) 
H9,4, -1, -6, -6) (~2 ' J~ , y3, :5) 
H9, -1, -1, -1, -6) ( y2, J~ , ~3 ' :5) 
H4, 4, 4, -6, -6) (0, J~ , y3, :5) 
t(4,4, -1, -1, -6) (0, J~ , ~3 ' :5) 
t(4, -1, -1, -1, -1) (1 1 1 1) 

y2 ' y6 ' y12 ' y20 

Weyl class 11 (11 of course has less than N + 1 parts) 
occurs in the representation fl if M: is nonzero, and, 
as a result, all weights may be obtained by applying 
permutations to the dominant weights of the classes 
occurring in the representation. One can obtain the 
weights of the two forms of SU(N) through the use of 
Eqs. (7) and (3'). As an example, we present in 
Table II the partitions, multiplicities, and dominant 
weights of the representations 42 of U(5) and SU(5) 
which have dimension 420. 

III. CHARACTER ANALYSIS OF U(N) REPRE­
SENTATIONS 

In this section, we analyze the characters of U(N) 
representations in order to obtain formulas for 
multiplicities, the content of representations of U(N) 
with respect to subgroups of the general form 
U(NI ) @ U(N2) @ ••• @ U(NlI) = ®i U(Ni) (~i Ni = 
N), the content of irreducible representations of 
U(NM) with respect to representations of U(N) @ 

U(M), and the coefficients occurring in Clebsch­
Gordan series reductions. 

The characterS of the irreducible representation fl of 
U(N) is a function of Nvariables q, = (cPl,cP2,'" ,cPN): 

X/l = ! exp (iV· q,), (8a) 

where the sum is over all weights V in fl. For the 
corresponding SU(N) representation fl, the sum is 
over all SU(N) weights of fl with the variables q, 

5 H. Wey\, The Classical Groups (Princeton University Press, 
Princeton, N.J., 1939), p. 134. 
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restricted by the condition L~l 1>i = O. Owing to 
this restriction and Eq. (7), the characters of repre­
sentation I' of U(N) and SU(N) are identical if I' has 
no columns of length N; they are equal to within a 
phase exp Uk L~=l 1>p) with k the number of columns 
of I' of length N, otherwise. Therefore, all succeeding 
results apply to SU(N) as well as U(N) if one drops 
columns of length N from frames (and partitions) 
after performing all indicated operations. 

In Sec. II we showed that the weights of an irreduc­
ible representation may be divided into Weyl classes in 
which each weight of the class may be obtained by 
applying some S N permutation to the dominant 
weight. In particular, one need only apply a subset of 
the permutations of S N to obtain all weights of the 
class: For the Weyl class 'JI = 1"'2P3r ••. with IX + 
fJ. + y + ... = k, one applies 

N!/(N - k)! IX! f3! y! ... 

permutations, which is the number of distinct weights 
in the class. We call Sv this minimal set of permuta­
tions. If the weight V = Ii f3iVi and we let Xk = 
exp (iVk

• cp) = exp (i1>/c), then 

exp (iV • ct» = X~lX~2 ••• X~N. 

We may therefore rewrite (8a) in the form 

(8b) 

where we sum over partitions 'JI and the permutations 
Q of Sv, and we let X~VIX~V • ••• x~VN = xQv. 

Another well-known6 form for U(N) characters is 

L bp exp [iP(V" + RN)·ct>] 
PeSN 

x" = 

where RN = (N - 1, N - 2,"',0), V" = Iil'iVi, 
and ~ P is the signature of the permutation P. In the 
notation of (8b) this becomes 

X" = L bpxP("+RN)/ L bQXQRN • (9) 
PeSN Qe8N 

Equations (8) and (9) can be shown to be equivalent 
using the Frobenius equations in the theory of sym­
metric functions. In particular, if 

N 
Sr = L x~ for r = 1,2, ... , N, 

• =1 

6 Reference 5, p. 200. 

if K = 1k12k2 • •• is a partition,and if 

DN(x) = II (Xi - Xi) = .z bQX QRN, 
i<i Qe8N 

then7 [in the notation of (8b») 

SIC = S~lS~2 ••• = L 1>~ L x Q" (10) 
" QE8" 

and 

SKDN(X) = LX! L bpxP(HRN), (11) 
;. PeSN 

where rp~ is a Frobenius compound character and X~ 
is an irreducible character of the symmetric group. 
It has been shown8 that 

..!p. =' MVXv 
'PI( k JJ K' 

V 

(12) 

where the integers M~ will turn out to be multiplicities 
previously defined. From Eqs. (10)-(12), we have 

'2:, M;X: '2:, xQ" = '2:, X! '2:, bpxP(HR.v) / D~x). 
/l.v Qe8p. ;. PeSN 

If we multiply by(gK/g)X~ (gK is the number of elements 
in class K, and g = N! is the number of elements in 
SN) and sum over K, we obtain 

! M! '2:, x Q" = '2:, bpXP(P+RN)/DN(x) (13) 
/l QeS" PeSN 

(using the orthogonality of irreducible characters of 
the symmetric group), which demonstrates the 
equivalence of (8) and (9) and establishes a formula 
for multiplicities, 

M~ = (1/ g) '2:, g",X:1>:, (14) 

using Eq. (12) and the orthogonality of irreducible 
characters. Below, we will derive another method for 
calculating M~ via recurrence relations. 

The integration volume element of U(N) isS 

(2.-... (2lT drpl drp2 ... drpN D~x)DN(X) =fdU 
Jo Jo N! (27T)N 

(15) 

and the orthogonality condition for the characters is 

J dUXvX" = b/lv, 

with (l/lV a Kronecker delta in partitions, DN(x) the 
complex conjugate of DN(X) , and Xv the complex 
conjugate of XV' 

Next, we show that, in the reduction of the irreduc­
ible representation I' of U(M + N) with respect to the 

'D. E. Littlewood, The Theory of Group Characters (Oxford 
University Press, Oxford, England, 1950), pp. 63, 67 . 

• Reference 7, p. 71. 
• Reference 7, p. 219. 
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direct product subgroup U(N) @ U(M), the number 
of times ~ @ fJ appears [~ is an irreducible representa­
tion of U(N) and fJ of U(M)] is given by 

.N':@p = ! bpbQM[(<x+RN-PRN)(P+RM-QRM)] ' (16) 
PeSN 
QeSM 

where [(~ + RN - PRN)(fJ + RM - QRM)] is eval­
uated in accordance with the definitions of Sec. II, 
and terms in the sum are ignored when either expres­
sion ~ + RN - PRN or fJ + RM - QRM has 
negative parts. Note that the sum of the parts of ~ 
and fJ must equal the sum of the parts of f-l. For 
example, the representation 321 of U(6) contains the 
representation 21 @ 21 of U(3) @ U(3) twice, 

.N'321 ~ ~ ~ M 321 
21@21 = k UpUQ [(420-P(210»)(420-Q(21O»] 

PeS. 
QeS. 

321 321 321 = M 2•12 - 2M321 + M 3" = 2, 

since M:rf. = 4, M::i = I, and M:i1 = O. 
The proof of (16) starts with the standard character 

expression, 

.N':@p = f dU dViiU)ipCV)xp 

=f dcJ> d~DN(X)DM(Y) ! bsX-S(<x+RN) 

N! M! (27T)N+J1 SeSN 

X ! bTy-T(P+RM) ! M~ ! zQv, (17) 
TeSM QeSv 

where cJ> = (4)1,4>2' ••• , 4>N)' ~ = ("PI' "P2, ••. , tp M), 
X; = exp (iV;. cJ» = exp (i4>;) for j = I, 2, ... ,N, 
Y; = exp (iV; .~) = exp (i'll';) for j = I, 2, ... , M, 
and zY = xFx~" .. xifYIN+l . .. y~+M for Y = (Yl' 
Y2' ... , YN+M)' The product 

! bpXPRN ! bvyVRM ! bsX-S(<x+RN) 

PeSN VeSM SeSN 

X I bTy-T(fJ+RM) I M~ .2 zQv (18) 
TeSM QeSv 

can be written as a sum over monomials: 

No monomial with one or more of the exponents 
a, ... , b, c, ... ,d nonzero, will contribute in the 
integral of (17). Thus, 

N! M! .N':@p 

=! ! ! !!! bpbvbsbTM~, (19) 
PeSN VeSM SeSN TeSM v QeSv 

where the summations are restricted by the condition 
o =PRN - S(~ + RN) + QV(N) and 0 = VRM -
T(P + RM) + QV(M) with QV(N) = (Qv1, Qv2,'" , 
QVN) and QV(M) = (QvN+1' QVN+2' ... ,QvN+-M)' The 

restriction on the summations can be rewritten as 
Qv = [(S(~ + RN) - PRN)(T(fJ + RM) - VRM)]. 
Thus, Q and v are determined if ~, p, S, P, T, and V 
are given. Therefore, the restriction on the summa­
tions may be implemented by dropping the sums over 
v and Q after making the convention to ignore the 
order of entries in the subscript v of M: (i.e., M: = 
M~v for all Q) and substituting the expression for 
Q'I' in M: in Eq. (19): 

N! M! .N':@/J =.2 .2 .2 .2 bpbsbvoT 
PeSN SeSN VeSM TeSM 

X M[(S(<x+RN)-PRN)(T(fJ+RM)-VRM)] 

= ! I I.2 bS-lpbT-lp 
P S V T 

X Mf(<<+RN-S-1 PRN)(P+RM-T-1VRM) I' 

(20) 

using bsop = bS-lP , bvbT = b T - 1V and the conven­
tion previously stated to write M~SY)(Ta)1 = M~r)(a)l 
[with S(~ + RN) - PRN = S(~ + RN - S-lPRN) 
and 

T(fJ + RM) - VRM = T(fJ + RM - T-IVRM)]. 

If we let H = S-lp and G = T-l V, then 

and 

in Eq. (20), and we obtain Eq. (16). 
In the case M = 0, Eq. (16) can be used to compute 

multiplicities. Since we may drop fJ, fJ + RM - QRM' 
and the sum over Q, Eq. (16) results in 

(21) 

with .N'~ = b~, a Kronecker delta in partitions. The 
reduction of any irreducible representation f-l of 
U(N) with respect to the trivial subgroup U(N) 
yields f-l and only f-l exactly once, resulting in the 
Kronecker delta in (21). An example of Eq. (21) is 

O~. = M~3 - 2M~21 - M~2 + M~1. + M~2. 
From this example it is clear that one may choose N 
to be the number of parts of ~ without loss of gener­
ality. Equation (21) gives a recurrence relation for 
M: in terms of M: where ~ > v. Since Eq. (21) implies 
M~ = 0 for v > f-l and one for f-l = v, we can find the 
multiplicities in any representation f-l recursively. The 
matrix of M: for all pairs of partitions f-l and v of 
the integer m is presented in Appendix A for m = 2, 
3, .. " 7, and, as a result, one has the multiplicities and 
Weyl classes for each representation of U(N), corre­
sponding to a partition of any integer less than eight 
by inspection of these tables. 
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Equation (21) could have been written in the form i A special case of this is 

(21') 

where n; is the matrix inverse to the M: matrix (with 
partitions labeling rows and columns). In general, 
any equation of the form 

Zv = ~ bPYv+RrPR"l (22a) 
PeSN 

has the equivalent form 

Zv = ZB~Yp. (22b) 
p 

In Appendix B, we present tables of n: to aid in the 
evaluation of formulas of the preceding type. Explicit 
formulas for certain classes of the coefficients n: have 
been given elsewhere. l One can thus evaluate (16) in 
the following form: 

For typographic convenience, we use the equivalence 
of (22a) and (22b) to write formulas in terms of the 
coefficients n: whenever possible in the remainder of 
this paper. Some general properties of the coefficients 
M: are the following: 

(i) M~ = 0 if'll> fl; 

(ii) Mim = Xim, the dimension of the irreducible 
representation fl of S N ; 

(iii) M:' = 1 for all (X; 

(iv) M~ = 1 if fl = 'II; 

N' MIL p'" 
(v) ~ . Z 1~2 = the dimension 

kSN(N - k)! ~.p .... (X! fJ! ... 
~+/l+"'~k 

of representation fl of SU(N). 

Property (iii) implies that all weights of U(2) have 
multiplicity one, as is well known. 

If we apply Eq. (16) to the case U(N - 1) @ U(l), 
we have 

X~®j = I B~M[(v)(j)], (23) 
v 

where j is an integer, 0 S j S fli. 
Equation (16) can be generalized to give the content 

of the reduction of the representation fl of U(~~~I N i ) 

with respect to the direct product subgroup 
@~~I U(NJ The number of times f-l contains pI @ 

p2 0 ... @ pk = @i pi [where pi is an irreducible 
representation of U(Ni )] is 

(24) 

(24') 

where (Xi is an integer for all i and (X = OCI (X2(X3 ••• OCk is 
a partition. 

We now consider the Clebsch-Gordan series reduc­
tion of tensor products of irreducible representations 
in U(N). We will establish that the number of times 
the irreducible representation fl occurs in the tensor 
product of oc and fJ, denoted by oc @ fJ, with fl, (x, and fJ 
irreducible representations of U(N), is 

(25) 

where 

(26) 

is the multiplicity of the Weyl class y in the tensor 
product representation (X 0 fJ of U(N). Equation (26) 
reflects the fact that the weight y in oc 0 fJ is the sum 
over all possible pairs of weights y - Q'II in oc and Q'II 
in fJ. The contribution to the multiplicity M~®fJ for a 
particular y - Q'II and Q'II is M;_QvM~v = M;_QvMe. 

The proof of Eq. (25) starts with the standard 
expression 

.N'~®fJ -f d<l> D(x)D (x)- -
Il - (27T)NN! N N X~XfJXIl 

=f d<l> Z b x-PRN Z M~ 
(27T)NN!pesN

P 
v v 

X Z [Qv ~ M~ I x-Ty I 0SX S (Il+RN). 
QeSv y TeSy SeSN 

As in the previous proof, we have 

N! X:®fJ = I I Z z z I bposM~M~, 
PeSN v QeSv y TeSy SeSN 

where the sums are restricted to satisfy 

If we implement the restriction by letting 

M~ = M~-l[S(Il+RN)-PRN-QVl = M~(Il+RN)-PRv-Qv 

and by dropping the sums over y and TeSy, then 

N! X:®P = ~ ~ Z ~ bposM~M~(Il+RN)-PRrQv 
PeSN SeSN v QeSv 

= L I Os-lpM:~~N-S-lpRN· 
PeSN SeSN 

Using Eq. (26)"Opos = 0S-IP and M'F/f/P = M~®P for 
any permutation S and partition 71'. Ifwe let U = S-Ip, 
then ZPeSN ZsesN = N! LUesN in the previous equa­
tion, which proves Eq. (25). 
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Equations (25) and (26) have simple generalizations 
to tensor products with an arbitrary number of factors 
(0 oci = oct @ oc2 @ ••• @ ockH): 

Another formula for .N'~®P which can be derived in a 
similar fashion to Eq. (25) and has been given by 
WeyPO is 

(29) 

Equation (26) can be expressed solely in terms of 
characters of the symmetric group 

M~®v = ~ ~ M~_QyM; 
y QE8 y 

= "" "" "" "" g"g~ /l-l.Il-Qy V-l.Y 
£., £., £., £., ,XA '/' A X",/,,, 
y QE8y" A gg 

= "" "" grcg~ v /l "" "" -I.Y-l.Il-Qy £., £., ,XrcXA £., £., ,/,,,,/, A 
" A gg y Qe8y 

"" "" g"g~ V /l-l.1l = £., £., --, X"X;. 'I'[(")(A)I' 
" A gg 

(30) 

using Eq. (14) with g" and g from the symmetric group 
of which X; is a character, and gl and g' from the 
symmetric group of which X~ is a character. We also 
use the identity 

CP[!rdW] = ~ ~ cP~cP~-QY, 
y Qe8y 

which has been proven elsewhere.! In general, 

l' P x X" X" ... X" -I./l A1 A. Ap ,/,1!Al)(A.)·· '(Av)1 • (31) 

Using the identityl 

Xe = ~ B~cp~ , (32) 
fJ 

Eqs. (31) and (27) yield 

1. P 

X X,t1X~, ••• X~.Xt!A1)(A.)" '(A.)]' (33) 

10 Reference 5, p. 231. 

A special case of (31) is (0f::l I = I @ I @ ••• @ I), 

which implies 

and shows that the X~. Young projection operators 
corresponding to the frame ex are sufficient to project 
out all .N' ~i 1 (differently constructed) representations 
ex in a totally unsymmetrized tensor with p subscripts. 

Now we show that 

(34) 

which expresses the multiplicity of a Weyl class in a 
tensor product representation as a sum over the 
multiplicities of the Weyl class in irreducible repre­
sentations occurring in its Clebsch-Gordan series 
decomposition. Multiplication of Eq. (27) by M: 
and summation over I' yields Eq. (34) immediately by 
Eq. (21'). 

We now calculate the content of the tensor product 
representation ex ® f3 of U(N + M) [ex and f3 are 
irreducible representations of U(N + M)] when 
reduced with respect to the subgroup U(N) @ U(M). 
In particular, the number of times the representation 
I' @ v of U(N) @ U(M) [I' is a representation of 
U(N) and v of U(M)] occurs in the reduction of 
the tensor product ex @ f3 is 

The proof of (35) starts with the identity 

.N'''®P - "" .N'1l®P.N'Y 
/l®V - £., Y /l®V' 

Y 

(35) 

(35') 

where the sum is over all representations y of 
U(N + M) occurring in the Clebsch-Gordan series 
decomposition of ex @ f3. If we use Eq. (16'), we 
obtain 

.N'~~e = ~ .N'~®P ~ ~ B!B~Ml{).)(")1 
y A " 

= ~ ~ B;B~ ~ .N'~®PMrw(,,)], 
A " y 

which results in Eq. (35) due to Eq. (34). Equation (35) 
can be easily generalized in the manner of Eqs. (24) 
and (27). 

The number of times the representation ex @ f3 of 
U(N) @ U(M) occurs in the reduction of the irreduc­
ible representation I' of U(NM) is given by 

(36) 
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where the partitions 

(QA)N = 1 V iN+! , 1 VJN+2'" ',1 VU+l)N (

M-l M-I M-l) 

j=O j=O j=O 

and 

(VI' V2"", VNM) = Q(AI' A2 ,"', ANM )· 

Equation (36) follows from the expression 

with XjNH = y~j+l for j = 0, I, ... , (M - I) and 
k - 1 2 ... N' Y = exp (i..l. ) for k = I 2 '" N 

- " "k 'fIk '" 

and Zj = exp (itpj) for} = 1,2, ... ,M. Equation (36) 
can be directly generalized to the reduction of irreduc­
ible and tensor product representations of U(il; N;) 
with respect to ®; U(Ni)' 

IV. SUBGROUP LABELING OF U(N) STATES 

Baird and Biedenharn3 have shown that a complete 
set of labels for a state x in a U(N) irreducible repre­
sentation is given by its weight and eigenvalues with 
respect to the Casimir operators of the chain of sub­
algebras U(N - I), U(N - 2), ... ,U(I) [with the 
subalgebra U(p) defined to have the generators A~, 
for all i and j less than p + 1]. Since x is an eigenstate 
of the Casimir operators of the sub algebra U(p), it 
transforms as a state in an irreducible representation 
ft1' of U(p) with respect to the operators in U(p) for 
p = N - I, N - 2, ... , 1. The N - 1 partitions 
ft1' constitute an alternate set of labels to the Casimir 
operators' eigenvalues. We show how to obtain these 
partitions from the tableau labeling x for later use in 
Sec. V. In addition, one can calculate the Casimir 
operator eigenvalues of x from the partitions ft1' with 
the formula of Perelomov and Popovll : 

1J 

Cq=LL~- L LL~L~+"'+(-l)q l 1, 
i=l IZ+JJ=q-l i < j il <i2 < ... <iq 

where q ~ p, and Li = ftf + p - i with ft1' = 
ftfft~ .• '. Cq is the eigenvalue of the U(p) Casimir 
operator of qth degree. 

The development of the tableaux basis in Sec. II 
only specified the tableaux labeling of U(N) states to 
the extent that it assigned a set of tableaux to each set 

11 A. Perelomov and V. Popov, JETP Letters 1,160 (1965). 

of states having a given weight, with the number of 
objects in each set being the same. We now complete 
the labeling of states in irreducible representations by 
requiring the tableau labeling of a state x to be such 
that the removal of all boxes containing integers 
greater than p from the tableau results in a new 
tableau whose frame ft1' gives the transformation 
properties of x with respect to U(p) for p = I, 2, ... , 
N - 1. As a result, one may read off the partitions 
ft1' of the subgroup irreducible representations from 
the tableau labeling x. 

The proof that one may consistently label the orthog­
onal states of an irreducible representation of U(N) 
with tableaux as described above follows from a 
simple construction. In the irreducible representation 
A of U(N), let Xl' X 2 , ••• , Xb be the states with weight 
V. Each state Xi is labeled by N - I partitions ftf, 
with p = I, 2, ... , N - I. Construct a tableau 
for each Xi by (1) placing ft} ones in the first row of 
frame A, (2) adding twos in such a way that the boxes 
containing ones and twos correspond to frame ft~ , and 
(3) adding threes in such a way that the numbered 
boxes correspond to frame ft:,···. That there 
exists a way of placing the integer p in boxes such 
that one can go from partition ftf-l to ftf in the con­
struction follows from (i) the theorem12 giving the 
irreducible representations of U(p - I) lying in the 
irreducible representation ftf of U(p) and (ii) 
the block diagonality of the U(p - 1) operators 
with respect to the U(p) operators in U(N). 

Each tableau constructed above is a standard 
tableau in -rf which is distinct from the tableaux of 
the other states with weight V. Thus our method of 
obtaining the subgroup partitions labeling a state from 
the state's tableau is valid. In fact, it is a direct 
generalization of the procedure for finding the 
Yamanouchi symboP3 of a tableau in a symmetric 
group representation. 

V. TABLEAU STATES AND ARBITRARY 
UNITARY SUBGROUPS OF U(N) 

In Sec. IV, we developed a procedure for finding 
how a tableau state of U(N) transformed with respect 
to the subgroup U(p) consisting of the generators 
A~, for i, k = I, 2, ... , p. It was noted that each 
tableau state transformed as a state in one irreducible 
representation of U(p) , for p = I, 2, ... , N - I. 
However, if we examine the transformation properties 
of a U(N) state with respect to an arbitrary subgroup 

12 H. Boerner, Representations of Groups (North· Holland Pub!. 
Co., Amsterdam, 1963), pp. 161, 164. 

13 M. Hamermesh, Group Theory (Addison-Wesley Pub!. Co., 
Reading, Mass., 1962), p. 221. 
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of the form U(NJ ® U(N.;) ® ... ® U(Nr~.' with 
!r=l Ni :s: N, we find that the U(N) state transforms 
as a linear combination of states in different irreduc­
ible representations of the subgroup. Furthermore, an 
irreducible representation may occur more than once 
in the linear combination, just as an irreducible 
representation may occur more than once in the 
Clebsch-Gordan series of a tensor product. In this 
section we develop methods for finding the irreducible 
representations and the number of times they occur 
in the linear combination transforming like a U(N) 
tableau state with respect to a subgroup. 

The subalgebra U(p) in the integers iI' i2, ... , ip 

is defined to contain only the generators Afc of U(N) 
such that j and k are integers from the set iI' i2, ... , 

ip • Given a weight V in an irreducible representation 
of U(N), we define the U(p) hyperplane of V to be 
the set of all weights which can be generated from V 
by the application of operators in the U(p) algebra. 
In terms of weight diagrams, a U(p) hyperplane is on 
a geometrical hyperplane in the weight diagram of 
the U(N) representation, and, in general, it contains 
the superimposed weight diagrams of several U(p) 
irreducible representations. 

Given a weight V = (VI' V2 , ••• , VN ) of the irre­
ducible representation", of U(N), we wish to find how 
the states associated with its transform with respect 
to the subalgebra @~=1 U(N;), with .2; N; = Nand 
U(Ni ) a subalgebra in the integers p{, p~, ... ,P~i' 
Let pi be the partition whose parts are the integers 
Vp,i, V

P2
i, ... , V

PN
/; for j = 1,2, ... ,k. The parti­

tion pi labels the Weyl class of the weight with respect 
to U(Nj ). 

If we apply Eq. (21') to Eq. (24) k times, we obtain 

with the sums over k partitions, ",1, ",2, ... ,,,,k. On 
the right side of Eq. (37) one can read oft' the linear 
combination of states, giving the transformation 
properties of V's states with respect to the subalgebra. 
In particular, the irreducible representation ",1 ® 

",2 ® ... ®",k occurs X~ ,,' times [Eq. (24)] in the 
\CJl'" 1 2; k 

linear combination. Furthermore, M'\M".··· Milk 
p P P 

states of each representation ftl @ ft2 ® ... ® ftk 

appear in the linear combination. For example, we 
find the transformation properties of the states of 
V = (2, 1,0, 1, 1, I) in the U(6) representation, 42, 
with respect to the subalgebra U(3) ® U(3) in the 
integers I, 3, 4 and 2, 5, 6, respectively. All X!r 01l• 

are zero except .N':~3 = .N':~21 = X:~ 03 = X~~ 021 = 
1, and therefore, each tableau state of V transforms 

as the linear combination: 

a 11 11 141 (1215161) + b 11 11 141 ® ~ 5\ ) 

11 11 14/ ® ~ Ii]) + d ill 11 ® 1215 16 I) +c 

+e ffi~ ® mil) + f ~il ® ~j]> 
with a, b, c, d, e, and f being numerical coefficients. 
In terms of weight diagrams, we found the weight 
diagrams of 3 ® 3, 3 ® 21, 21 ® 3, and 21 ® 21 lying 
in the U(3) @ U(3) hyperplane of V in the weight 
diagram of 42 in U(6). 

If we had chosen the U(3) ® U(3) algebra to be in 
the integers I, 2, 3 and 4, 5, 6, respectively, then, 
because of our labeling of tableau states in Sec. IV, 
we have the states 

~, 
transforming as 

ITJIfill\ 
~I /' 
~ 
llil / 

a [111121 ® 1415 161)+6 1111121 ® mil) 

+ c 1111121 ® ffij]). 
while 

It14161
\ 2 5 /' 

transform as 

with the coefficients a, b, c depending on the U(6) 
tableau state under consideration. 

Given a weight V = (VI> V2, .•• , V N) of the 
irreducible representation ft of U(N) , we now find 
the transformation properties of the states of weight 
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V with respect to the subalgebra 0; U(N,), with 
li=l N j < Nand U(N1) a subalgebra in the integers 
pi, pi, ... , P~I' Let pi be the partition with parts 
VV1

" 
VVl i , ••• , VVN/; and if a + I is the minimum 

integer in the set of integers P: for i = I, 2, ... , Ni 
and j = 1, 2, ... , r, then let at. be the partition with 
parts VI' V2 , ••• , Va' and let f3 be the partition whose 
parts are all coordinates of V not previously taken as 
a part of a partition. Let y'" = xi1Xf2 ... xra and 

To the subgroup U(Nj) we assign the character 
Xu (UN) in the variables x ll i, xp I, ••• ,XM ; (instead 

'"I i 1. I YN; 

of Xl' X2, •.. ,XN
j

, respecttvely). 
The number of states of PI 18> P2 ® ... ® Pr = 

0 i Pj' appearing in the linear combination expressing 
the transformation properties of states of V with 
respect to the subgroup 0; U(Ni ), is given by 

(38) 

where 

j>~~1'1 = f dU Nt dUNa ... dUN, 

X XJlXJlJU N)XJl2(U NI ) ••• XJl,(U N,)yfXZ(l 

(39) 

with the summation over r partitions '1'1' '1'2, ••• , '1',.. 

Equation (39) is derived in the same way as similar 
relations in Sec. III. Equation (39) also gives the 
number of times the weight diagram of ®i pj appears 
in the 0; U(Nj) hyperplane of V. For the tableau state 
of V transforming like the representation A. of U(a), 
we use 

._N>~~l'j,,, = l B!B;lIB;:" • B~;Mr(';)(Vl)(V2)" '(v,)«(I)] 

". VI V2t· ... Vr 

instead of (39). 
As an example of the above equations, we find the 

transformation property of a state of weight V = 
(0,0,0,1,2, 1,3,0) in the representation 421 of 
U(8) with respect to the subalgebra U(3) in the 
integers 5, 7, and 8. Expression (38) becomes 

with (39) giving 

Since MCi = 0 for 32 > PI' we need only consider 
the following possibilities: 

""r>421.V _ 0 and w,421.V - ~r>421.V - 2 
';'5 - ';'41 -';'32 -. 

As a result, we have each of the four states with 
weight V transforming as 

with respect to the U(3) subgroup where the additional 
integers in the kets serve to' distinguish multiple­
occurring irreducible representations. 

For the analysis of the states of weight V in a 
tensor product representation of U(N), 0i at.j , one 
need only substitute M[1v~i('2)' "(v,)(,,,)((I)) in equation 
(39) for Mi<vl)(v2)" '(',)(0:)«(1»)' 
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APPENDIX A: THE MULTIPLICITIES M: 

2 
12 

X 
5 

41 
32 
312 

221 
21 3 

15 

2 

5 

1 
1 
1 
1 
1 
1 
1 

o 

41 32 

0 0 
1 0 
1 1 
2 1 
2 2 
3 3 
4 5 

3 
21 

J3 

31 2 

0 
0 
0 
1 
1 
3 
6 

3 21 13 

221 

0 
0 
0 
0 
1 
2 
5 

o 
1 
2 

213 

0 
0 
0 
0 
0 
1 
4 

o 
o 
1 

J5 

0 
0 
0 
0 
0 
0 
1 
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~ 6 51 42 412 32 321 313 23 2212 214 16 

6 0 0 0 0 0 0 0 0 0 0 
51 1 0 0 0 0 0 0 0 0 0 
42 1 1 0 0 0 0 0 0 0 0 
412 2 1 1 0 0 0 0 0 0 0 

32 1 1 0 1 0 0 0 0 0 0 
321 2 2 1 1 1 0 0 0 0 0 

313 3 3 3 1 2 1 0 0 0 0 
23 1 2 3 1 1 2 0 1 0 0 0 

2212 1 3 4 3 2 4 1 1 1 0 0 
21' 1 4 6 6 3 8 4 2 3 1 0 
16 1 5 9 10 5 16 10 5 9 5 1 

X\ 4 31 22 212 14 

4 0 0 0 0 
31 1 0 0 0 

22 1 1 0 0 
212 2 1 1 0 

14 3 2 3 1 

'" v 7 61 52 512 43 421 41 3 321 322 3212 314 23 1 22i3 2J5 J7 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
61 0 0 0 0 0 0 0 0 0 0 0 0 0 
52 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
512 2 1 1 0 0 0 0 0 0 0 0 0 0 0 
43 1 1 0 1 0 0 0 0 0 0 0 0 0 0 

421 2 2 1 1 0 0 0 0 0 0 0 0 0 
41 3 3 3 3 1 2 1 0 0 0 0 0 0 0 0 

321 2 2 1 2 1 0 0 0 0 0 0 0 0 
322 2 3 1 2 2 0 1 1 0 0 0 0 0 0 

3212 3 4 3 3 4 1 2 1 1 0 0 0 0 0 
31 4 4 6 6 4 8 4 3 2 3 1 0 0 0 0 

231 3 5 3 4 6 1 3 3 2 0 1 0 0 0 
2213 4 7 6 6 11 4 6 5 6 1 2 1 0 0 
21 5 5 10 10 9 20 10 11 10 15 5 5 4 1 0 
F 6 14 15 14 35 20 21 21 35 15 14 14 6 1 

APPENDIX B: THE COEFFICIENTS B~ 

R 2 12 R 3 21 J3 

2 1 0 3 0 0 
12 -1 1 21 -1 1 0 

P 1 -2 1 
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fl 
v 4 31 22 212 14 

4 1 0 0 0 0 
31 -1 1 0 0 0 

22 0 -1 1 0 0 
212 1 -1 -1 1 0 

14 -1 2 -3 

fl 
v 5 41 32 312 221 2P 15 

5 1 0 0 0 0 0 0 
41 -1 1 0 0 0 0 0 
32 0 -1 1 0 0 0 0 
312 1 -1 -1 1 0 0 0 

221 0 1 -1 -1 1 0 0 
21 3 -1 1 2 -1 -2 1 0 

1'i -2 -2 3 3 -4 

fl 
v 6 51 42 412 32 321 3P 23 2212 214 16 

6 0 0 0 0 0 0 0 0 0 0 
51 -1 1 0 0 0 0 0 0 0 0 0 
42 0 -1 1 0 0 0 0 0 0 0 0 
4J2 1 -1 -1 1 0 0 0 0 0 0 0 
32 0 0 -1 0 1 0 0 0 0 0 0 

321 0 1 0 -1 -1 1 0 0 0 0 0 
3P -1 1 1 -1 1 -2 1 0 0 0 0 
23 0 0 -1 1 1 -2 0 1 0 0 0 

2212 0 -1 1 1 0 0 -1 -1 1 0 0 
214 1 -1 -2 1 -1 4 -1 1 -3 1 0 

16 -1 2 2 -3 1 -6 4 -1 6 -5 1 
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Various properties of Feynman functional integrals that appear in quantum field theory are studied. 
An indefinite functional integral is constructed. For the indefinite functional integral we prove a relation 
which is analogous in ordinary Riemann integrals to integration by parts. A special case of this relation 
gives an integration-by-parts formula for the Feynman functional integrals. In addition, various rela­
tions for integrating over variationals and variational derivatives are obtained. Application of these 
relations gives, among other things, a set of generalized Matthews-Salam equations. 

I. INTRODUCTION 

Various formulations of quantum field theories 
have been developed in order to go beyond the frame­
work of perturbation theory. Among these attempts 
is the one based on the use of functional integrals. 
The advantage of this approach is that it is possible 
to obtain closed expressions for the complete Green's 
functions including all the radiation corrections. 
The lack of formal properties and approximate 
methods for solving functional integrals has hampered 
the development of this formalism. It is the purpose 
of this paper to investigate various properties for 
functional integrals over variationals and variational 
derivatives of functionals. 

The concept of a functional integral or an integral 
over an infinite-dimensional space was first considered 
by Daniell.1 Wiener later developed the Wiener 
integral2 which is used in studying Browning motion. 
Feynman, in his space-time approach to nonrela­
tivistic quantum mechanics ,3 developed another 
functional integral, sometimes referred to as the 
Feynman functional integral. The Feynman functional 
integral is not an integral in the true mathematical 
sense; however, its close relationship to the Wiener 
integral has been shown by Cameron.4 We will not 
concern ourselves in this paper with the outstanding 
question on the mathematical meaning of the Feynman 
integral. Our main concern will be directed towards 
its properties and various means of evaluating it. 
Because of the nebulous definition of this integral, 
the results of this paper can at most be considered 
formal and mere reflection of the properties of Wiener 
integrals onto the Feynman integrals. 

The extension of Feynman's formulation of non­
relativistic quantum mechanics to quantum field theory 

1 P. J. Daniell, Ann. Math. 19, 279 (1918); 20, 281 (1918); 21, 30 
(1919). 

• N. Wiener, Ann. Math. 22, 66 (1920). 
3 R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948). 
• R. H. Cameron, J. Math. & Phys. 39, 126 (1960). 

was first accomplished by Davison,5 Matthews and 
Salam,6 and Polkinghorne.7 In extending the func­
tional formalism to quantum field theory, there 
appear two distinct classes of integrals: those over 
fields obeying Bose-Einstein statistics and those over 
fields obeying Fermi-Dirac statistics. In this paper we 
will consider both kinds of integrals; however, we 
will limit ourselves to the more common fields, i.e., 
scalar, photon, and spino! fields. 

The scalar functional integral over the field 4>(x) , 
whose integrand is F(4)), is denoted by 

<4>", a"l T(F(4>)) W, a') = 1.. r F(4))eiIo",o,(q,)(34>, 
N JW.q,'l 

(1) 
where 

N = r eiIo".o,(q,)(34>, 
JW.q,'l 

Ia ,A4» = -t i~"4>(X)(D + m2)4>(x) d4x. 

4>', 4>" are the eigenvalues of a complete commuting 
set of operators, which specify the state of the system 
on the two surfaces a' and a". The support of the 
functional integral is over all continuous fields defined 
between the two spacelike surfaces a' and a", which 
are restricted to the values 4>' and 4>", respectively, on 
these surfaces. The 1/ N factor is a normalization 
factor. We have chosen our matrix gllv such that 
AIlBIl = AoAo - A . B. Here 0 is the d'Alembertian 
operator 

D=~~. 
oXIl OXIl 

Let us now define what we mean by the indefinite 
Feynman integral over scalar fields. We denote the 

• B. Davison, Proc. Roy. Soc. (London) A225, 252 (1954). 
• P T. Matthews and A. Salam, Nuovo Cimento 2, 120 (1955). 
7 J. C. Polkinghorne, Proc. Roy. Soc. (London) A230, 272 (1955). 

2169 



                                                                                                                                    

2170 ROBERT L. ZIMMERMAN 

indefinite Feynman integral by 

(4)'', a"l T(FC,p» l,p', a')p(",) 

1 l,p(",) <p(",) 
= - F(,p)eil"",,, (,p)b,p. (2) 

N W.,p'] 

The indefinite Feynman integral is meant to indicate 
that the integral is taken over all continuous fields 
,pCx) such that ,p(x) < p,(x) and ,p = ,p' < f.J on a' 
and ,p = ,p" < u on a". 

Likewise, the functional integral over the electro­
magnetic field A(x) with the integrand F(A) is 
denoted by 

(A", a"l T(F(A» lA', a') 

= 1. r F(A)eil"",,,,(A)bAobAlbA2bA3' (3) 
N )[A".A'] 

where 

111".".(A) = -li l1

"F"F" d4x, 
a' 

and 

N = r eila",,,,(A)bAobAlbA2bA3' 
J[A",A'] 

The indefinite integral over A(x) is 

The functional integral over Fermi fields 'IJ'(x) and 
1{!(x) is the same as for Boson integrals, except that 
the Fermi fields anticommute. The Feynman func­
tional integral for Fermi fields is denoted by 

('IJ''', 1{!", a"l T(F('IJ'1{!» I'IJ", 1{!', a') 

= 1. r F( 'lJ'1{!)eiI"",,,,('P,;P) b'lJ'b1{!. (5) 
N J['P".'P'];[;P".;p'] 

Likewise, the indefinite integral is 

('IJ''', 1{!", alii T(F('IJ', 1{!» I'IJ", 1{!', a')p(",);I'("') 

1 1'1'("') <p(",);;p(",) <il(",) '-
= - F('IJ',1{!)e,I,,",,'('P'I')(j'lJ'(j1{!, (6) 

N [VI".'P'];[;P".;p'] 

where 

and 

The notation used in the Dirac equation is 

'VI • a +. a 
IN = P = lyo - Iy • -at ax 

and the y matrices satisfy the anticommutation 
relations 

y"y1 + y1y" = 2g"1. 

We would now like to prove some formal properties 
of these integrals. In particular, we would like to 
consider variationals of the indefinite Feynman 
integral and integrals over variational derivatives of 
the integrand. As a specific example of our results, 
we will get a relation which corresponds to integration 
by parts for ordinary Riemann integrals. From this 
and similar relations will follow the variational 
formulas of Schwinger and the set of differential 
equations for the tau functions as developed by 
Matthews and Salam.8 The derivation of the Mat­
thews-Salam equations from the functional integral 
formalism was observed by Polkinghorne7 ; however, 
he had to assume that it was valid to integrate by 
parts. The analogous properties that occur for the 
Wiener integral have been derived by Cameron9 and 
Owchar.10 

The outline of the paper is as follows. In Sec. II 
we will consider the Boson integrals and construct 
various properties for these functional integrals over 
variations and variational derivatives. Similar proper­
ties will be given in Sec. III for the Fermi field. In 
Sec. IV we will give explicit examples in order to 
illuminate how these results may be used to solve 
complicated functional integrals. The Matthews­
Salam equations will be shown in Sec. V to be a 
special case of the relations derived in Secs. II and 
III. In the final section we will also construct a gen­
eralized set of Matthews-Salam equations. 

II. BOSON INTEGRALS 

In this section we will limit our investigation to 
Boson fields. In particular, the first part of this 
section will be limited to scalar fields. At the end of 
the section we will extend the significant properties of 
scalar fields to zero-mass vector fields. 

Let us denote the first variational of the functional 
F(,p) by (jfF(cf». It is defined by the relation 

d 
(jfF(cf» = dh F(cf>(x) + h!(x»lh=O' (7) 

8 P. T. Matthews and A. Salam, Proc. Roy. Soc. (London) 
A22t, 128 (1954). 

• R. H. Cameron, Proc. Am. Math. Soc. 2, 914 (1951). 
10 M. Owchar, Proc. Am. Math. Soc. 3, 459 (1952). 
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The nth variational is defined in a similar manner as 

~;n.· ... flF(CP) = dd
h 

~;::!l.· ... flF(cp(x) + hfn(x»lh=O' 

(8) 

The first functional (Volterra) derivative of F(cp) 
at the point y is denoted by ~F(cp(x»/~cp(y) and is 
implicitly defined by the relation 

~fF(cp(x» = r""~ (cp(x»f(y) d4y. J", ~cp(y) 
For the sake of convenience and simplicity, it will 
be assumed throughout the remainder of the paper 
thatf(y) vanishes on the surfaces a" and a'. 

In a similar fashion the nth functional derivative is 

Let us now consider the variation with respect to 
the field p(x) of the indefinite Feynman integral 
defined in Eq. (2): 

Using Eqs. (11) and (15), we get 

~f (cp", 0'"1 T(F(cp» Icp', a\(.,) 

= (d/dh) (cp", alii T(F(cp» jep', a'\.(.,)+hf(.,)lh=O 
1101>(.,><11(.,> d 

= - - (F{ cp + hf)eil(4)+hf>)~cplh=O' 
N W.oI>'] dh 

(16) 

In the ordinary manner we differentiate the integrand 
with respect to h; Eq. (16) becomes 

(17) 

This is precisely Eq. (12), which we wanted to justify. 
A special case of Eq. (12) is when we let p(x) = 

+ 00. In this case we integrate over the whole space 
and the indefinite integral becomes the ordinary 
Feynman functional integral. Notice that 

~f (cp", alii T(F(cp» Icp', a'\,J 

= ~f (cp", alii T(F( cp» I cp', a') = 0 (18) 

since the integral is no longer a function of the 
variable p(x), and Eq. (12) reduces to 

0= (cp", alii T(~fF(cp» Icp', a') 

= :h (cp", alii T(F(cp» jep', a')II(.,>+hf(.,>lh=O' (11) + i (cp", alii T(F(cp)~fF""",(cp» Icp', a'). (19) 

We will proceed to show that this is equivalent to 

~f (cp", alii T(F{cp» Icp', a')I1("> 

= (cp", alii T(~fF(cp» Icp', a')I1("> 

+ i (cp", alii T(F(cp)~,I,,"Acp» Icp', a')I1("> ' (12) 

where the variations on the right-hand side of Eq. 
(12) are taken with respect to the fields cp(x), while the 
one on the left is taken with respect to p(x). Equation 
(12) follows from the fact that 

(cp", alii T(F(cp» Icp', a')II+hf 

Making a linear transformation of the variables in 
Eq. (13), 

cp(x) = CPl{X) - hf(x), (14) 
we obtain 

Using the fact that 

~fl".,,,,(cp) = -1~'f(X)(O + m2)cp(x) d4x, (20) 

Eq. (19) becomes 

(f', alii T(b,F(cp» Icp', a') 

= if d4xf(x)(o + m2)(cp", alii T(F(cp)cp(x» Icp', a'). 

(21) 

Let us now generalize the results to the nth varia­
tional. The nth variational of F( cp) satisfies 

(22) 

The proof of Eq. (22) follows directly from induction, 
as will be shown below. 

For n = 1 Eq. (22) reduces to Eq. (21), which was 
already shown to be valid. Let us assume Eq. (21) 
holds for n = N and we will show it is true for 
n=N+1. 
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Applying Eq. (22) for n = N to the functional 
b'lF(cp), we have 

(CP/l, a/ll T«(j~N~ll'" fl F( cp» I cp', a'> 

= (cp/l, a/ll Tb~N""'f.(bhF(CP» Icp', a') 

= -i (cp/l, a/ll T(jfJ(CP) 
N+1 

X II (-ib,J .. ',(CP) - (jf)bf.!(cp) Icp: a'). (23) 
i~3 

Using Eq. (19) in the right-hand side of Eq. (23), we 
get 

(cp/l, a/ll T(b'izv~~"""lF(CP» Icp', a') 
N+1 

= -i(cp/l,a"l TF(cp) II (-i[bfl(cp)] - bfJ 
i~3 

The integration over the nth functional derivative 
of F( cp) satisfies the relation 

(cp/l, a"l T( t5
n

F(cp) ) Icp', a') 
,t5cp(xn ), .•• , t5cp(x1) 

n 

= (it II (0 + m2
)",; (cp/l, a/ll T(F(cp)cp(x j » Icp', a'). 

i~l 

(27) 

The proof of Eq. (27) follows in a trivial manner from 
induction and will not be shown. 

A special case follows from Eq. (21) if we let 

F(cp) = G(cp)R(cp). (28) 

Substituting the first variational of Eq. (28), 

cpfF(cp) = cpP(cp)R(cp) + G(cp)b,R(cp) , (29) 

X b,/ .. ".Acp)it5,J .. ",,·(cp) Icp', a') into Eq. (21), we obtain 

- i <cp', a'i TF(cp)(j,. IT (-i[b,l(cp)] - b,) Icp', a') <cp/l, a"l T(G(cp)I\R(cp» Icp', a') 
i~3 - (cp/l, a"l T(bfG(cp)R(cp» If, a') 

N+l 

= -i<cp", a"l TF(cp) II (-i[b"F(cp)] - (jf,) 
i~2 

(24) 

and this is just Eq. (22). This completes the proof by 
induction of Eq. (22). 

Let us now consider integration over functional 
derivatives. Substituting Eq. (9) into Eq. (21), we get 

f d4
xf(x) (cp/l, a/ll Te:~~~) Icp', a') 

= if d4xf(x)(D + m2
)", (cp", a"l T(F(cp)cp(x» Icp', a'). 

(25) 
Consequently it follows that 

(cp", a/ll T (~:~~~) If, a') 

+ i(D + m2
)", (cp", a"l T(F(cp)cp(x» Icp', a'). (26) 

+ if d4xf(x)(D + m2
)", 

X (cp/l, a/ll T(G(cp)R(cp)cp(x» Icp', a'). (30) 

In a similar manner we get an analogous relation 
from Eq. (26) for functional derivatives: 

(cp", a"l T( G(cp) t5:~X») Icp', a') 

= -(cp", a"l Te~~~; R(CP») Icp', a') 

+ i(D + m2
)", (cp", a"l T(G(cp)R(cp)cp(x» Ic/>', a'). 

(31) 

Equations (30) and (31) are similar to integration by 
parts in ordinary integration theory. 

Let us generalize Eq. (31) to the analogous case of 
integrating by parts N times. Using Eq. (31) over and 
over again, we get 
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The Matthews-Salam equations are special examples 
of integration by parts in Eq. (31). Their generaliza­
tion will follow from Eq. (32). 

The pertinent relations derived for the scalar 

integral are Eqs. (21), (22), (26), (27), (30), and (32). 
These equations generalize in a trivial manner to 
arbitrary Boson fields. In particular, for the electro­
magnetic field Aix) we have 

(A", alii T(bfIlF(AIl» lA', a') = if d4xf/x) 0", (A", alii T(f(A)AIl(X» lA', a'), (33) 

(A", alii T(b7"n'" fllt(A» lA', a') = - i (A", a"l T( F(A) n (- ibfll/(A) - bfll)bfll/(A) )IA', a'), (34) 

(A", a"l T(:;:::») lA', a') = iO x (A", alii T(F(A)AIl(x» lA', a'), (35) 

(A", alii T(bA (X)b'~(~;A (x ») lA', a') = (i)n U 0",; (A", alii T(F(A)AIl(Xi» IA: a'), (36) 
'#1 J.ln n J 

(A", alii T(G(A)bfI'R(A» lA', a') 

= -(A", alii T(bf"G(A)R(A» lA', a') + if d4xfiX) 0", (A", alii T(G(A)R(A)A"(x» lA', a'), (37) 

(A", alii T(G(A) bnR(A) ) lA', a') 
bAlln(xn) ... bAil/Xl) 

= iD"'n (A", alii T(G(A) bn-1R(A) )Alln(X n) lA', a') 
bAn-1(xn_ 1) ... M(x1) 

X •.. X i(-l)n+10 (A" alii T( bn-1G(A) R(A)A (X») lA' a') 
"'1' bA

Il2
(x

2
) ••• bA"n(xn) 1'1 1 , 

X <-It<AII,aIlIT( bnG(A) R(A») lA', a'). (38) 
bAI'1(x1) ... Ml'n(xn ) 

This completes our discussion of Boson integrals. in an analogous manner: 
Illustration of these relations will be found in Secs. 

IV and V. bfjF(!p, ip) = ~ F(!p, ip + hij)!h=O (41) 

Ill. FERMI FUNCTIONAL INTEGRALS 

The significant formulas of Sec. II will be extended 
to Fermi fields. This problem is slightly more complex 
because of the noncommutivity of the functional 
integrals. Care must be exercised with the order of the 
fields; otherwise the extension is straightforward. 

The first variation of F(!p, ip) with respect to !p is 
defined as 

b~F(!p, ip) = ~ F(!p + h1'), ip)!h=O' (39) 

The auxiliary spinor 'fJ anticommute among them­
selves and with all!p and ip. 

The nth variation of F(!p, ip) with respect to 1/) is 
just 

b;n"'~lF(!p, ip) = :h b;:-ll .. ·~F(!p + h'fJn' ip)lh=O' (40) 

The variational of F(!p, ip) with respect to ip follows 

and 

15:'.1" '~lF(tp, ip) = :h b:'.=~" 'ijlF (!P, if + hijN)/h=O, 

(42) 
where ij anticommutes with all!p, ip, and ij. 

The first functional derivative of F(!p, ip) with 
respect to !p is defined by the implicit. relation 

b~F(!p(y), ip) =f~ (!p(y), ip)1J(x) d4x. (43) 
b!p(x) 

The nth functional derivative is 

bnF(!p, ip) 15 { bn-1F(!p, ip) } (44) 
d!p(x1) ••. b!p(xn) = b!p(x1) btp(x2)'" b!p(xn) • 

The first functional derivative of F(!p, ip) with 
respect to ip is 

tJ-F( -) = f -(x) bF(!p. ip) d'x (45) 
~ !p.!p 'fJ tJip(x) , 
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and its nth functional derivative is generalized in the 
usual manner. 

The Feynman functional integral over the first 
variational of F("P, ip) with respect to "P is 

<"P", if/', a"l T(I\F("P, ip» I"P', ip', a') 

= -i <"P", ip", a"l T(F("P, ip)I\Iu".u.("P» I"P', ip', a'). 

(46) 
The generalization to the nth variation is 

Let us define the sign indicator SF such that SF is 
+ I or -1 when F("P, ip) transforms like the product 
of an even or odd number of spinors, respectively. 
We can now write Eq. (SIb) as 

<"P", ip", a"l T(~~F("P, ip» I"P', ip', a') 

= -iSF f d4X'YJ(x)(i~ - m)1lJ 

X <"P", ip", a"l T(F("P, ip)"P(x» I"P', ip', a'). (SIc) 

< " -II "1 T(/)N F( -» I ' -, ') "P ' 1p , a ifNI' "~I "P, "P "P, "P , a Using the definitions of functional derivatives in 
= -i ("P", ip", a"l TF("P, ip) Eqs. (43) and (4S), it follows directly from Eqs. (Sla) 

N and (SIc) that 
x II (-i~~/I1".u'("P) - ~~)~~Ju"'u.("P) I"P', ip, a'). 

1=2 (47) <"P", ip", a"l T(~~~~~;») I"P', ip', a') 

The verification of Eqs. (46) and (47) is equivalent to 
= -i (m", ,,,", a"l T(F('JJ, ''')'''(x» Iw', ,,,', a') the proof of Eqs. (19) and (22) and will not be T T T T T T T 

repeated. X (-iW - m) (S2a) 
Likewise, for variations with respect to ip we get and 

<"P", ip", a"l T(~ijF("P' ip» I"P', ip', a') ("P", ip", a"l T(~~~~;») i"P', ip', a') 
= -i <"P", ip", a"l T(F("P, ip)~ijll1".,,.(ip» I"P', ip', a') 

and 

< 
" -II "1 T(Ji.N F( -» I ' -, ') "P ' "P , a UijN .. ,iii "P, "P "P , "P , a 

1 

= -i <"P", ip", a"l TF("P, ip) 

(48) = -i(iW - m) <"P", ip", a"l T("P(x)F("P, ip» I"P', ip', a'). 

(S2b) 

Equations (S2a) and (S2b) can be generalized for 
the nth functional derivative: 

N 

X II (-i~ij/u".I1'(ip) - ~ij)~ijJu"u'(ip) I"P', ip', a'). ("P", ip", a"l T( ~NF("P, ip) .) I"P', ip', a') 
1=2 (49) ~"P(XN)' , . ~"P(Xl) 

Let us now consider integration over functional = (_I)N ("P", ip", a"l T(F("P, ip)ip(x1) , • , ip(xn» 

derivatives. Using the fact that x I"P', ip', a') (-iW - m)llJ, ... (iXi' - m)IlJN (S3a) 

and 

~iu".A"P) = i~"d4Xip(X)( -iW - m)1J(x) (SOa) and /)NF( _) ) 
("P", ip", a"l T( "P, "P I"P', ip', a') 

bip(XN) ... ~ip(Xl) 

relations (46) and (48) become 

(v/', if/', a"l T(b~F("P, Vi» I"P', ii/, a') 

= -i (U"d4x <"P", ip", a"l 
)u' 

(SOb) 

X T(F( "P, ip)ip(x» I"P', ip', a')( - iW - m)'YJ (Sla) 

and 

("P", ip", a"l T(~ijF("P, ip» I"P', ip', a') 

= -J d4x <"P", ip", a"l 

X T(F("P, ip)ij(-iW - m)"P(x» I"P', ip', a'). (SIb) 

= (_i)N(iW - m)"'N' . '(iW - m)"'l 

x <"P", ip", a"l T("P(XN)' .. "P(xl)F("P, ip» I"P', ip', a'), 

(S3b) 

The formulas for integration by parts follow 
directly from (52a) and (52b) by letting 

F=GR. (54) 

Substituting the first variational derivative 

tJb"P G( "P, ip)R( "P, Vi) 

= S R bG ("P, Vi)R( "P, Vi) + G( "P, ip) ~R ("P, Vi) (55) 
b"P u"P 
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into Eq. (52a), we get 

(?p", i[/', alii T( G(?p, ip) M~: ip)) l?p', ip', a') 

= -SR (?p", ip", alii TG~ (?p, ip)R(?p, ip)) l?p', ip', a') 

- i (?p", ip", alii T(G(?p, ip)R(?p, ip)?p(x)) l?p', ip', a') 

x (-iW - m)",. (56a) 

Likewise, for ip(x) we get 

(?p", ip", alii TC~~~:;) R(?p, ip)) l?p', ip', a') 

= -Sa (?p", ip", alii T( G(?p, ip) 15~~~:)ip)) l?p', ip', a'> 

- i(iV - m) (?p", ip", alii 

.x T(?p(x)G(?p, ip)R(?p, ip)) l?p', ip', a'). (56b) 

Let us now consider the general case of integrating by 
parts N times. Using the fact that, for N > 1, 

G - 15 NR(?p, ip) 
(?p, ?p) 15ip(x

l
)15ip(XN) 

= + S _15 -(G( _) 15
N

-
1
R(?p, ip) ) 

a 15ip(xl ) ?p,?p 15ip(X2)'" 15ip(XN) 

+ (S )2 _15_(15G(?P' ip) b
N

-
2
R(?p, ip) ) 

a 15ip(X2) 15 ip(X I) 15ip(Xa)'" 15ip(XN) 

and 

Eqs. (56a) and (56b) generalize to 

2115 
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IV. APPLICATIONS B. Example of Functional Derivative Formula 
In this section we would like to illustrate the use 

of the previous relations by solving some specific 
examples. 

A. Example of Variational Formula 

Let us consider the evaluation of the functional 
integral 

f d'yg(y) 

X (</>", a"l T(IOg [ff(x)e4>("')/P("') d4x ] </>(y») 1</>', a'), 

where 
(59) 

(0 + m~f3(x) = g(x). (60) 

This functional integral can be solved by using Eq. 
(21). Consider the first variation of the functional 

F(</» = log {J(x)e4>("')/P("') d'x}. (61) 

Its value is 

Let us illustrate the use of Eq. (26) by solving for 
the ratio 

R(</» 

Let 

(</>",a"l T(</>(X)exp (ifg(Y)</>(Y)d4y )) 1</>', a') 

<</>", a"l T( exp (if g(y) </>(y) d4y) ) I </>', a') 

(64) 

Taking its functional derivative, we obtain 

bf(</» = ig(x)F(</». 
15 </>(x) 

(66) 

(62) Substituting Eq. (66) in Eq. (26), we get 

Thus we obtain the solution of (59) by substituting 
Eq. (62) into Eq. (21): 

1 = if d'y (</>", a"l 

X T(log {ff(x)e4>("')/P("') d4x} 

X </>(g)(O + m2Ml(Y») 1</>', a') 

= J d'yg(y) (</>", a"l 

X T(log{ff(x)e</>("')/P("') d'x} </>(y») 1</>', a'). (63) 

i(O + m2
) (</>", a"l T(F(</»</>(x)) 1</>', a') 

= ig(x) (</>", a"l T(F(</>)) 1</>', a'). (67) 

Therefore the ratio in Eq. (64) is given by the solution 
of the simple differential equation 

(0 + m2)",R(</>(x)) = g(x) (68) 

with the appropriate boundary conditions. 

C. Example of Integration by Parts 

We will now solve for the ratio 

(</>", a"l T( </>(x)a sin (17f </>(y) d'y) -17 cos (17f </>(y) d'Y) exp (a f </>(y) d'y)) 1</>', a') 

B[</>(x)J (69) 

(</>", a"l T (sin (17f </>(y) d4y ) exp (a f </>(y) d4y )) 1</>', a') 

by means of Eq. (32), where N = 2. 
Let 

G(</» = exp (a J r/>(y) d4y ), R(r/» = sin (nJ r/>(y) d4y). (70) 

Taking the appropriate functional derivatives, we have 

bG -- = aG, (71a) 
b</>(x1) 

b
2

G = a2G, (71b) 
br/>(xl)~r/>(x2) 

~ = 17 cos (17Jr/>(Y) d4y ), (71c) 
~r/>(Xl) 

b
2

R 'Yl
2 sin ('YlJA..(Y) d4y ) (71d) b</>(x

1
)b</>(x

2
) = -./ ./ 'f' . 
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Substituting the above relations into Eq. (32), we obtain 

-r/ (c/>", a"l T( exp (a f c/>(y) d4y) sin ('YJ f c/>(y) d4y)) I C/>', a') 

= i(D + m2)"2 (c/>", a"l T( c/>(x2)'YJ exp (a f c/>(y) d4y ) cos (r'i c/>(y) d4y)) 14>, a') 

- i(D + m2)"1 (c/>", a"l T( c/>(x1)a exp (a f c/>(y) d4y) sin ('YJ f c/>(y) d4y) ) I c/>', a') 

+ a2 (4)'', a"l T( exp (a f c/>(y) d4y ) sin 'YJf c/>(y) d4y) Ic/>', a'). (72) 

Letting Xl = x 2 , it follows immediately that 

i(D + m2)B(c/>(x)) = (a2 + 'YJ2). (73) 

Consequently, the explicit relation for Eq. (69) 
follows directly from the solution of Eq. (73). 

V. GENERALIZED MATTHEWS-SALAM 
EQUATIONS 

The Matthews-Salam equations are special cases 
of the previous theorems. In order to show this, let 
us relate the functional integrals to the vacuum 
expectation value of a time-ordered product. 

Let L;(-) be the interacting Lagrangian of the system. 
Then the vacuum expectation value of the time­
ordered product of F(') is defined as 

! r F(')eillaNa+la"a,i)b(') 

(FO) = N )[0,0] , (74) 

! r ei(Ia"a,+Ia"O',I)b(') 
N )[0,0] 

where 

(75) 

and t' -+ - 00, t" -+ + 00. The integration is performed 
over the appropriate fields. 

The Matthews-Salam equations8 follow from inte­
grating the numerator in Eq. (74) by parts once. Using 
Eqs. (31), (38), (56a), (56b), and letting 

GO = F('), 

RO = exp (if Lk) d4x) , (76) 

we get the ordinary Matthews-Salam equations: 
(a) Scalar fields: 

i(D + m2),,(c/>(x)F(c/») = i(F(c/»jq,) + /\bF(c/»\/, (77) 
bc/>(x) 

where 

. =J bL;( c/» d4x' (78) 
Jq, bc/>(x) , 

(b) Massless vector fields: 

iO (A (x)F(A» = i(F(A)' ) + / bF(A) \ (79) 
" )J ~Ap \Mp{x)/, 

where 

. =J bLi(A) d4x' (80) 
JA bAP(x) , 

(c) Spin-t fields: 

-i(i'X' - m)(1p(x)F(1p, if» 

= SF(F(1p, ip)j;p) + (b;;X» (81) 

and 
<-

-i(F(1p, ip)ip(x»(i'X' - m) 

where 

= S(F( 1p, ip)j",) + (b:~» (82) 

(83) 

This equation can be generalized by integrating by 
parts N times. It follows from equations (32), (38), 
(58a), and (58b) that the generalized Matthews­
Salam equations are: 
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(85) 

and 

Higher-order differential equations for the vacuum expectation values may also be obtained from Eqs. (27), 
(36), (53a), and (53b). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 10, NUMBER 12 DECEMBER 1969 

Application of Perturbation Theory to Many-Body Systems 
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We investigate the possibility of using perturbation theory to compute the binding energy for infinite 
systems in which the particles are localized. For the case of the linear chain of coupled harmonic oscilla­
tors, we prove that the perturbation series for the ground-state energy per particle is convergent. Exact 
expressions for the generalized Pade approximants are derived. The generalized approximants provide a 
manifestly convergent sequence of approximations to the energy. 

1. INTRODUCTION system, the Hamiltonian is 

Consider the problem of computing the cohesive 
energy of one of the rare gas solids. A method which 
works reasonably well except for helium is the Hartree 
method. l The Hartree method is based on the trial 
function 

N p~ k N-1 2 k 2 2 
H = I-' + - I (Xi+1 - Xi) + - (Xl + XN)' (1.6) 

i=12M 2 ;=1 2 

N 

'f(rl' r2, ... , rN) = II 4>(ri - R;). (Ll) 
i=l 

The single-particle functions which give the lowest 
total energy for the system are solutions of 

where 4>(r) and V H(r) must be determined self­
consistently. Thus, the Hartree solution is an eigen­
state of 

N 

Ho = I [p;/2M + VH(ri)]' (1.3) 
;=1 

so we can write 

(1.4) 

where 
N N 

HI = I VCr} - r,,) - I VH(ri )· (1.5) 
j>k=l i=1 

Then we contemplate an application of perturbation 
theory in order to account for the lowering of the 
energy due to HI' It is obvious that the practical 
problems associated with such a calculation are 
formidable. Therefore, before seriously considering 
such an attack, it is worthwhile to know the mathe­
matical properties of such a perturbation expansion 
when applied to the simplest possible model problem. 
For the purpose of this study, we consider the linear 
chain of coupled harmonic oscillators. With rigid 
wall boundary conditions applied to the N-particle 

• Supported in part by the United States Air Force Office of 
Scientific Research under Contract AF 918-67. 

1 L. H. Nosanow and G. L. Shaw, Phys. Rev. 128, 546 (1962). 

The normal-mode frequencies for this system are 

(u. = 2(~)tsin ( j11' ) j = 1,2,"', N, 
1 M 2(N + 1) , 

and the ground-state energy is 
(1.7) 

Eo(N) .. n(~)t isin ( j11' ) 
M ;=1 2(N + 1) 

= ~(~r[cot (4(N 11'+ 1») - l} (1.8) 

The energy per particle of the infinite chain is 

lim E:o(N) = ~ n(~)t. 
N-+ao N 11' M 

(1.9) 

Now we ask whether this result can be calculated by 
a straightforward application of Rayleigh-SchrOdinger 
perturbation theory. 

2. EXPLICIT CALCULATION OF THE 
PERTURBATION SERIES THROUGH 

FOURTH ORDER 

In order to apply the perturbation method to this 
problem, we write (1.6) in the form 

where 

and 

N 2 N 

Ho = I..&. + kIx~ 
i=12M ;=1 

N-l 

HI = -k Z XtXi+1' 
;=1 

(2.1) 

(2.2) 

(2.3) 

As usual, we expand in powers of A. and then set A. = 1. 
We shall simply compute the expansion for the 
ground-state energy using the standard technique of 
Rayleigh-Schrodinger perturbation theory. We note 

2179 
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at this point that the application of perturbation 
theory to this model problem has been discussed 
previously, but from a completely different point of 
view.2 

Our system consists of N distinguishable particles. 
An excited state of the unperturbed system is specified 
by noting the harmonic oscillator level occupied by 
each of the N particles. Such an excited state can be 
denoted by 

Inl' n2,'" ,nN)' 

It is clear that there is no first-order contribution to 
the energy. In second order 

E~2) = (01 HI P HI 10) 
100 - Ho 

= L (01 HIlel) (ell HI 10) , (2.4) 
II< 100 - 10" 

where 
10) = 10, 0, ... , 0, 0, ... , 0, 0) (2.5) 

and 
lel) = 10,0, ... , 1, 1, ... ,0,0). (2.6) 

Now 

nCkt (ell HI 10) =4 M (2.7) 

and 
10" - 100 = 2n(2kj M}6: (2.8) 

for each of the N - 1 possible intermediate states. 
Thus 

Once again, it is clear that the third-order contri­
bution vanishes. In fourth order we shall need to 
compute the "regular" term, 

P P P 
(01 HI HI HI HI 10), (2.10) 

100 - Ho 100 - Ho 100 - Ho 

and one "irregular" term, 

P P 
-(01 HI HI 10) (01 HI 2 HI 10). 

EO - H 0 (EO - H 0) 

(2.11) 

All of the other "irregular" terms vanish since 
(01 HI 10) = o. 

We shall need a systematic way of keeping track of 
all the contributions to the regular terms. Let us 
enumerate the various contributions by simply listing 
in columns the individual particle levels which occur 
in intermediate states and grouping the contributions 
according to how many particles are involved. We 
shall refer to such a listing as a "diagram." For an 
n-partic1e diagram there will be a certain weight, 
which is the number of times such a diagram can 
occur for an N-particle system. To illustrate, in 
second order there is only one diagram: 

00 
11 

00 

This is a two-particle diagram and its weight is N - 1. 
For the fourth-order calculation we list all of the 

diagrams below. 

Two-Particle Diagrams 

00 00 00 

000 000 000 000 
110 110 011 011 
121 121 121 121 
110 011 110 011 
000 000 000 000 

11 11 11 
22 20 02 
11 11 11 
00 00 00 

Three-Particle Diagrams 

000 000 000 000 
110 110 011 011 
101 101 101 101 
110 011 110 011 
000 000 000 000 

Four-Particle (Unlinked) Diagrams 

00"·00 00"'00 
11 .. ·00 11 ... 00 
11 .. ·11 11"'11 
11· .. 00 00"'11 
00 .. ·00 00"'00 

• R. D. Mattuck. Ann. Phys. (N.Y.) 27. 216 (1964). 

000 000 000 000 
110 110 011 011 
020 020 020 020 
110 011 110 011 
000 000 000 000 
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It is a straightforward matter of counting to see that 
the appropriate weights are as shown below: 

n Weight for an n~Particle Diagram, 

2 N - 1, 

3 N- 2, 

4 (N - 2)(N - 3) = N2 - 5N + 6. 

Note that we must have N ~ 2 in order to make 
sense here. For higher orders in perturbation theory, 
the minimum N will increase and, in general, for 
2nth order we must have N ~ n in order to simply 
specify a weight without going into more detailed 
considerations. This point will be made more trans­
parent later on in our discussion of the problem. 

Before proceeding to write down the regular con­
tribution to E~4), let us look at the irregular term. 
Since the matrix elements, energy denominators, 
and weights are just exactly the same as for E~2), we 
can see immediately that 

Since we have already listed all of the diagrams and 
their weights, it is simply a matter of keeping track 
of factors which occur in the matrix elements and 
energy denominators to compute the total contribu­
tion of the regular term. When this is added to the 
irregular term, the result is 

E(4) = _1i(2k)i _1_ [6(N - 1) + 12(N - 2) 
o At 2048 

+ (N 2 
- 5N + 6) - (N - 1)2]. (2.13) 

The two parts which are proportional to N2 cancel 
and the result is 

E(4) = _1i(2k)i 15N - 25. (2.14) 
o At 2048 

Our purpose for computing the fourth-order 
contribution in detail is to demonstrate that the 
calculation is perfectly routine. The essential point is 
that the number of non vanishing matrix elements is 
limited. Where this feature can be assumed, the 
entire process of enumerating the various diagrams 
and computing their contribution is amenable to 
electronic computation. By writing a computer code 
for this purpose, it is conceivable that one may be 
able to obtain many terms in the perturbation 
expansion. 

3. THE ENTIRE SERIES 

Now we ask whether such an expansion is of any 
utility. In particular, for the case of infinitely many 
particles, we wish to know whether the series is 
convergent for A = 1. To this end, we first find the 
exact ground-state energy for the case where the 
Hamiltonian is given by (2.1)-(2.3). By means of 
the usual analysis of the coupled chain, 

Eo(N, A) = ~(2k)i I [1 - cos (~)AJi. (3.1) 
2 At j~l N + 1 

Now we formally expand each term in the sum using 
the binomial theorem and then interchange the 
orders of summation, thus obtaining 

Eo(N, A) = ~(2k)i I ( t )A2n Icos2n (~). 
2 At n~O 2n j~l N + 1 

By noting that 
(3.2) 

cos2n X = !n[(2n) + 2 i ( 2n ) cos (2mX)] 
2 n m~l n + m 

and 
(3.3) 

~ (2mj7T) {-l, £..cos -- = 
j~l N + 1 N, 

m ¥: keN + 1), 
m = keN + 1), (3.4) 

for k = 0, 1,2, ... , we find 

Icos2n (~) 
j~l N + 1 

- N + 1 [(2n) + 2 i ( 2n )] _ 1 (3.5) 
- 22n n k~l n + keN + 1) , 

where 

L = [n/N + 1] (3.6) 

and it is understood that, if L = 0, the sum over k is 
simply omitted. Thus, the complete perturbation 
expansion is 

Eo(N, A) = ~(2k)i I (t ){N + 1[(2n) 
2 At n~O 2n 22n n 

+ 2 i ( 2n )] - I}A2n. (3.7) 
k~l n + keN + 1) 

In particular, 

E~2) = -li(:)~ N 3; 1 (3.8) 

and 

E(4) = _ Ii (2k)! 15N - 25 N > 2 (3.9) 
o N 2048' -, 

in agreement with (2.9) and (2.14), respectively. We 
note at this point that the condition L = 0 coincides 
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exactly with the ability to specify simply a "weight" 
for each diagram. This condition is n ::;; N, and, if it 
is satisfied, we can write E~2n) = A2nN + B2n , where 
A2n and B2n are independent of N. 

4. ANALYTICITY AND CONVERGENCE 

By inspection of (3.1), we see that Eo(N, A) is 
analytic except for branch points on the real axis at 
sec (jrr/N + 1), j = 1,2, ... ,N. Thus, for finite N 
the radius of convergence of the perturbation series 
is equal to sec (rr/N + 1). The expansion for the 
energy per particle of the infinite system is clearly 

lim Eo(N, A)/N = ~(2k)! i !n( t ) (2n)A2n (4.1) 
N""'oo 2 M 71=02 2n n 

and it is convergent within the unit circle. If we set 

Cn = 2!n(2~) Cnn) , (4.2) 

it is easy to show that 

lim n[l - Cn+1] = 2. 
n""'<Xl Cn 

(4.3) 

By Raabe's test,3 then, 

i 1 (t) (2n) 
n=022n 2n n 

(4.4) 

is convergent. Consequently, by Abel's theorem,4 
(4.1) is uniformly convergentfor 0 ::;; A ::;; 1. Although 
(4.4) is convergent, its rate of convergence is somewhat 
slow, and it behooves us to investigate methods for 
obtaining a more tapidly convergent sequence of 
approximations than we can realize from the partial 
sums of the series. To this end we investigate the 
generalized Pade approximant. 

5. THE GENERALIZED APPROXIMANT 

The problem of extending the usefulness of pertur­
bation expansions is one which is common to a 
number of areas of theoretical physics. Thus, it is 
not surprising that the Pade approximant has received 
much attention and has been applied in such areas as 
statistical physics,5 the many-body problem,6 scat­
tering theory,? and elementary-particle physics.s The 
Pade approximant can be applied when one has only 
a formal power series expansion and no additional 

3 P. Dienes, The Taylor Series (Dover Publications, Inc., New 
York, 1957), p. 78. 

• E. C. Titchmarsh, The Theory of Functions (Oxford University 
Press, London, 1932), p. 9. 

• G. A. Baker, Jr., Phys. Rev. 124,768 (1961). 
• G. A. Baker, Jr., J. L. Gammel, and B. J. Hill, Phys. Rev. 

132, 1373 (1963). 
1 S. Tani, Phys. Rev. 139, Bl011 (1965). 
• D. Bessis and M. Pusterla. Phys. Letters 2SD, 279 (1967), 

information. Often, however, one has additional 
information which is relevant to the problem of 
finding an approximate analytic continuation of the 
power series. In order to make use of this additional 
information, several generalizations of the Pade 
approximant method have been proposed. These 
include the two-point Pade approximant9 and the 
method to be discussed in this section. 

Given a formal power series expansion I anzn and 
a known function, 

00 

g(z) = I bnzn, (5.1) 
71=0 

we define the [N, N + j] generalized Pade approxi­
mant to be the expression 

N i 

FN,;{Z) = I (J.ng(PnZ) + IYkZ\ (5.2) 
71=1 k=O 

with the (J., p, and Y coefficients chosen so that 
00 

I anzn - F N,;{Z) = O(Z2N+i+1). (5.3) 
71=0 

It is understood that, if j = -1, the sum over k in 
(5.2) is omitted. The mathematical properties of 
generalized approximant have been discussed in some 
detail elsewhere,lo:ll At this point we simply state the 
method by which it is computed. In order to compute 
the [N, N + j] generalized approximant, one must 
simply perform the following calculations: 

(I) Compute the [N, N + j] Pade approximant to 
the series 

00 

I (an/bn)zn, (5.4) 
71=0 

i.e., find the rational function 

PN+;(z) _ Po + P1Z + ... + PN+iZN+i 

QN(z) - 1 + Q1z + ... + QNzN 
(5.5) 

which satisfies 

I (an/bn)zn - PN+;(z) = O(Z2N+i+1). (5.6) 
71=0 QN(Z) 

(2) Write the [N, N + j] Pade approximant in 
partial-fraction form: 

N A i 
I 71 + I CkZk. (5.7) 

71=1 1 - Bnz k=O 

Then (J.n = An' Pn = Bn, n = 1,2,"', N, and 
Yk = bkCk , k = 0, 1, ... ,j . 

• G. A. Baker, Jr., "The Theory and Application of the Pade 
Approximant Method," in Advances in Theoretical PhYSics, K. A. 
Brueckner, Ed. (Academic Press, New York, 1965), Vol. I, p. 54. 

10 J. L. Gammel, C. C. Rousseau, and D. P. Saylor, J. Math. 
Anal. Appl. 20, 416 (1967). 

11 G. A. Baker, Jr., Phys. Rev. 161,434 (1967). 
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In the original work on this method, the function 
g(z) was called the "model" function. 12 The reason 
for this designation is that g(z) may be derived from 
the solution of some simpler model problem. Alterna­
tively, g(z) may be chosen on the basis of its analytic 
structure or its asymptotic behavior. We expect that 
the sequences of [N, N + j] generalized approximants 
which will be of most value are the j = -1 and j = 0 
sequences. Now let us compute these two sequences of 
generalized approximants for the series given by (4.1), 
choosing as our "model" function 

(5.S) 

In order to compute the generalized approximants, 
we must find the partial-fraction form of the Pade 
approximants of 

1 ~(2n)zn = (1 - z)-t. (5.9) 
n=O 22n n 

This problem can be solved exactly with the result 
that 

[N, N - l](z) = - L 1 - cos2 - 7T Z 1 N [ ( (2n 1») J-1 

N n=l 2N 

(5.10) 
and 

[N, N](z) = 2 I [1 _ (cos2 (2n - 1)7T)zJ-1 
2N + 1 n=l 2(2N + 1) 

1 + . (5.11) 
2N + 1 

(These results are proved in the Appendix to this 
paper.) Making use of these results, as well as some 
simple trigonometric relations, we find 

F N.-1(A) = !!.(2k)t_l ~ [1 _ (cos (2n - l)7T)AJ! 
2 M 2N n=l 4N 

and 
(5.12) 

F (A) = ~(2k)t 1 
N.O 2 M 2N + 1 

2N+1[ ( (2n - 1)7T) J* xLI - cos A (5 13) 
n=l 2(2N + 1) . . 

Our major concern, of course, is the sum of the series 
given by (4.1) for A = 1. Performing the sums in 
(5.12) and (5.13), we obtain the particularly simple 

results 

F N _1(1) = Ii(~)!~ esc (~) (5.14) 
. M 4N SN 

and 

( k)! 1 (7T) F N 0(1) = Ii - csc 
. M 2(2N + 1) 4(2N + 1) . 

(5.15) 

Both sequences of approximants are manifestly con­
vergent to the limit (2/7T)Ii(k/M)!, in agreement with 
(1.9). From the Laurent expansion for esc (z), we 
find the approximate errors of FN.-1(l) and FN.o{l) 
to be 

Ii (~)! 7T and Ii (~)* 7T 
M.48(2N)2 M 4S(2N + 1)2' 

respectively. 

6. DISCUSSION 

The application of perturbation theory to an 
infinite system in which the particles are more or less 
localized yields some interesting results. In the first 
place, the series for the energy particle is convergent 
for A = 1. Secondly, the generalized Pade approxi­
mant provides a usefully convergent sequence of 
approximations, thus adding to the utility of the 
perturbation approach. It remains to be seen whether 
these results can be of any benefit to those seeking 
accurate calculations of the binding energies of the 
rare gas solids. In any case, we suggest that this work 
provides a different perspective to the use of pertur­
bation theory in connection with infinite systems. 

APPENDIX 

In order to prove (5.10) and (5.11), we make use 
of simple trigonometric formulas and we appeal to 
the uniqueness property of the Pade approximant.13 

Formally expanding the right-hand side of (5.10), 
we have 

l I [1 - (cos2 (2j - 1)7T)zJ-1 
N i=l 4N 

= 1 (1 Icos2n (2j .- l)7T)zn. (A1) 
n=O N i=l 4N 

Now making use of (3.3) and noting that 

1;cos (m(2j - 1)7T) = {O, m ¥= k(2N), (A2) 
i=l 2N -N, m = k(2N), 

for k = 1, 2, ... , we see immediately that 

1 ~ 2n (2j - 1)7T 1 (2n) N i7:1COS 4N = 22n n ' n < 2N . (A3) 

12 D. P. Saylor, J. L. Gammel, and C. Rousseau, Bull. Am. Phys. 13 H. S. Wall, Analytic Theory of Continued Fractions (Chelsea 
Soc., Ser. II 12, 83 (1967). Pub!. Co., New York, 1967), p. 377. 
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Similarly, let us formally expand the right-hand side 
of (5.11): 

2 ~ [1 _ (cos2 (2j - 1)7T)z]-1 + 1 
2N + 11=1 2(2N + 1) 2N + 1 

=1+i( 2 Icos2n(2j-l)7T)zn. (A4) 
n=1 2N + 11=1 2(2N + 1) 

Once again, we make use of (3.3) and note that 

~cos (m(2j - 1)7T) 
1=1 2N + 1 

= 
{

!_' 1, m ¢ k(2N + 1) and odd, 
2 m ¢ k(2N + 1) and even, 

-N, m = k(2N + 1), 

(A5) 

for k = 1, 2, .... Thus 

~ 2n (2j - 1)7T 
kCOS 
1=1 2(2N + 1) 

_1...[(2n)N + i ( 2n ) - i ( 2n )] 
- 22n n m=1 n + m m=2 n + m 

odd even 

= 1... (2n) (2N + 1) 1 < n < 2N + 1. (A6) 
22n n 2 ' -

Finally, noting (A3) and (A6) and using the fact that 
the Pade approximant is unique, we have established 
(5.10) and (5.11). 

In connection with the results given in (5.10) and 
(5.11), it is well to mention that exact expressions for 
the [N, N] Pade approximants have been obtained for 
a certain class of hypergeometric functions,14 and 

16 Y. L. Luke J. Math. & Phys. 37,110 (1958). 

that (1 - z)-t = F(1, t; 1; z) is a member of that 
class. The results obtained in Ref. 14 are very beauti­
ful. However, the partial-fraction form of the Pade 
approximant, which for the special function (1 - z)-t 
is so simple, is not discussed in that work. 

The method of proof given in this Appendix has 
been selected because it is straightforward and 
requires no preliminary mathematical development. 
However, if one recognizes the connection between 
the generalized Pade approximant and the method 
of Gaussian quadrature, then (5.12) and (5.13) 
follow in a particularly simple way and this develop­
ment is perhaps to be preferred over the one given in 
the text. We begin by noting the integral representa­
tion of the energy per particle of the infinite chain, 

lim Eo(N, ).) = ~(2k)t ! f+1(1 _ u).)t du . 
N-+oo N 2 M 7T -1 (1 - u2)t 

(A7) 

Now let us approximate the integral in (A7) by the 
2N-point Gauss-Chebyshev quadrature formula. Since 
the Gaussian quadrature formula is exact if the 
integrand is any polynomial of degree 4N - 1 or less, 
its application to (A 7) must agree with the exact 
power series through O().2(2N-ll) and the result is 
thus equivalent to FN .-1().). In a similar fashion, we 
can conclude thatthe (2N + I)-point Gauss-Chebyshev 
formula applied to (A7) is equivalent to FN •O().)' It 
is well known that, for M-point Gauss-Chebyshev 
quadrature, the weights are all equal to 7T/M and the 
abscissas are the zeros of TM(x), namely, 

cos «2n - 1)7T/2M). 

Thus we obtain (5.12) and (5.13). 
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The physical regions of six-particle processes are constructed in all planes of pairs of Lorentz-invariant 
variables. As a matter of course, the permissible ranges of the eight independent variables are established. 
Thus, one application is the determination of the integration limits in phase-space integrals that occur 
in calculations involving two-to-four and one-to-five particle processes. 

I. INTRODUCTION 

A previous analysisl of the physical regions of 
general five-particle relativistic processes is extended 
here to general six-particle reactions. Specifically, 
construction of the physical regions for any six­
particle reaction in all possible topologically distinct 
planes of pairs of Lorentz-invariant kinematic vari­
ables (namely the Mandelstam variables) is shown. 
This knowledge could be useful in the analysis in such 
planes of the many-sheeted singularity structure of 
perturbation-theory amplitudes, since only under 
special circumstances can singularities lie in the 
physical regions.2 Also, such knowledge is useful in 
establishing the domain of validity of single-variable 
dispersion relations and partial-wave dispersion rela­
tions in perturbation theory.2 Furthermore, recent 
work in formal S-matrix theory concerning the nature 
of singularities following from unitarity makes a 
special point of beginning first with physical-region 
singularities2 and so it is desirable to know the extent 
of these regions. 

Another reason for making this study, from which 
the limits on the ranges of all kinematic variables can 
be obtained in a systematic manner, is that the result 
enables one to develop efficient numerical-integration 
techniques for use in calculating, for example, two­
to-four particle transition probabilities and one-to­
five particle decay probabilities. As applied to the 
latter example, the results below encompass those of 
Nyborg.3 

Finally, the techniques developed below can be 
regarded as an explicit example of and introduction 
to the more abstrac;t n-particIe formulation. 4 

* National Science Foundation Undergraduate Research Partic­
ipant supported by NSF grant GY-4373 to Dartmouth College, 
Hanover, N.H. 

, R. A. Morrow, J. Math. Phys. 7, 844 (1966), hereafter referred to 
as Paper I. 

2 R. J. Eden, P. V. Landshoff, P. I. Olive, and J. C. Polkinghorne, 
The Analytic S-Matrix (Cambridge University Press, London, 1966). 
See particularly p. 84ff and p. 204ff. 

3 P. Nyborg, Phys. Rev. 140, B921 (1965). 
• R. A. Morrow, Ann. Phys. (N.Y.) (to be published). 

It should be pointed out that only conditions on the 
invariants, in order that a general six-particle reaction 
be physical, are of interest here. The actual ranges of 
the invariants for any particular process, i.e., any 
particular channel, easily follow, however, and, when 
used in conjunction with the expressions for the 
phase-space volume element (in invariant variables, 
given by Byers and Yangfi), a complete and concise 
description of the phase-space integral results. 

In the next section, the Gram determinantal con­
ditions which serve to define the physical regions are 
summarized and the manner of implementing them is 
outlined. Various determinantal identities and sym­
bolic operations are then discussed in Sec. III and are 
applied in Sec. IV to the Gram determinantal condi­
tions to obtain closed sets of determinantal conditions 
from which the allowed ranges of all invariants may 
be deduced. 

All quantities throughout are real. 

II. DEFINITION OF PHYSICAL REGIONS 

The general six-particle process to be discussed is 
shown in Fig. 1 where the ith particle of mass mi has 
its 4-momentum Pi (Pi = mi) directed inwards for 
convenience and the convention used is that if the 
particle is incoming (outgoing), its 4-momentum is 
positive (negative) timelike. A convenient, symmetri­
cally chosen set6 of Lorentz-invariant variables with 
which to decribe the kinematics is the following: 

u = (P3 + P4)2, 

a = (PI + P2 + PS)2, 

V = (P4 + Pfi)2, 

b = (P2 + P3 + P4)2, 

IV = (Pfi + PS)2, 

c = (P3 + P4 + PS)2. 

• N. Byers and C. N. Yang, Rev. Mod. Phys. 36, 595 (1964). 

(1) 

6 V. E. Asribekov, Nucl. Phys. 34, 461 (1962); Phys. Letters 2, 284 
(1962). 
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FIG. 1. This depicts a general six-particle process and indicates 
schematically the nine Mandelstam variables used in the analysis. 

Since there are, however, only eight independent 
variables for a six-particle reaction, these nine vari­
ables are not all independent. It is convenient not to 
specify a dependent variable at this stage, however, 
since a choice will enter naturaIIy later on. 

Because any eight of these variables have inter­
dependent ranges, they cannot all be treated on an 
equal basis. Rather, the physical regions in planes of 
pairs of them will be set up with the remaining 
variables treated as parameters. Conditions on these 

2w w + b - m~ w+u-s 

2b u + b - m~ 

L= 2u 

Note that the six variables of interest r, s, t, v, a, 
and c each occur in only one element of L (and, of 
course, in the transposed element). As will be seen, 
this allows an easy solution of the equation L = ° for 
any of them in terms of the other eight. Thus numerous 
choices of the dependent variable can be made. 

The over-all aim is now to solve L = ° subject to 
conditions (2) on !:.2' !:.3' and !:.4' These Gram 
determinantal conditions are necessary and sufficient 
for the invariants to lie in a physical region. However, 
given two invariants there is no guarantee that a 

latter parameters are then sought so that physical 
regions do exist in the plane of interest. A brief survey 
of Fig. I shows that any plane is topologically equiv­
alent to one of the following six: a-c, a-t, c-t, v-s, 
v-r, and s-r. Therefore only these six will be treated. 

The general Gram determinantal conditions from 
which the physical regions may be found were 
established in Paper I. For the particular case of six­
particle processes, they are, with the Gram determi­
nant of the 4-vectors Pi' P;, ... ,h defined as 

with a, b = i,j, ... , k: 

(i) 

(ii) 

(iii) 

(iv) 

subject to 

!:.2(Pi' Pi) ~ 0, 

!:.S(Pi ,Pi' h) ~ 0, 

!:.4(Pi' Pi' h, PI) ~ 0, 

6 

~ Pi = 0. 
i=1 

(2a) 

(2b) 

(2c) 

(2d) 

As in Paper I, conservation of 4-momentum will be 
imposed on!:.5 = 0, which can then be put in terms of 
the nine Mandelstam invariants. Specifically, !:.5 may 
be brought into the form L/25 , where L is the sym­
metric determinant 

w - a + m~ -w - m~ + m: 

b - t + m! r - b - m~ 

u - m; + m! c - u - m~ (3) 

2m~ v - m~ - m~ 

2m; 

physical region exists in their plane if (2) is satisfied. 
For this, further conditions on the remaining six 
independent variables, logically derivable from those 
on the Gram determinants in (2), are necessary. It 
remains to find these logical structures. 

III. IDENTITIES AND SYMBOLIC OPERATIONS 

In order to find the implications of (2), it will prove 
convenient to first develop some logical operations 
(almost identities) which will be applied to (2) in the 
next section. To begin, the notation used in this and 
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the following section is that of Paper I: L is the deter­
minant of a symmetric matrix whose elements aij are 
defined by (3); L ii ... k is the principal minor of L 
obtained by deleting the ith, jth, ... , kth rows and 
columns of L; V(ij'" k)mn is the cofactor (signed 
minor) of the element amn of Lii ... k ; V(ij' .. k)mn

o 
is 

V(ij' .. k)mn with anm = 0. 
Numerous formulas, useful indealingwithsymmetric 

determinants, are summarized in the appendix of 
Paper 1. The three that will be used in the present work 
are 

(a) the identity 

(b) the solution of L i ... i = ° for akm : 

== akm(i ... j, ±); (5) 

(c) a concise expression for L i ... i: 

x [akm - akm(i ... j, - )]. (6) 

From these relations and from the structure of L 
there follow a number of useful properties: 

(A) L = ° and Li :::;; ° imply Li :::;; 0. This results 
from a straightforwar4 application of Eq. (4). 

(B) Li :::;; 0, Lii ~ 0, and Liik :::;; ° imply Lik ~ 0. 
This also results from applying Eq. (4). 

(C) Lii ~ ° and L Uk :::;; ° imply LOm:::;; 0.7 The 
argument here is a bit more involved. If L iikm > ° 
then an application of (4) shows that L iim :::;; 0. On the 
other hand if L iikm :::;; 0, then the functional form of 
L iim requires it to be negative. To see this, notice that 
each L iim = -A(X,y, z), where 

A(X,y, z) = X2 + y2 + Z2 - 2xy - 2yz - 2zx, (7) 

and each of x, y, and z is either a variable or the 
square of a mass. Then, L iikm is either 2x, 2y, or 2z, 
depending on the index m. From Eq. (7) it follows 
that A(X, y, z) ~ ° if x, y, and z are neither all positive 
nor all negative. Now, by inspection of (3), at least one 
of x, y, and z is the square of a mass [except in the 
case L 245 = -A(S, U, w), which will not enter the 
present analysis] while, because of L iikm :::;; 0, another 

1 An exception to this-which will not be encountered in the 
present work, however-is pointed out below. 

is nonpositive. Hence A(X, y, z) ~ 0 and so LUm :::;; 0 
as asserted. 

These properties may be symbolized as logical 
operations or implications: 

(8) 

where L = 0, Li :::;; 0, Li; ~ 0, and Lilk :::;; 0. Deter­
minants at the tails of arrows are assumed to have 
these signs, whence the identities require the deter­
minants at the heads of arrows to have these signs, 
as shown above. The manner in which this requirement 
on any particular determinant is actually met is by 
varying one of the invariants that the determinant 
depends on. To see how this operates, suppose 
L i . .. i :::;; 0 is wanted. Consider the solutions of L i . .. i = ° for akm as given in Eq. (5). It will always turn out in 
the present work, by proper choice of the indices k and 
m, that L i ... ikLi ... 1m ~ 0. Thus L i ... 1 = ° has real 
solutions akm (i ... j, ±) and there is, therefore, a 
range of real values of akm for which L i ... i :::;; 0, 
found by using (5). Concrete examples of these argu­
ments are given in the next section. 

IV. LOGICAL STRUCTURES OF DETER­
MINANTAL CONDITIONS 

The arguments of Sec. II may now be continued 
using the symbolic operations set up in the previous 
section. The aim is to build upon a set of Gram deter­
minantal conditions (2), using the operations in (8), a 
structure of other determinantal conditions from which 
the ranges of all invariants in (I) may be found in a 
systematic manner. It turns out that, although many 
such structures are possible, two particular ones are 
sufficient for a study of the physical regions in all of 
the six planes proposed in Sec. II. Only these two 
structures will be shown. 

The a-c, a-t, and c-t Planes 

Take as the set of Gram determinants !:l.2(Pa, P4), 
!:l.a(P2' Pa, P4), and !:l.4(Pl, P2' Pa, P4)' By adding appro­
priate rows and columns and by using the conservation­
of-momentum condition in (2), these three Gram 
determinants bepome L125/22 , L15/2a, and L5/24 , 
respectively. Thus conditions (2) become L125 :::;; 0, 
L15 2 0, L5 :::;; 0, and L = 0. Beginning with these 
and using the operations (8), the following structure 
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can be obtained: 

L 12S(U) 

j (C) /"LI5 (U, b, t) 

~ l~(B) L5(u,w,b,s,t,a) 

Lus(u, b)____ 1 
1 

~ (A) /L(U, w, b, s, t, r, a, c, v) 
(C) /"L45(U, w, b, s) / 

(9) 

~ j (B) ~L4(U, w, b, s, r, c) 

L 345(W, b) ~ ~ lY'(W,b,'l 
L 234(W) 

with L = 0, Li ::;; 0, Lij ~ 0, and L;ik ::;; 0. By con­
struction, the conditions in (9) are necessary and 
sufficient for a set of values of the kinematic variables 
(1) to describe a physical process. How they determine 
the physical regions in the various planes will now be 
described. 

Physical Regions in the a-c Plane 

The conditions (9) may be satisfied as follows: 

(i) pick U so that L125 ::;; 0; 
(ii) pick wand b so that LU5 ' L345 , L 234 ::;; 0; 

(iii) pick t, s, and r so that L15 ~ 0, L45 ~ 0, and 
L34 ~ 0, respectively; 

(iv) pick a and c so that Ls ::;; ° and L4 ::;; 0, respec­
tively; 

(v) pick v so that L = 0. 

In the a-c plane, the physical regions exist and are 
given by those regions where Ls , L4 ::;; 0. Use of (6) 
shows that there is only one such region and that its 
shape is rectangular. 

That the above choices can always be made was 
argued at the end of Sec. III. For example, consider 
satisfying L45 ~ ° by choice of s. From (3), s occurs 
only in al3 and (5) shows that L45 = ° can be solved 
for a real value of a13, since LuSL345 ~ ° by prior 
choice of u, w, and b. Thus real values of s exist that 
make L45 ~ 0, the range being found by use of (6). 

Essentially the same argument can be applied to the 
choice of each invariant. Note in particular, from (5), 
that two values of the dependent variable v satisfy 
L = 0. For any particular channel (selected by prior 
choice of the eight independent variables), both values 
of v are physical. In other words, specification of the 
eight independent invariants does not lead to a unique 
configuration of momentum in Minkowski space. 
In fact, two additional pieces of informationS are 
needed before the configuration is unique; one is the 

8 F. Rohrlich, Nucl. Phys. 67, 659 (1965); Nuovo Cimento 38, 673 
(1965). 

value of v, while the other is not really important, 
since it just distinguishes between configurations 
related by a spatial reflection. These remarks also 
hold in the following cases. 

Physical Regions in the a-t Plane 

Conditions (9) can be satisfied precisely as above. 
To then find the form of the physical regions in the 
a-t plane, consider using (5) to solve L5 = ° for au (a) 
and a2il): 

au = [V(5)14o ± (LI5L45)t]/LI45' 

a24 = [V(5h4 ± (L25L45)i]fL245' o 

This shows that L15 = ° and L 2S = ° are tangent lines 
to Ls = 0, parallel to the coordinate axes. Further­
more, since L45 ~ 0, the curve Ls = ° lies only in 
those regions where L15 , L 25 ~ 0. Use of (6) on L l5 
shows that if L1245 ::; 2u ~ 0, then L15 ~ ° for t 
between the tangent lines LIS = 0; otherwise 1 must be 
taken outside these lines. The two possibilities are 
shown in Fig. 2. Whether the hyperbola lies in the 
first and third quadrants as shown or in the second 
and fourth quadrants depends on the values of the 
other invariants. 

Physical Regions in the c-I Plane 

The order of choosing invariants to satisfy (9) is for 
the most part the same as before. The exception is that 
a must be chosen before t or c. This is easily handled, 
for from Fig. 2 it can be noted that if a is chosen so that 
L2S(u, w, s, a) ~ ° then any 1 such that L5 ::;; ° also 
gives Lu ~ 0. Thus conditions (9) can be satisfied by 
the scheme: 

(i) pick u so that Ll2f) :::; 0; 
(ii) pick wand b so that L145 , L345 , L 234 ::;; 0; 

(iii) pick sand r so that L 45 , L34 ~ 0, respectively; 
(iv) pick a so that L 25 ~ 0; 
(v) pick 1 and c so that L 5 , L4 :::; 0, respectively; 
(vi) pick v so that L = 0. 
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(a) u ~ 0 

(w ~ 0) 

- t 
( r) 

(b) usa 
(w so) 
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t 
-(r) 

--~-----=~~--~-----------

I----t=-''''''" L I 5 = 0 
(L 34 =O) 

FIG. 2. The form of the physical regions in the a-I (v-r) plane for (a) u(w) ~ 0 and (b) u(w) < O. In (a) there is only one physical 
region, the interior of the ellipse. In (b) there are two physical regions, inside each branch of the hyperbola. 

As in the case of the a-c plane there is only one physical region in the c-t plane given by the overlap of Ls ~ ° 
and L4 ~ 0. Its shape is also rectangular. 

The v-s, v-r, and s-r Planes 

Take as the set of Gram determinants 6.2(P2, Pa), 6.a(P2' Pa, P4), and 6.4(P1, P2' Pa, P4), the only differ­
ence with the previous choice being 6.2 , which here may be written in the form - iA(t, mi, mi). Thus 
conditions (2) become -A(t, m~, m~) ~ 0, L15 ~ 0, Ls ~ 0, and L = 0. The operations (8) can then be 
used to build the following structure: 

-A(t, m~, m;) 

1 
(C) /L15(t, b, u) 

~ (B) L 5U, IV, e, a, u, s) 

L135(t, b)________ "~ 1 (A) ( b 

1 
~ y ~ L t, IV, ,a, u, r, s, v, c) (10) 

~
(C) L35(t, IV, b, a) / 

1 
(B) ~La<t, IV, b, a, r, v) 

L a4s( ,b)~ ~ 1 (C) /L,.(W, b, ,) 

L234(~ 
with L = 0, Li ~ 0, Lif ~ 0, Lifk ~ 0, and 

A(t, mL m~) ~ O. 

Although -A(t, m~, m~) is not one of the Liik' 

operation (C) of (8) can still be used to require 
L135 ~ 0, because L15 can be put in the (symmetric) 
form 

2t t - m: + m~ b - t - m; 

L 15 = 2m~ u - m~ - m; 

2m! 

and application of (4) gives 

L 15 = [-A(t, mL mi)L135 

- (t - m~ + m~)2(b - t - m!)2]j2t 

from which it follows, by repeating the arguments used 
to establish operation (C), that 

L15 ~ 0 and -A(t, m~, m;) ~ ° 
imply L135 ~ O. 
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Physical Regions in the v-s Plane 

This case is quite similar to that of the a-c plane. 
The conditions (10) may be satisfied as follows: 

(i) pick t so that A(t, m: ' m:) ~ 0; 
(ii) pick wand b so that !.t35, L345 , L 234 ::;; 0; 
(iii) pick u, a, and r so that L15 , L35 , L34 ~ 0, respec­

tively; 
(iv) pick s and v so that L5, L3 ::;; 0, respectively; 
(v) pick c so that L = O. 

The single, rectangular-shaped, physical region in the 
s-v plane is given by the overlap of L5 ::;; 0 and 
L 3 ::;; O. 

Physical Regions in the v-r Plane 

The conditions (10) may be satisfied precisely as in 
the previous case. The situation here is quite analogous 
to that in the a-t plane case and so to find the form of 
the physical regions first use (5) to solve L3 = 0 for 
a45(v) and a26(r): 

a45 = [V(3)45
0 

± (L34 L35)1]/L345 ' 

a25 = [V(3)25
0 
± (L23L36)~]/L235' 

This shows that the lines L34 = 0 and L 23 = 0 are 
tangent to L3 = 0 and that the latter curve exists only 
in regions in the v-r plane where L34 , L 23 ~ 0 since 
L35 ~ O. Use of (6) on L34 then shows that if L2345 == 
2w ~ 0, then L34 ~ 0 for r between the tangent lines 
L 34 = 0; otherwise r must be taken outside these lines. 
Thus Fig. 2 applies to this case with the replacements 
a - v, t - r, U - W, L 25 - L23 , L15 - L34 , and 
L5- L3' 

Physical Regions in the s-r Plane 

This case is analogous to that in the c-t plane. The 
order of choosing the variables can be the same as in 
the previous two cases with the exception that v must 
be chosen before r or s. This is easily done, for, from 
Fig. 2, if v is chosen so that L 23 (W, a, v) ~ 0, then any 
r that makes L3 ::;; 0 will give L34 ~ O. Conditions (10) 

are thus satisfied by the following: 

(i) pick t so that A(t, m~, m;) ~ 0; 
(ii) pick wand b so that L135 , L346 , L 234 ::;; 0; 

(iii) pick u and a so that LIS' L35 ~ 0, respectively; 
(iv) pick v so that L 23 ~ 0; 
(v) pick rand s so that L5, L3 ::;; 0, respectively; 
(vi) pick c so that L = O. 

Since L6 = 0 and L3 = 0 are each two straight lines in 
the s-r plane, there is only one physical region and it is 
rectangular, being given by the overlap L5 , L3 ::;; O. 

V. CONCLUSIONS 

It has been shown how to systematically construct 
the physical regions of six-particle processes in all 
topologically distinct planes of pairs of Lorentz­
invariant variables. Instructions have been given as to 
how to select the ranges of the first six variables which 
are viewed as parameters. 

There was no need in this analysis to specify which 
particles were incoming and which were outgoing. 
This information is imposed when the ranges of the 
variables are chosen. That is, many of the variables 
have more than one nonoverlapping range, each 
range corresponding to a different process. Thus all 
25 possible reactions9 (plus any decays) are included 
in the formulation. 

As an important application, the ranges of the 
variables as found here can be taken as the integration 
ranges in the phase-space integral set up by Byers and 
Yang.s The resulting expression, which is straight­
forward to obtain, is particularly well suited to 
peripheral reactions.1O 

• For an n-partic\e reaction there are 2n- 1 
- n - 1 (if decays are 

forbidden) disjoint connected physical regi~ ns, each corresponding 
to a particular channel; see D. A. Jacobson, Nuovo Cimento 45A, 
905 (1966). 

10 A Monte Carlo numerical-integration program based on this 
scheme has been used successfully in calculations involving the 
multi-Regge model. Its great usefulness rests on the efficiency with 
which events at small values of the momentum-transfer variables can 
be generated, a prime reason for this being the fact that such variables 
occur as integration variables. 
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Solution of a Three-Body Problem in One Dimension 
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The problem of three equal particles interacting pairwise by inversecube forces ("centrifugal 
potential") in addition to linear forces ("harmonica I potential") is solved in one dimension. 

1. INTRODUCTION 

It has been known for some time that the one­
dimensional three-body problem with linear ("har­
monical") and inverse-cube ("centrifugal") pair forces 
is separable,I,2 but apparently there has been no 
attempt at its actual solution. In this paper this 
problem is solved in the case of equal particles: The 
complete energy spectrum is determined, and all the 
corresponding eigenfunctions are explicitly written out. 

The particles may satisfy Boltzmann, Bose, or 
Fermi statistics; in fact, the nature of the problem is 
such that the type of statistics does not modify the 
energy spectrum and affects the wavefunctions only 
in a trivial way. The problem which obtains from that 
described above eliminating the inverse-cube force 
between two pairs (so that it acts only between one 
pair) is also solved. 

In Sec. 2 we discuss the two-body problem with 
the same "oscillator plus centrifugal" forces. This 
treatment is useful both as a preliminary for the 
solution and as a model for the interpretation of the 
three-body problem, which is discussed in Sec. 3. 
The last section contains comments on possible 
extensions of the results of this paper. 

U nits are chosen so that 2mli-2 = 1, where m is 
the mass of the particles. 

2. THE TWO-BODY PROBLEM 

The Schrodinger equation for the two-body problem 
under consideration is 

Here Xl and X2 indicate, of course, the coordinates of 
the two particles, and we assume that g > - t to 
avoid "fall to the center." 3 Going over to the center-

* Permanent address: Physics Department, Rome University, 
Rome, Italy. 

1 H. R. Post, Proc. Phys. Soc. (London) A69, 936 (1956). 
2 J. Hurley, J. Math. Phys. 8, 813 (1967). 
3 L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon 

Press, Inc., New York, 1958), Sec. 35. 

of-mass (CM) and relative coordinates,4 

R(2) = t{XI + x2), 

x = 2-!(xI - x 2), 

(2.2a) 

(2.2b) 

and eliminating the center-of-mass motion, we get 

[ -::2 + iW2
X

2 + tgx-
2 

- EJ lP = 0, (2.3) 

where now E is the energy in the CM system. 
The physically acceptable solutions of this equation 

(in the interval ° S x < CX) are 

lPn(x) = xa+! exp ( - iwx2)L",,(twX2), n = 0, 1, 2, .. " 

(2.4) 
with 

(2.5) 

Here L~ is a generalized Laguerre polynomial, defined 
as in Ref. 5. By changing the sign of a, namely, by 
taking the negative determination of the square root 
in Eq. (2.5), one would still obtain a solution of the 
Schrodinger equation, but it would not be an accept­
able one owing to its behavior at x = 0.6 

The corresponding energy levels are 

En =w(2n+a+l), n=0,1,2,···. (2.6) 

Because, for g ~ 0, both lPn(x) and lPn(x)lP~(x) 
vanish at x = 0, the physically acceptable solutions in 
the whole interval - CX) < x < 00 are obtained by 
supplementing Eq. (2.4) with the simple prescription6 

lP( -x) = ±lP(x), x ~ 0. (2.7) 

The upper sign corresponds to Bose statistics, the 
lower sign to Fermi statistics. Obviously the energy 
spectrum is no affectctd by this prescription. This 

4 The factor 2-& in the definition of x is convenient for the com­
parison with the three-body problem. 

5 I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series 
and Products (Academic Press Inc., 1965); Higher Transcendental 
Functions, A. Erdelyi, Ed. (McGraw-Hill Book Co., Inc., 1953), Vol. 
II. Note that the definition of Laguerre polynomials given here is 
different from that used in some textbooks, for instance in Ref. 3. 

6 A wavefunction !p(x) is considered physically acceptable if both 
11p(x)/2 and 1p(x)1p'(x) are continuous. This condition may be inter­
preted as deriving from the requirement that both the density and 
the current of probability (that the particle be found at x) vary 
continuously with x. Moreover, the wavefunction must be normaliz­
able (for closed problems). 
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2192 F. CALOGERO 

happens because the restriction to one dimension 
together with the singular nature of the centrifugal 
interaction at short distance implies a complete 
separation of the configurations with x > ° from 
those with x < 0. Of course if the particles are assumed 
to satisfy Bose or Fermi statistics, the energy levels 
(2.6) are nondegenerate, while if they satisfy Boltz­
mann statistics, each level is two-fold degenerate.' 

In the g -+ ° limit, the eigenfunctions (2.4) and 
eigenvalues (2.6) go over into the "anti symmetrical" 
eigenfunctions and eigenvalues of the harmonic­
oscillator problem: 

1p,,(x) = exp (-twx2)H2n+1[(iw)tx), 

n = 0, 1,2 .. " (2.8) 

En = w(2n + t), n = 0, 1,2' . . . (2.9) 

Here of course Hm is a Hermite polynomial. 5 This 
happens quite independently of the type of statistics 
that the particles satisfy, although, of course, to 
extend these solutions to the whole interval - 00 < 
x < 00, one should now use the negative sign in Eq. 
(2.7). The even solutions of the oscillator problem, 
that do not vanish at x = 0, would instead result, 
in the g -+ ° limit, from the functions (2.4) with the 
negative value of a corresponding to the negative 
determination of the square root in Eq. (2.5); that is, 
they result in inserting a = -i in Eqs. (2.4) and (2.6) 
and taking of course the positive sign in Eq. (2.7). But 
they cannot be obtained as the limit of the eigen­
functions of the problem with g ¥= 0. This is con­
sistent with the fact that, owing to the singular nature 
of the interaction, for g#-O all eigenfunctions vanish 
at x = 0. 

In conclusion we may assert that switching on the 
"centrifugal" interaction shifts all the "odd" eigen­
values of the harmonic oscillator problem by the 
constant amount 

w(a - i) = iw[(l + 2g)! - I], (2.10) 

while it eliminates altogether the "even" eigenvalues. 
This is also consistent with the indication of first­
order perturbation theory, which yields a finite 
answer when applied to an "odd" oscillator state 
(whose wavefunction, vanishing at the origin, com­
pensates the divergence of the centrifugal potential), 
but yields a divergent answer if applied to an "even" 

7 In the case of equal but distinguishable particles (Boltzmann 
statistics), each independent eigenfunction may be chosen. to cor~e­
spond to a definite ordering of the particles, because the smgulanty 
of the "centrifugal" pair interaction excludes the possibility that 
the particles overtake one another. Such an eigenfunction vanishes 
unless the variable which distinguishes the different orderings of the 
particles (x in the two-body case, '" in the three-body case) lies 
within the appropriate range. 

oscillator state. Of course, the energy shift is positive 
for repulsive interaction (g > 0), negative for attrac­
tive interaction (-i < g < 0). 

On the other hand, for w = 0, the solution of Eq. 
(2.3) is 

(2.11) 

and the corresponding eigenvalues belong to the 
continuous spectrum 

(2.12) 

In Eq. (2.11), Ja is a Bessel function5 and a is still 
defined by Eq. (2.5). Note, however, that in the w --° 
limit, all the solutions (2.4) go over into the zero­
energy solution 

(2.13) 

This case with w = 0 is of no interest because there 
is no energy quantization and, on the other hand, the 
nature of the problem implies that the particles 
cannot overtake one another [see the discussion after 
Eq. (2.7) above]. In fact, it is immediately seen that 
the transmission coefficient, evaluated from Eqs. 
(2.11) and (2.7), vanishes identically for all values 
of the energy. 

3. THE THREE-BODY PROBLEM 

The Schrodinger equation for the three-body 
problem under consideration is 

{- .!.. - .!.. - .!.. 
ox~ ox~ oxi 

+ iW2[(Xl - X2)2 + (X2 - xs)2 + (xa - Xl)2] 

+ gs(x1 - X2)-2 + gl(X2 - Xa)-2 

+ g2(XS - X1)-2}1p = E1p. (3.1) 

We will solve the two cases 

gl = g2 = 0, gs = g, (3.2) 
and 

(3.3) 

As in the two-body case, and for the same reason, we 
assume throughout that g > -to 

It is first of all convenient to go over to the center­
of-mass and "Jacobi" coordinates 

R(S) = !-(Xl + X 2 + xs), 

;; = 2-!(x1 - x 2), (3.4) 

y = 6-!(x1 + X 2 - 2xs)' 

In these coordinates, the Schrodinger equation 
becomes, after elimination of the center-of-mass 
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motion, 

[ 
02 02 

- OX2 - ol + iw2
(X2 + l) + tgax-

2 

+ bl[(3)! y - X]-2 + tg2[(3)t y + Xr2 - EJ "p = 0, 
(3.5) 

where E now indicates the energy in the center-of­
mass system. 

We introduce next the two-dimensional "spherical" 
coordinates rand tfo: 

r2 = X2 + y2 = (Xl - R(a)2 + (X2 - R(a)2 

+ (xa - R(a)2 

= H(xI - x2)2 + (X2 - xa)2 + (xa - XI)2], 

tfo = tan-l (x/y) 

= tan-l [,J3(x I - X2)/(X I + X2 - 2xJ], (3.6a) 

x = r sin tfo, 

y = rcos tfo. 

The range of these variables is 

O~r<oo 
and ° ~ tfo < 217'. 

(3.6b) 

(3.7a) 

(3.7b) 

Moreover, it is easily seen that the value of tfo corre­
sponds to the ordering of the three particles as 
follows: ° < tfo < 117', Xl> X2 > xa, 

117' < tfo < !17', Xl> Xa > X2, 

i17' < tfo < 17', Xa > Xl > X2, 

17' < tfo < 1-17', Xa > X2 > Xl' 

1-17' < tfo < %17', X2 > Xa > Xl' 

%17' < tfo < 217', X2> Xl > Xa· 

In fact, from Eqs. (3.4) and (3.6), we have 

Xl - X2 = 2tr sin tfo, 

(3.S) 

X2 - Xa = 2tr sin (tfo + i17'), (3.9) 

Xa - Xl = 2tr sin (tfo + t17'). 

In these new variables the Schrodinger equation 
reads 

( 
02 1 0 22M ) - - - - - + Jw r + - - E "p = 0, 
or2 r or r2 

(3.10) 

It is, therefore, solvable by separation of variables as 

"p = R(r)f(tfo)· (3.12) 

Let us denote the eigenvalues of the operator M 
by bL 1 = 0, 1,2' .. (they are certainly positive; 
see below), i.e., 

Mil( tfo) = b~fz( tfo), 1 = 0, 1,2' . . . (3.13) 

We then get the equation 

( 
d2 1 d 2 2 b~ ) - - - - - + iw r + - - E R = ° (3.14) 
dr2 r dr r2 

for the corresponding radial wavefunctions. The 
normalizable solutions of this equation are 

Rnl(r) = rbz exp [- Ht)twr2]Lb~[H!)twr2], 
n = 0, 1,2' . " 1 = 0, 1,2' . " (3.15) 

where L~ are again the Laguerre polynomials.s 

The corresponding energy eigenvalues are 

Enl = (!)tw(2n + bl + I), 
n=0,1,2"', 1=0,1,2···. (3.16) 

There remains now the less trivial part of the 
exercise, which is to determine the eigenfunctions 
and eigenvalues of the operator M of Eq. (3.11). 

We consider first the case with gl = g2 = 0, 
ga = g.B Then the differential equation 

d2 g 
Mfz(tfo) = - dtfo2 + 2 sin2 tfofz(tfo) = b~fz(tfo) (3.17) 

may be transformed into the hypergeometric equa­
tion by appropriate substitutions, so that we obtain 

fz(tfo) = (sin tfo)a+iF(t(a + t - bl), tea + t + bl), 

1 + a; sin2 tfo) (3.lSa) 

= cos tfo(sin tfo)a+tF(t(a + ! - bl), 

Ha + ! + bl); 1 + a; sin2 tfo). (3.lSb) 

Here a is defined by Eq. (2.5), F(A, B; C; t) is the 
usual hypergeometric function, and Eq. (3.1Sb) is 
obtained from Eq. (3.lSa) by using the well-known 
identity 

F(A, B; C; t) = (1 ~ tP-A-BF(C - B, C - A; C; t). 

(3.19) 

8 This problem is separable (and easily solvable) also in the x, y 
variables [see Eq. (3.5)]. (In fact, any problem characterized by equal­
strength harmonical potentials acting between every two particles 
and, in addition, by one arbitrary potential depending only upon 
the interparticle distance of one pair is completely separable"; and 
this statement remains true for any number of particles and spatial 
dimensions.) But the solution of the more complete three-body 
problem with gl = g. = g3 = g can be simply obtained only using 
the spherical variables r, rp (see below). 
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The negative square root in Eq. (2.5) would still 
yield a solution of Eq. (3.17), but it wOlild not be an 
acceptable one owing to its behavior at c/> = ° and 
c/> = n (Le., at Xl = x2). This situation is identical 
to its counterpart in the two-body case [see Eq. 
(2.4) and the discussion following it]. 

The functionj;(c/» is, however, physically unaccept­
able6 unless the hypergeometric functions in Eqs. 
(3.18a) or (3.18b) reduce to a polynomial, owing to 
the discontinuous behavior of its derivative at 
c/> = t7T·9 Thus, the only acceptable solutions (in 
the interval ° ~ c/> ~ n), and the corresponding 
eigenvalues, obtain from the requirement that the 
first argument of either one of the hypergeometric 
functions in Eqs. (3.18) coincides with a nonpositive 
integer. In this manner one obtains 

fl(c/» = (sin c/»a+!q+!(cos c/», 1= 0, 1,2· .. , 

(3.20) 

bz = I + a + t, I = 0, 1, 2 ... , (3.21) 

where C~ is a Gegenbauer polynomial.5 

The extension of these solutions to the whole 
interval ° ~ c/> < 2n is performed, just as in the two­
body case, by the prescription 

fl(2n - cp) = ±fz(c/» , 0 ~ c/> ~ n, (3.22) 

the positive (negative) sign corresponding to states 
symmetrical (anti symmetrical) under the exchange 
of particles I and 2. There is, of course, no symmetry 
under the exchange of particle I (or 2) with particle 
3, because in the case under consideration particle 
3 has an interaction different from that of particles I 
and 2. 

We may, therefore, conclude that the (normaliz­
able) eigenfunctions of the three-body problem (with 
gl = g2 = 0, ga = g) are 

1fJnZ(r, c/» = rl+a+! exp [-Ht)!wr2]L~a+!o(~iwr2) 
X (sin C/>t+tc~+!(cos c/», ° ~ c/> ::;;: n, (3.23a) 

1fJnZ(r, c/> + n) = ±( - t/Pnl(r, c/», ° ~ c/> ~ n, 
(3.23b) 

and the corresponding eigenvalues are 

E2nH = (t)iw(2n + I + a + t). (3.24) 

We recall that a is defined by Eq. (2.5) and that 
both quantum numbers n and I take all nonnegative 
integral values. If the two equal particles 1 and 2 
satisfy Bose (Fermi) statistics, only the positive 
(negative) sign should be taken in Eq. (3.23b); if 
they satisfy Boltzmann statistics, both possibilities 

• At q; = !1T the differential equation (3.17) has no singularity, 
but the mapping between the variable q; and the argument of the 
hypergeometric function does. 

are allowed (so that the degeneracy of each eigen­
value is doubled).7 

Equation (3.24) implies that the spectrum is linear, 
with the same spacing as in the three-body "oscillator" 
problem without any "centrifugal" potential. 

It is also easily seen that, just as in the two-body 
case, in the limit g --+ 0, a --+ t, the eigenfunctions 
(3.23a) and the eigenvalues (3.24) go over into those 
eigenfunctions and eigenvalues of the three-body 
"oscillator" problem that correspond to states anti­
symmetrical under the exchange of particles I and 2. 
The eigenfunctions and eigenvalues corresponding 
to "oscillator" states symmetrical under the exchange 
of particles I and 2 result inserting a = -t in Eqs. 
(3.23a) and (3.24), and therefore cannot be obtained 
in the g --+ ° limit from the eigenstates and eigen­
functions of the problem with g:r6 ° (compare with 
the analogous phenomenon in the two-body case, 
discussed in the preceding section). Of course, to 
extend the corresponding eigenfunctions to the 
whole interval ° ~ c/> < 2n, one must choose in Eq. 
(3.23b) the negative (positive) sign for antisymmetrical 
(symmetrical) states. 

The degeneracy of each level EN, N = 2n + I, is 
the integral part of (N + 2)/2 (if the two equal 
particles satisfy Bose or Fermi statistics; twice that 
if they are distinguishable, namely, if they satisfy 
Boltzmann statistics).' The shift of each energy level 
from the corresponding level of the oscillator problem 
is (t)t(a - t)w, namely, (t)! times that found in 
the two-body case. 

We proceed now to the equal-particle case (gl = 
g2 = ga = g). To do this we must solve the eigen­
value equation 

[ 
d~ g( 1 __ 1 __ 

MFz(c/» = - dc/>2 +"2 sin2 c/> + sin2 (c/> + in) 

+ . 2 1 )]Fz(c/» = B~Fz(c/». (3.25) 
sm (c/> + tn) 

We have used capital letters for the eigenfunctions 
and eigenvalues of this equation, to distinguish them 
from those of the analogous equation (3.17). 

The solution of this problem is immediately 
reduced to that of the previous one, Eq. (3.17), by 
the use of the trigonometric identity 

(sin c/»-2 + [sin (c/> + in)]-2 + [sin (c/> + tn)]-2 
= 9(sin 3c/»-2. (3.26) 

This identity, 10 which may be verified by explicit 
computation, was actually discovered through a 

10 It is amusing to recognize that the equality 
[sin q;]-P + [sin (q; + f1T)]-P + [sin (q; + t1T)]-P = 3P[sin 3q;]-P 

holds both for p = 1 and p = 2. It does not, however, hold for 
p= 3. 
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solution of the eigenvalue problem, Eq. (3.25), that 
had been obtained by a painstaking analysis. Such an 
analysis is, however, completely unnecessary once 
the existence of this identity is recognized, because 
its insertion in Eq. (3.25) and a comparison of this 
equation with Eq. (3.17) immediately implies that 

(3.27) 

(3.28) 

These equations, together with Eqs. (3.20) and 
(3.21), yield "acceptable" solutions of Eq. (3.25) in 
the interval 0::;; cP ::;; TT13. The extension of these 
solutions to the whole interval 0 ::;; cP < 2TT is easily 
achieved by the prescriptions 

Fl(cp + tPTT) = ±Fl(cp), 

0::;; cP::;; tTT, P = 1,2,3,4,5. (3.29) 

The justification of these prescriptions and the choice 
of the sign [depending on the statistics of the particles; 
see also Eq. (3.8)] should be obvious by now. There­
fore, we proceed immediately to the final expressions 
for the eigenfunctions and eigenvalues of the problem: 

"Pnl(r, cp) = r31+3a+! exp [-i(t)!wr2]L~+3a+![t(~iwr2] 

x (sin 3cpt+iC~+i(cos 3cp), 

o ::;; cp ::;; tTT, (3.30) 

"Pnl(r, cp + tPTT) = (-yllPnl(r, cp), 0::;; cp ::;; !TT, 

P = 1,2,3,4,5, (3.31a) 

"PnzCr, cp + !pTT) = (- )p(l+l)lPnzCr, cp), 0::;; cp ::;; tTT, 

P = 1,2,3,4,5, (3.31b) 

E2n+31 = (t)!w(2n + 31 + 3a + t). (3.32) 

Here a is again defined by Eq. (2.5), L':,. and C~ 
indicate again the Laguerre and Gegenbauer poly­
nomials,a the quantum numbers n and I take all 
nonnegative integral values, and rand cp are con­
nected to the coordinates of the three particles by 
Eqs. (3.5). Note that these equations imply that 
sin 3cp and cos 3cp depend in a symmetric manner on 
the coordinates of the three particles: 

sin 3cp = -3(6)~(XI - X2)(X2 - X3)(X3 - Xl) 

X [(Xl - x2)2 + (x2 - X3)2 + (x3 - XI)2]-!, 

cos 3cp = 2~(XI + X2 - 2X3)(X2 + X3 - 2xl) 

X (X3 + Xl - 2X2) 

X [(Xl - x2)2 + (X2 - X3)2 + (X3 - XI)2]-!. 

(3.33) 

Equation (3.3Ia) is for the case of Bose statistics, 
Eq. (3.31b) for Fermi statistics; in these cases a 

unique wavefunction corresponds to each pair n, I. In 
the Boltzmann case, in each one of the six "angular" 
sectors (tPTT::;; cp ::;; 1(P + I)TT, P = 0, 1,2,3,4,5) 
the wavefunction can be defined through Eqs. (3.30) 
and (3.31) and can be set to zero in the remaining 
five sectors, giving altogether six different states 
corresponding to each pair n, l.7 On the other hano, 
the degeneracy of each level EN' N = 2n + 3/, is, 
in the case of identical particles (Bose or Fermi 
statistics), the integral part of t(N + 6), and of 
course six times that in the case of distinguishable 
particles (Boltzmann statistics). 

It should be noted that the energy spectrum is 
again linear; it reproduces the spectrum of the problem 
without "centrifugal" forces and with Fermi statistics, 
except for a constant shift of all the energy eigen­
values by the quantity 3 (t)!w(a - t). In fact it is easily 
seen that in the g --+ 0 limit (a --+ t) the eigenfunctions 
(3.30) and (3.3Ib) and the eigenvalues (3.32) go over 
into the eigenfunctions and eigenvalues of the 
"oscillator" three-body problem with Fermi statistics, 
in analogy to the previous cases. 

In the w --+ 0 limit, the eigenfunctions (3.30) go 
over into the zero-energy eigenfunctions of the prob­
lem with only "centrifugal" forces. On the other hand, 
the complete set of eigenfunctions of this problem is 

lPkzCr, cp) = J 31+3a+!(kr)(sin 3cp)a+!q+!(cos 3cp), 

o ::;; cp ::;; tTT, I = 0, 1,2, ... , (3.34) 

and the corresponding energy eigenvalues are 

E = k 2
, 0::;; k < 00. (3.35) 

The complete definition of the wavefunction in the 
whole range 0 ::;; cp < 2TT may be given with the same 
prescriptions as in the previous case [see Eqs. (3.31)], 
depending on the statistics. These eigenfunctions 
depend now on the discrete index I and the continuous 
index k; they are, of course, not normalizable. 

4. CONCLUSION 

In this paper the SchrOdinger equation for the 
three-body problem under consideration has been 
explicitly solved, and in this manner the eigenvalues 
and eigenfunctions of the problem have been deter­
mined. The simplicity (and degeneracy) of the 
spectrum obtained suggests that a solution by group­
theoretical techniques should also be possible. This 
has not been attempted here. 

The possibility of solving this problem completely 
suggests attacking similar, but more complicated, 
ones. The type of generalization that appears natural 
is an increase in the number of particles and/or 
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dimensions of the spaceY It is, of course, well known 
that, when no "centrifugal" forces are present, the 
problem is easily solved for an arbitrary number of par­
ticles and dimensions; but such a problem is of very 
limited interest, because it corresponds to a collection 
of completely decoupled oscillators.12 

Finally, as regards the possible usefulness of the 
present model, it is perhaps worthwhile to recall 
that one of the major difficulties in many-body (or 
rather, more-than-two-body) physics has to do with 
the presence of interactions that are singular at short 

11 An interesting question to ask in this connection is whether 
the energy spectrum will continue to depend linearly on all quantum 
numbers. It is expected that it will if only the number of particles 
is increased, but that it will not if the number of space dimensions 
is increased. Incidentally, using the approach of this paper, one can 
immediately solve the one-dimensional N-body problem with 
equal-strength harmonical forces between every two particles and, 
in addition, either only one or only three (equal-strength) centrifugal 
potentials depending, respectively, either only upon the interparticle 
distance between two particles or only upon the three interparticle 
distances between three particles. 

12 Also the problem considered in this paper is, however, in 
some sense equivalent to that with decoupled oscillators, as indicated 
by the structure of its spectrum. But this correspondence does not 
appear to be a trivial one. 

interparticle distance. The present model, which 
features interactions just of this kind, might therefore, 
in spite of its extreme simplicity, provide useful tests 
for approximation schemes and computational tech­
niques or a convenient starting point for the (approxi­
mate) solution of more realistic problems. 
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The problem of N quantum-mechanical equal particles interacting pairwise by inverse-cube forces 
("centrifugal potential") in addition to linear forces ("harmonical potential") is considered in a one­
dimensional space. An explicit expression for the ground-state energy and for th~ corresponding wave­
function is exhibited. A class of excited states is similarly displayed. 

1. INTRODUCTION 

The one-dimensional N-body problem with linear 
("harmonical") and inverse-cube ("centrifugal") pair 
forces has been recently solved for N = 3; the com­
plete energy spectrum and all the corresponding 
eigenfunctions have been exhibited. 1 For arbitrary 
N, the ground state and a set of excited states are 
given in this paper. From these results, a remarkably 
simple expression is obtained for the ground-state 
wavefunction of the one-dimensional system com­
posed of N oscillators interacting pairwise and 
obeying Fermi statistics. 

Units are chosen so that Ii = 1. 

2. THE N-BODY PROBLEM 

The Schrodinger equation for the N-body problem 
under consideration is 

(2.1) 

We assume throughout that g > -t, to avoid two­
body collapse1.2; and we consider only the sector of 
the N-body phase-space characterized by the inequal­
ities 

Xl ~ X 2 ~ ••• Xi ~ Xi+! ~ ••• XN' (2.2) 

As explained in I, for g ¥= 0 the extension of the 
wavefunction to the whole phase-space is performed 
by the simple prescription 

1p(PX) = 'Yjp1p(X) , (2.3) 

where X indicates the set {Xi; i = 1,2' .. N}, P indi­
cates an arbitrary permutation, and 'Yjp equals unity 

1 F. Calogero, J. Math. Phys. 10, 2191 (1969) (preceding paper), 
hereafter referred to as I. 

• L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon 
Press, Inc., New York, 1958), Sec. 35. 

if the particles obey Bose statistics and equals the 
parity of the permutation if the particles obey Fermi 
statistics. If the particles are considered distinguish­
able, i.e., if they obey Boltzmann statistics, each 
wavefunction 1p(x) gives rise to N! different states, 
each one of these being characterized by a wave­
function vanishing identically for all but one of the 
N! particle orderings, and that one is given by Eq. 
(2.3).1 

We introduce now the two completely symmetrical 
variables z and r2: 

N i-I 

Z = II II(x. - X;), (2.4) 
i=2 ;=1 

and we consider the subset of solutions of Eq. (2.1) 
of the form 

(2.6) 

with 
a = +t(1 + 4mg)!. (2.7) 

Before proceeding to show that such a subset is not 
empty, we note that the ansatz (2.6) implies that 1p 

vanishes proportionally to (Xi - x;)a+! whenever the 
distance Xi - Xi vanishes. This phenomenon origi­
nates from the singularity of the "centrifugal" 
potential; together with the one-dimensional nature 
of the model, it implies the impossibility for any 
particle to overtake any other particle.1 Thus con­
figurations characterized by different particle orderings 
are dynamically separated; and the prescription (2.3) 
is justified, because the wavefunction resulting from 
its application does indeed possess the required 
continuity properties. l We also note that since both 
variables z and r are obviously translation invariant, 
so is the wavefunction (2.6), i.e., it describes states in 
the center-of-mass frame. 

2197 
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We now insert the ansatz (2.6) in the SchrOdinger 
equation (2.1): 

[ - ~ ~ {(a + !)(a _ t)Z-2(OZ)2 
2mi=1 oXi 

( 1) 1 OZ 1 1 OZ or 0 + a + 2 z- - + 2(a + y)Z- - --
ox; OX;OXjor 

+ (ar)2~ + o2r ~} + N mw2r2 
ox; or2 OX~ or 4 

+ gi~2%(Xi - Xj )-2 - E }a+!«p(r) = 0. (2.8) 

In the Appendix it is proved that 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Using these equations and Eq. (2.7), Eq. (2.8) 
becomes 

[ - _1 {~+ [(a + !)N(N - 1) + N - 2]!~} 
2m dr2 r dr 

+ ~ mw2r2 - EJ q;(r) = 0. (2.14) 

The normalizable solutions of this equation are 

q;n(r) = exp [-tmw(mN)lr2]L~lmw(mN)lr2], 

n = 0, 1,2, .. " (2.15) 

where L~ is a Laguerre polynomiaP and 

b = !N(N + 1) + ~ N(N - 1) - t. (2.16) 

31. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series 
and Products (Academic Press Inc., New York, 1965); Higher Tran­
scendental Functions, A. Erdelyi, Ed. (McGraw-Hill Book Co., Inc., 
New York, 1953), Vol. II. Note that the definition of Laguerre 
polynomial given here is different from that used in some textbooks, 
for instance in Ref. 2. 

The corresponding energy eigenvalues are 

En = tw(N/2)![4n + !N(N + 1) + aN(N - 1) -1] 

(2.17a) 

= twCN/2)![4n + N2 - 1 + (a - !)N(N - 1)]. 

(2.17b) 

For N = 2, the eigenfunctions (2.6), (2.15) exhaust 
the whole set of eigenfunctions of the problem. For 
N ~ 3, they constitute only a subset of all the eigen­
functions; for N = 3, they correspond to the 1=0 
eigenfunctions of I. But for all N and for g =;6 0, the 
n = ° eigenfunction 

"Po = za+! exp [-tmw(mN)!r2] (2.18) 

and the corresponding eigenvalue 

Eo = !w(N/2)i[N2 - 1 + (a - t)N(N - 1)] (2.19) 

correspond to the ground state of the system. This is 
implied by the evident property of "Po: to be nodeless 
within the sector (2.2). Moreover, in the g -+- 0, 
a-+- t limit, 1fJo and Eo, Eqs. (2.18) and (2.19), become, 
respectively, the ground-state wavefunction and energy 
of the N-fermion oscillator problem4: 

1fJo = z exp [-tmw(N/2)iz2], (2.20) 

Eo = tw(N/2)i(N2 - 1). (2.21) 

The eigenvalue Eo was already well known,S but the 
expression (2.20) of the ground-state wavefunction is 
considerably simpler than that given in Ref. 5. 

In fact, in the g -+- 0, a-+- t limit, all the eigen­
values and eigenfunctions, Eqs. (2.17), (2.6), and (2.15), 
go over into eigenvalues and eigenfunctions of the 
N-oscillator problem with Fermi statistics.4 This 
phenomenon has been explained in sufficient detail in 
I (for N = 3) so not to warrant any further discussion 
here. It appears reasonable to conjecture that the only 
difference between the complete energy spectrum of 
the problem considered here and that of the pure 
oscillator problem with Fermi statistics is a shift of 
each energy level by the constant amount !:i..E: 

!:i..E = (a + ~;)w(N/2)t~N(N - 1). (2.22) 

It is also easily seen that, again as in I, in the 
a-+- -t limit the eigenvalues and eigenfunctions, 
Eqs. (2.17), (2.6), and (2.15), go over into eigenvalues 
and eigenfunctions of the pure oscillator problem 
with Bose statistics4 ; and in particular in this limit 1fJo 
and Eo, Eqs. (2.18) and (2.19), go over into the 

4 Provided of course the appropriate prescription is used in Eq. 
(2.3) to define the eigenfunctions throughout the whole N-body 
phase-space; compare with the analogous situation as discussed 
in I. 

• H. R. Post, Proc. Phys. Soc. (London) 66A, 649 (1953). See also, 
for instance, J. M. Levy-Leblond, Phys. Letters 26A, 540 (1968). 
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ground state of the N-oscillator problem with Bose 
statistics.4 
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APPENDIX 

In this Appendix Eqs. (2.9)-(2.13) are proved. 

Proof of Eqs. (2.12) and (2.13) 

Differentiating the definition of ,2, Eq. (2.5), we 
get 

a, N 
, - = N-1 ~ (Xi - X;). (A1) 

aXi 1=1 

Differentiating again with respect to Xi' we get 

( a,)2 + , a2: = N - 1 . (A2) 
ax, ox, N 

Thus 

~~ +'I-'=N-l. N (::l )2 N a2 
i=1 aXi i=1 OX~ 

(A3) 

On the other hand, from Eq. (AI), 

(A4) 

If we now use 
N N N 

I I I (Xi - X;)(Xi - Xl) = N 2r2, (AS) 
i=1 j=l!=1 

we get, from Eq. (A4) , Eq. (2.12); and from this 
equation and Eq. (A3), we get Eq. (2.13). 

There remains to prove Eq. (AS). This can be done 
as follows: 
N N N' 

I I I (Xi - Xj)(Xi - XI) 
i-I ;=11=1 

N N N 

= I I ~ (Xi - X;)(Xi - Xi + Xj - Xl) (A6a) 
i=1 j=ll=1 

N N N 

= 2N,2 + ILL (Xi - X;)(Xj - Xl) (A6b) 
i=1 ;=11=1 

N N N 
= 2N2r2 - I I I (Xi - X;)(Xi - xz). (A6c) 

i=1 j=ll=1 

Equation (A6a) is trivial; Eq. (A6b) obtains using the 
definition of ,2, Eq. (2.5); Eq. (A6c) follows exchang­
ing the dummy indices i and j, and it immediately 
implies Eq. (AS). Q.E.D. 

Proof of Eq. (2.11) 

Differentiating the definition of z, Eq. (2.4), we get 

az ~'( )-1 
a- = Z..:., Xi - Xj . (A7) 

Xi j=1 

Here, and always below, the apex in a sum indicates 
that the divergent term must be omitted. Equation 
(2.11) is then immediately implied by the combination 
of Eqs. (AI) and (A7) with the formula 

N N N 
I I' L Xi - Xl = tN2(N - 1). (A8) 
.=1 j=1 1=1 Xi - X; 

As for this formula, it can be proved as follows: 

N N N L I' L Xi - Xl 

;=1 ;=1 1=1 Xi - X; 

N N N + 
= I L' L Xi - X; Xi - Xl (A9a) 

i=1 ;=1 /=1 Xi - Xi 

N N N 

= N\N - 1) + L I' I x; - Xl (A9b) 
i=1 i=1 1=1 Xi - Xi 

N N N 
= N 2(N - 1) - I I' I Xi - Xl. (A9c) 

i=lj=l /=1 Xi - Xj 

These steps to derive Eq. (A9c) are essentially the 
same as those for the derivation of Eq. (A6c) above; 
on the other hand, Eq. (A9c) immediately implies 
Eq. (A8). Q.E.D. 

Proof of Eqs. (2.9) and (2.10) 

Differentiating Eq. (A7), we get 

= Z[~:l~' (Xi - X;)-l(Xi - X l)-1 

(A10a) 

(A lOb) 

- ~:(Xi - Xi )-2} (AlOe) 

Equations (AlOb) and (AlOe) follow from Eqs. (AlOa) 
and (A7). But the rh's ofEq. (AlOe) yields a vanishing 
result when summed over i, namely, 

N N N 

aN == I I' l'(xi - X;)-I(X. - X,)-1 = O. (All) 
i=1 ;=1 1=1 

1*; 

This immediately implies, through Eq. (AlOe) itself, 
the validity of Eq. (2.10), and through Eq. (AlOb), the 
validity of Eq. (2.9). 

There remains to prove Eq. (All). First note that 

N N [;-1 
aN == i~~: ~:(Xi - X;)-1(Xi - Xl)-l 

N 

+ 2' (Xi - X;)-1(Xi - Xl)-l] (A12a) 
1=;+1 

N N i-I 
= 22 2' 2'(xi - X;)-I(Xi - X I)-I. (A12b) 

i=li=21=1 
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Equation (AI2b) is obtained exchanging the dummy 
indices j and I in the second term in the rhs of 
CAI2a), thereby demonstrating its equality to the 
first term. Incidentally, in writing Eq. (AI2a), and 
also below, we adopt the convention that any sum 
vanishes whenever the upper limit of the running index 
is smaller than its lower limit. 

It is now easy to show, by direct computation, that 

a3 = 0. (Al3) 

Then, defining bN through 

bN = HaN - aN-I)' (A14) 

Eq. (All) is proved if one can show that 

But since 

j-l N-l 

2(XN - Xt)-1 - 2' (X; - Xt)-1 
!=1 1=1 

i-I i-I N-l 
= 2(XN - X!)-1 - :2 (Xi - X Z)-1 - :2 (Xi - X1)-1 

Z=1 z=1 1=$+1 

i-I 

= -(XN - X i )2(XN - X Z)-I(Xj - XZ)-1 
1=1 

N-l 

(A17a) 

- 2 (Xj - xl)-I, (A17b) 
Z=$+1 

we get 
N-l j-l 

bN = - 2 :2(XN - x z)-I(Xj - X1)-1 
j=1 1=1 

bN = 0, N ~ 4. (A1S) N-l N-l 

(A16) 

- 2 2 (XN - X i )-I(Xj - Xl)-l. (A18) 
i=1 Z=$+1 

By exchanging the dummy indices j and I in the 
second term in the rhs of this equation, it is apparent 
that this term is just the opposite of the first one, so 
that bN vanishes. Q.E.D. 
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A stationary property of the grand-canonical potential is introduced. This stationary property is used to 
define a class of self-consistent approximations. The class of self-consistent approximations is shown to be 
particularly suitable for the random-phase approximation (RPA). The conditions for self-consistency are 
only sufficient. 

I. INTRODUCTION 

Luttinger and Ward! (L.W. henceforth) give an 
exact diagrammatic (i.e., perturbative) proof that the 
grand-canonical potential2 n is stationary with respect 
to variation of the proper self-energy ~. This station­
ary property enables the formulation of a correspond­
ing class of self-consistent approximations (SCA).3.4 

In this paper. the exact grand-canonical potential n 
is shown to be stationary with respect to variation of 
some quantity W, which is related to the density­
density correlation function.5 The method of proof is 
diagrammatic (i.e., perturbative) and is parallel to 
the L.W. proof for the aforementioned stationarity. 
But, whereas L.W. concentrate on the particle 
propagator, here the interaction line is the object 
of our analysis. 

The stationarity with respect to W enables the 
definition of a new class of SCA. The self-consistency 
appears in the fact that one may calculate any desired 
thermodynamic property at equilibrium from the 
approximate grand-canonical potential, as well as 
from the corresponding approximate propagator, or 
the approximate density-density correlation, the 
results being identical. 

It will be seen that RPA is a natural approximation 
in this SCA in the same sense as the Hartree-Fock 
approximation is natural in the previous3.4 class of 
seA. 

II. STATIONARITY OF THE GRAND­
CANONICAL POTENTIAL 

The grand-canonical potential (GCP) n is connected 
with statistical mechanics through the grand partition 
function Za by 

Za = exp ( - f3n). (1) 

• Based on a thesis submitted to the Senate of Technion, Israel 
Institute of Technology, in partial fulfillment of the requirements for 
M.Sc. degree. 

1 J. M. Luttinger and J. Ward, Phys. Rev. 118, 1417 (1960). 
I H. B. Callen, Thermodynamics (John Wiley & Sons, Inc., New 

York, 1960). 
S M. Revzen, J. Math. Phys. 6, 450 (1965). This article is referred 

to as I. 
4 G. Baym, Phys. Rev. 127, 1391 (1962). 
5 C. De Dominicis and P. C. Martin, J. Math. Phys. 5, 14, 31 

(1964). 

~ ........ ~ 
FIG. 1. A representative Fk({t) diagram. A, B, etc., by their 

structure are arbitrary vacuum-vacuum diagrams, each one lacking 
a single wavy line. The wavy lines joining A, B, etc., carry the 
momentum "k" and "energy" "'z," which go in and out through the 
heavy dots. 

It can be represented in terms- of linked diagrams, 
namely, 

n - no = - - L -- du l '" dUn 1 <Xl (-l)
niP iP 

f3 n~! n! 0 0 

X (TU{V(Ul)'" V(un)}>L' (2) 

where no is the GCP with no interaction. (We use the 
notation as in Paper I, apart from replacing A by n.) 

Our aim is to analyze a functional which emphasizes 
the role of the interaction line in the formal building 
of the vacuum-vacuum (GCP) and the propagator 
diagrams. To this end we consider the density-density 
correlation functionS 

(3) 

The density operator in momentum space is defined as 

(4) 

The perturbative development of Fk(u) is 

Fk(u) = !-- dul '" dUn <Xl (-l)niP iP 

n~O n! 0 0 

X (TU{P-k(U)Pk(O) V(Ul) ••• V(un)})L, (5) 

where the subscript L signifies linked! and the expecta­
tion value is now taken with a noninteracting Hamil­
tonian. 

The Fourier transform of Fk(u) is defined 

Fk({t) = foP e-c,uFk(,z) du, (6) 

where 

'z = 217ri/f3 + fl, 1 = 0, ±1, ±2, .... 

The general shape of an Fk (, ) diagram is drawn in 
Fig. 1. k and 'z are the mou{entum and "energy," 

• See, e.g., David Pines, Elementary Excitations in Solids: Electrons, 
Phonons and Plasmons (W. A. Benjamin, Inc., New York, 1963). 
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respectively, which enter and leave the diagram 
through the heavy dots on the two opposite sides of 
the diagram. Conservation of momentum and 
"energy" obviously is valid in the heavy dots. The 
numerical factor of an nth~order diagram is 

(_l)n 1 1 n 
"" ---IIv ~ '2n fJn+1 ki' all free n . i=1 

indices 

A, B, etc., are, pictorially, vacuum-vacuum diagrams, 
which lack a single wavy (interaction) line and cannot 
be separated into two disconnected parts by merely 
removing a single wavy line. The momentum and 
"energy" carried along by the wavy lines which join 
A, B, etc., are k and SI' 

We may sum up all Fk(~') diagrams of m parts as 
depicted pictorially in Fig. 2. Wk(~,) indicates the sum 
of all the vacuum-vacuum diagrams which lack a 
single wavy line and are not constructed of distinct 
parts joined by wavy lines only. k and 'I denote the 
momentum and "energy" of the missing interaction 
line. 

The full expression for Fk(~,) is 

hence, 

Fk(C,) = Wk(C,) + Wk(C,)VkWk(C,) + . ,. 
= Wk(C,) + Wk(C,)Vk[Wk(C,) + ... 
= Wk(C,) + Wk(C,)VkFk(C,); (7) 

Fk(C,) = Wk(C,)/(1 - Wk(C,)Vk)' (8) 

By naked diagrams of Fk(C,) ' we mean those which 
are not constructed of distinct parts joined by wavy 
lines. In these lines an appearance of momentum q on 
a certain wavy line does not imply (by the conserva~ 
tion laws) that some other line should be assigned the 
same momentum q; e.g., see Fig. 3. (Diagrams which 
do not fulfill these criteria are termed "dressed.") 

In order to construct Wk(C,) diagrammatically, one 
has to sum up all the naked diagrams of Fk(C,) and 
replace in them every wavy line by a saw~tooth line. 

~ .......... ~ 
+ 
~ ......... ~ 

+ 

~.-- .. --~ 
FIG. 2. The mth-order Fk(C,) diagrams are summed up to give a 

single diagram built up of m equal Wk(t,) blocks joined by wavy 
lines. 

(01 (b) 

FIG. 3. Examples for Fk(C,) diagrams not constructed by distinct 
parts; (a) is naked and (b) dressed. 

The analytical meaning of a saw~tooth line is 

Uk(C,) = vk(1 + Fk(C,)Vk), (9) 

and its graphical meaning is given in Fig. 4. By (8) we 
get 

(10) 

Let FlIk ({,) represent the sum of all nth-order Fkl,,) 

diagrams. The vacuum-vacuum diagrams of order 
n + I may be constructed from Fnk(C,) by the relation 

(n - no)n+1 = -1 !!! vkFnk(C,l'o+, (11) 
2(n + 1) fJ k 1 

By introducing an interaction~strength parameter 
A: Vk -+ AVk and using (8), (10), and (11), we obtainl 

n n 1 '" '" r" dA' C,o+ ( ) 
.l..l.w = .l..I.o - 2fJ f t Jo "'"i Wk(C" .. ,)Uk(C, ... ,)e , 12 

so that 

J. an - _ 1.. '" '" w; U eC'o+ oJ. - 2fJ 7 '7 k(C,,") k(C .... ) • 
(13) 

We define the functional R' to be the sum of all 
naked vacuum-vacuum diagrams, in which every 
wavy line is replaced by a saw~tooth line: 

R' - - '" '" 1.. '" _1_ U W eC'o+ (14) ().) - .;- f 2fJ f n + 1 k(C,,") nk(C,,") • 

(Wn corresponds to Fn in the natural manner.) 
The functional R" is defined as 

RI .. ) = 1..!! eW+{ln [- ...!.. + WkIC'.,,)] 
2f3 k I AVk 

+ Uk(C,,") Wk(C"")}' (15) 
It can readily be proved that 

R=R' +R" (16) 

is not sensitive to first~order variations in Wk(C,.M' 

i.e., 

(17) 

~=~+~ 
FIG. 4. Graphical meaning for Eq. (9). 
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On calculating the derivative of R(A) with respect to 
A, we obtain 

A aR - _ 1.. ~ ~ U W, e~zo+ (18) aA - 2f3 -;; '7 k(~z,A) k(~z,}.) 

and, therefore, 

aR ao 
-=-
aJ. aA 

Since R(}.=O) = 0, we see that 

R = 0 - 0 0 , 

and hence, in using (17), 

(19) 

(20) 

(21) 

III. SELF-CONSISTENT APPROXIMATIONS 

The stationarity of 0 with respect to variation of 
Wk(I;z) is an exact result, 

~=~=o, 
bWk(,z) bUk(I;z) 

(22) 

and is analogous with the stationarity of 0 with 
respect to the proper self-energyl: 

~=~=o. 
b~k('!) bGk({z) 

The basis for the discussion above was the pair of 
implicit equations 

F = W(u)[l + vF], 

U = v(1 + vF). 

(7') 

(9') 

Thus the naked diagrams of F were used as building 
bricks for W, which was the building brick for F, 
which, in turn was the building brick for U, the latter 
being used to construct W. The procedure does not 
require the whole set of naked dIagrams of F. It is 

10 J 

§ 
(bl 

FIG. 5. (b) and (c) 
are two differentFk(1; ) 
diagrams which yiel~ 

a 
the same vacuum­
vacuum diagram, (a), 
when closed. 

(c I 

FIG. 6. The diagramma- R'A = 
tic base for the RPA. 

o 
e 

sufficient to use a partial set, finite or infinite, and 
still to retain the exact functional interrelations 
among FA' WA , UA , and 0A (subscript A denotes 
"approximate"). The stationary property, namely 

(23) 

thus holds. 
It follows that any thermodynamic property (at 

equilibrium) which is calculated with FA may be 
obtained from OA as well, with no difference whatso­
ever. 

The set of naked F diagrams forming the approxi­
mation cannot, however, be chosen arbitrarily. The 
inclusion of certain F diagrams requires the inclusion 
of all other F diagrams, which, together with the 
original F when closed, yield the same vacuum­
vacuum diagram (see Fig. 5). Moreover, all vacuum­
vacuum diagrams which are topologically equivalent 
to the latter should be constructed too. 

Given a set of R' diagrams, there is a one-valued 
correspondence between these diagrams and a set of 
self-energy diagrams ~' obtained by removing in turn 
each one of the free propagator lines of the former. 
These self-energy diagrams contain sawtooth lines for 
their interaction lines, so that each diagram represents 
an infinite number of ordinary, self-energy diagrams. 
The unique value is due to the unique way of identi­
fying the R' source of a given self-energy diagram. 

If our functional R' is an approximate one, say 
R~, then we use this procedure to define the set of 
self-energy diagrams consistent with this approxi­
mation. 

As an example, consider the approximation which is 
sketched graphically in Fig. 6. (These diagrams lead 
to the RPA.) 

In order to illustrate that the correspondence 
between R' and ~' is self-consistent, let us calculate the 
average number of particles in a grand-canonical 
ensemble.4 From its definition, 



                                                                                                                                    

2204 O. SHLIDOR AND M. REVZEN 

R" is dependent on ft only through its dependence 
on Wk({t); hence oR"foft will cancel out that part of 
oR'fop which corresponds to the dependence of R' on 
Wk('l) • Thus we have to consider only the dependence 
of R' on ft through the free propagators: 

(25) 

Hence, 

( 1 ~ GO "" {IO+ 000 
,N) = - £., k(,,)~k('l)e - --;-

fJ k,t uft 

1 ~ G {,o+ = - £., k({l)e , 
fJ k,t 

as expected. (In the above calculation, a subindex A 
is not mentioned, but it should be remarked that the 
calculation holds for properly approximated func­
tionals as well.) 

IV. THE SELF-CONSISTENT HARTREE AND 
HARTREE-FOCK APPROXIMATIONS AND 

THE SELF-CONSISTENT RPA 

Special attention should be drawn to the case 
k = ~I = 0, where broken F diagrams also appear, 
such as in Fig. 7(a). (They are, of course, linked!) 
Such diagrams should not be considered when the 
interaction line is dressed, but have to be taken into 
account when the self-consistent self-energy diagrams 
are formed. 

If one desires to construct the self-consistent 
Hartree-Fock diagrams, one should consider, among 
others, an infinite set of broken F diagrams [e.g., 
Fig. 7(a), Parts (1)-(3)]. Examples of other naked F 
diagrams for Hartree-Fock approximation are given 
in Fig. 7(a), Parts (4)-(6). It is readily seen that when 
the interaction line is dressed, undesired diagrams, 
such as in Fig. 7(b), Part (1), appear. 

Similarly, if one wishes to formulate a self-con­
sistent RPA in the propagator formalism, one faces a 
similar difficulty, namely, the necessity for an infinite 
number of diagrams as a base and the appearance of 
undesired diagrams [e.g., Fig. 7(b), Part (2)] when 
an exact evaluation is made. 

00 00---0 o~ 
(I) (2 ) ( 3) 

o~ 
(4) (5) (0) 

(oj 

~qql q' 

( 2) (I) 

I b) 

FIG. 7. (a) Several naked Fk ({,) diagrams out of the infinite set 
required for the Hartree-Fock approximation. (b) (1) An undesired 
diagram which appears upon evaluating the Hartree-Fock approxi­
mation through the interaction-line formalism. (2) An undesired 
diagram which appears upon evaluating the RPA through the propa­
gator formalism. 

On the other hand, the interaction-line formalism 
sketched above is tailored for the RPA, as only a single 
R'.t diagram is responsible for it. 

V. REMARKS AND CONCLUSIONS 

The interaction line and the propagator line play 
similar roles in the formal construction and evaluation 
of diagrams. In this paper this similarity is utilized to 
formulate, in a diagrammatic manner, a variational 
principle of the vacuum-vacuum diagrams. 

It is expected that propagator-based mathematical 
properties of diagrammatic functionals should corre­
spond to analogous properties based on the inter­
action line. 

If the bare interaction line is considered as a 
"propagator" of a free boson field (e.g., phonons) 
through the vertices, then the analogy is natural. In 
the case where the particles are electrons interacting via 
the Coulomb interaction, the wavy line may be re­
garded as the bare plasmon propagator. In those 
effects where the plasmons rather than the electrons 
play the significant role, it is suggested that the new 
approach to self-consistency should be preferred. 
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Expressions are developed which describe the ensemble average of the annihilation of groups of 
contiguous vacant compartments when spatially random attempts are made to place dumbbells on a 
linear array of N compartments. It is shown that in the limit, as the number of compartments tends to 
infinity. (O~(t». the ensemble average of the fraction of the compartments which is composed of p 
contiguous vacant compartments, is given by 

(O~(t» = pe-2(1 - ~ Cne-nvt)e-(~-l)VI, 
n=2 

where v is the striking frequency of the dumbbells, t is time, and the Cn's are appropriately defined 
coefficients. 

I. INTRODUCTION 

It was shown in a previous paperl that (O(m, N), 
the ensemble average fraction of the compartments 
occupied after m spatially random attempts to place 
dumbbells on a linear array of N compartments, is 
given by 

(O(m, N» = 1 _ (N -; 1) 
x 13

(-2)k-l(N -1 - k)(N - 2 - k) 
k=O k! N - 1 N - 1 

x I( _1)1 kCj(N - 1 - j). (1) 
j=O N - 1 

In the limit as N tends to infinity the fraction of com­
partments occupied becomes 

O(t) = 1 - exp {-2[1 - exp (-Vf)]). (2) 

The present paper is concerned with another aspect 
of this problem, namely, the kinetics of the annihila­
tion of the p-tuple contiguous vacant compartments 
when dumbbells are placed on a linear array of com­
partments in a spatially random manner. 

Our task is to determine (Op(m, N», the average 
fraction of the array which is composed of p-tuple 
contiguous compartments after m spatially random 

Np{m, N) = (N - pYNp(m - r, N) + 2(N - py-l 

attempts to place dumbbells on a one-dimensional 
array of N compartments. A somewhat similar 
problem has been treated by Flory.2 

II. CALCULATION OF (Oim, N» 

We showed in a previous articlel that the appro­
priate recursion relationship for Np(m, N), the number 
of p-tuple contiguous vacant compartments after m 
spatially random attempts to place indistinguishable 
dumbbells on a linear array of N compartments, is 

Np(m, N) = (N - p - 2)Nim - 1, N) 
N-2 

+ 2 ~ N,,(m - 1, N) 
h=p 

N-3 

- 2N P+l(m - 1, N) ~ ()Ph' (3) 
h=1 

where ()Ph is the Kronecker (). 
To facilitate computations it has been found that 

Np(m, N) may also be represented by 

Nim, N) = (N - p)Np(m - 1, N) 
N-2 

+ 2 ~ N,,(m - 1, N), (4) 
h=p+2 

with the restriction that either p ~ N - 4 or the 
summation term is neglected. If Eq. (4) is recurred r 
times, the result is 

x! 1 + -=- + -=- + ... + -=- Nim - r, N) N-2 [ (N h)l (N h)2 (N h)~ 
~~ N-p N-p N-p 

+ 22(N - pr-2 ~ ! 1 + -=- + ---=-.!.. + -=- + -=- ---=-.!.. N-4 N-2 [ (N h) 
1 

(N .)1 (N h)2 (N h)(N .) 
h=P+2 i=h+2 N - P N - P N - P N - P N - P 

1 R. B. McQuistan and D. Lichtman, J. Math. Phys. 9, 1680 (1968). 
• P. J. Flory, J. Am. Chern. Soc. 61, 1518 (1939). 
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+ ----=-..!.. + ... + ----=-..!.. Nim - r, N) + 23(N - p),"-3 
(

N . )2 (N' ),"-2J 
N-p N-p 

X I I I 1+ -- + -- + -- + --N-6 N-4 N-2 [ (N - h) (N - i ) (N - j) (N _ h)2 
II=JI+2 i=lI+2 J=iH N - P N - P N - P N - p 

+ -- -- + --+ -- -- + --+ ... +--(N - h) (N - i) (N - i)2 (N - i) (N - j ) (N - j )2 (N - j ),"-3J 
N-p N-p N-p N-p N-p N-p N-p 

(5) 

with the restriction that either the summation indices are nonnegative or the summation is neglected. 
Since NJI(I, N) = 2, Eq. (5) may be written, for r = m - 1, as 

NJI(m, N) = 2(N _ p)m-1{1 + 2 Ni 2 _1_[1 _ (N - h)m-1] 
11=11+2 h - P N - P 

+2 I I 1- - -- + -' . -2
N

-
4 

N-2 1 [ (i - P)(N - h)m-1 (h - P) (N - i)m-1] 
1I=1I+2i=1I+2(h-p)(i-p) i-h N-p i-h N-p 

+2I I I .. 1--.- -.---
3 N-6 N-4 N-2 1 [(i - P) (j - P) (N _ h)m-1 
1I=1I+2i=1I+2 l=i+2 (h - p)(l - p)(j - p) 1 - h J - h N - p 

+ (~ - P) (~ - ~) (~)m-1 _ (~ - P) (i. - ~) (N - j )m-1] + 24 ... }. (6) 
l-h J-l N-p J-h J-l N-p 

To determine «(JJI(m, N» we multiply Eq. (6) by P and divide by N(N - l)m; the result may be written in 
the form 

«(Jim, N» = --=- 1 + 2 I-I - 1 - --2p (N p)m-1{ N-'P-2 1 [( h )m-1] 
N(N - 1) N - 1 11=2 h N - p 

+2 I I - 1- - 1--- + - 1---2
N

-
Jl
-
4 

N-Jl-2 1 [ (i) ( h )m-1 ( h ) ( i )m-1] 
11=2 i=lI+2ih i + h N - P i + h N - P 

N-'P-6 N-Jl-4 N-Jl-2[ (i) ( j ) ( h )m-1 +"'+23 I I I 1- - -- 1---
11=2 i=II+2 i=i+2 i - h j - h N - p 

(
h) ( j ) ( i )m-1 ( h ) ( i ) ( j )m-1] + i-h j-i I- N _ p + j-h j-i I- N _ p 

+24I I I I-l- - - -- 1---
N-Jl-8 N-1J--4l N-'P-4 N-Jl-2 1 [ (i) ( j ) ( k ) ( h )m-1 

11=2 i=1I+2 l=i+2 k=i+2 hijk i - h j - h k - h N - P 

( 
j ) ( k ) ( h ) ( i )m-1 ( k ) ( h ) ( i ) ( j jm-l + j-i k-i i-h I- N _ P - k-j j-h j-i I- N _ P 

+ (_h ) (_i .) (~) (1 __ k )m-l] + 25 ... }. (7) 
k-h k-l k-J N-p 

To obtain (JJI(t) , we consider «(JJI(m, N» to be 
expanded in the form 

«(Jim, N» = p --=- I an 1 - -- . (
N p)m-l co ( n )m-l 
N-l n=O N-p 

(8) 

Comparing the coefficients of [1 - n/(N - p)}m-l, 

n = 0, 1, 2, ... , in Eqs. (7) and (8), we see that 

ao = 1 + 2 ! - + 22! !--: 
2 ( N-'P-2 1 N-Jl-4 N-Jl-2 1 

N(N - 1) 11=2 h 11=2 i=1I+2 hI 

N-Jl-6 n-J1-4 N-Jl-2 1 ) 
+ 23 ! ! ! - .. + . .. . (9) 

11=2 i=II+2 1=i+2 hlJ 
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FIG. 1. Op (the fraction of the compart­
ments consisting of p-tuple contiguous e 
vacant compartments when dumbbells are P 
placed in a spatially random manner on an 
infinite array of compartments), as a func­
tion of exposure, is given for various 
values of p. 

Vt 

It is known! that, for the isolated vacancies (p = 1) For example, 
when N tends to infinity and m = Nvt, we may write C2 = 1, 

Ca = t, 
C4 = 0, 

lim «(h( 00, N» = e-2
• (10) 

N-+oo 

Thus,it is seen from Eq. (8) that 

(11) 

In general,for N -+ 00 one may write, for n ~ 2, 

an = - 1 - 2 L ..., + 2 L L -:--2ao( n-2 1 21'1-4 n-2 1 

n h=2 h h=2 i=h+2 Ih 

- 23 L ~ ~ -:-:- + 24 . .. , (12) 
n-6 n-4 n-2 1 ) 

h=2 i=h+2 ;=;+2 Ilh 

where the first term is found by choosing h = n in 
Eq. (7); the second term by choosing i = nand h = 
2, 3, ... ,n - 2; the third term by choosing j = n, 
i = 4, 5, ... , n - 4, and h = 2, 3, ... , n - 6, etc. 

Thus, in the limit as N - P tends to infinity, where 
m = Nvt (v is the dumbbell striking frequency and t 
is time), Eq. (7) becomes 

0it) = pe-2( 1 - J2Cne-nvt)e-(p-llvt. (13) 

These Cn in Eq. (13) are related to the an by 

Cn = -ane2, n ~ 2. 

22 
C5 = - (5)(3) , 

22 
C6 = - (6)(3) . 

In addition, the Cn satisfy the quasinormalization 
condition 

Figure 1 shows Op(t) for several values of p. It is 
seen that only the curve representing the fraction of 
compartments which are isolated (p = 1) is monoton­
ically increasing, i.e., the isolated vacancies cannot be 
annihilated. In addition, those groups of vacancies 
with p > 1 initially show an increasing surface 
density but eventually are annihilated to form groups 
of vacancies of lower order. 
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The quantum-mechanical analog of the classical Gibbs canonical density is characterized by considering 
a large collection Q of noninteracting quantum systems, each in an equilibrium statistical state. The set 
Q, the Hamiltonian operator for each system, and the statistical states are assumed to have certain 
pr?perties which are given as axioms. It is shown that these assumptions imply that each member of Q 
IS III a canonical state at a temperature which is the same for all systems. The possibility of zero absolute 
temperature is included. 

1. INTRODUCTION 

The purpose of this paper is to present a character· 
ization of the quantum· mechanical analog of the 
Gibbs canonical state in statistical mechanics. The 
approach is based on a method which considers 
composite mechanical systems composed of two 
mechanically and statistically independent com· 
ponents. We proceed in a way which parallels, as 
closely as possible, the usual measure-theoretic 
description of classical statistical mechanics. The 
development presented here differs from the classical 
approach in that it is not possible, in the most general 
case, to consider only a single two-component system. 
The problem then is to define in a mathematically 
precise wayan appropriate collection Q of quantum 
systems, with each system in an equilibrium statistical 
state, such that the statistical state of each system in 
Q is defined by a Gibbs density operator corresponding 
to a uniform temperature. 

2. FUNDAMENTAL ASSERTIONS OF QUANTUM· 
STATISTICAL MECHANICS 

We denote a quantum·mechanical system by a pair 
(Je, H), where Je is a Hilbert space and H is the system 
Hamiltonian operator. Let .A(, denote the set of all 
closed linear subspaces of Je. Following Mackey,l we 
define a statistical state of (Je, H) as a probability 
measure on .A(, in the sense of the following definition: 

Definition 1,' A probability measure on the closed 
linear subspaces of Je is a function p which assigns to 
every closed subspace M c :Ie a nonnegative real 

• The material in this paper is discussed in greater detail in the 
author's doctoral dissertation. See R. E. Kvarda, "Canonical States 
in Quantum-Statistical Mechanics," Tech. Report No. 21, Dept. of 
Math., Oregon State University, Corvallis, Oregon. Work supported 
in part by a National Science Foundation Grant in Applied Analysis 
and by the Naval Electronics Laboratory Center, San Diego, Calif. 

t Present address: Mathematics Research Group, Naval Weapons 
Laboratory, Dahlgren, Virginia 22448. 

1 G. W. Mackey, Mathematical Foundations of Quantum Me­
chanics (W. A. Benjamin, Inc., New York, 1963). 

number p(M) such that 
(a) p(Je) = 1,p({0}) = 0; 
(b) 0 ~ p(M) ~ 1 for all closed subspaces M c Je; 
(c) if {Mi} is a countable collection of mutually 

orthogonal subspaces having closed linear span M, 
then p(M) = !i':l P(Mi)' 

The following theorem, due to Gleason,2 identifies 
each statistical state of (Je, H) with a density operator 
in a one-to-one way: 

Theorem 1: Let p be a probability measure on the 
closed subspaces of a separable (real or complex) 
Hilbert space of dimension at least three. Then there 
exists a unique, nonnegative, self·adjoint operator D 
of the trace class such that for all closed subspaces M 
of Je we have p(M) = Tr (DPM), where PM is the 
orthogonal projection of Je onto M. 

Since D is of trace class, it is also completely con· 
tinuous.3 Being completely continuous and self-adjoint, 
it admits a complete orthonormal sequence of charac· 
teristic vectors. Its nonzero (necessarily real) charac· 
teristic values have finite multiplicities' and form either 
a finite or countably infinite sequence {An}' A density 
operator therefore has the spectral representation 

co co 

D = ! AnP n; 0 ~ An ~ 1 and ! mnAn = 1, 
n=l n=l 

where P n is the projection operator onto the charac· 
teristic subspace of Je of dimension mn corresponding 
to the characteristic value An' 

In the case of composite quantum systems, one is led 
to consider composite probability measures on the 
closed subspaces of a tensor product of Hilbert spaces. 
We denote the tensor product of Jel and Je2 by 
Jel ® Je2 • If q; E Jel and tp E Je2 , then their tensor 
product is denoted by q; X tp. The space Jel ® Je2 

2 A. M. Gleason, J. Math. Mech. 6, 885 (1953). 
3 R. Schatten, Normed Ideals of Completely Continuous Operators 

(Springer-Verlag, Berlin, 1960). 
4 F. Riesz and B. von Sz-Nagy, Functional Analysis (Frederick 

Ungar Pub!. Co., New York, 1955). 
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is the completion of the set (~ ® Je2)' consisting of ing to the definitions 

all finite linear aggregates of the form (M) (M 'fP ) (N) ('fP rv-. N) 
PI = P12 ® ,",v2, P2 = Pl2 '-'VI """ 

<I> = L!.=l (rpm X 1jJm)· 

If 'Y = I~=l (~n X 'fJn) is in Jel ® Je2 , then the inner 
product (<I>, 'Y) is defined by 

1> a 
(<I>, 'Y) = I I (rpm' ~n)( 1jJm, 'fJn)· 

m=l n=l 

By defining the functional 

with rp, ()l E Jel and 1jJ, ()2 E Je2 , every member of 
(Jel ® Je2)' may be identified with an anti bilinear 
functional on the Cartesian product Jel X Je2. It is 
not difficult to show5 that the norm convergence of a 
sequence from (Jel ® Je2)' implies pointwise con­
vergence as anti bilinear functionals on Jel X Je2 so 
that every member of Jel ® Je2 may be identified with 
a certain anti bilinear functional on Jel X Je2 • 

If M, N are closed linear subspaces in Jel , Je2, 
respectively, then the closure of (M ® NY is a closed 
linear subspace of Jel ® Je2 and is denoted by M ® N. 
We denote by .,1(,1 ® .,1(,2 the set of all closed linear 
subspaces of Jel ® Je2. The set of all subspaces of the 
form M ® N is a proper subset of .,1(,1 ® .,1(,2 . 

Let Dl , D2 be density operators on Jel , Je2 , respec­
tively. The operator Dl x D2 which is the tensor 
product of Dl and D2 is defined as follows: If 
{rpl"'" rpm} C Jel and {1jJl,"', "Pm} C Je2, then 
for finite m, 

m m 

CDI X D2)I(rpn x "Pn) = I (Dlrpn X D2"Pn)· 
n=l n=l 

It is easy to show that Dl x D2 is a density operator 
having a unique extension to all of Jel ® Je2 • In 
particular, for projection operators, we have 

For brevity, we denote a quantum-mechanical 
system in a statistical state P by a triple (Je, .,1(" p) and 
call it a Q-space. A Q-space then is a nondistributive 
probability structure which plays the same role in 
quantum statistics as a probability space in the meas­
ure-theoretic description of classical statistics. The 
Q-space (Jel ® Je2, .,1(,1 ® .,1(,2' PI2) denotes a com­
posite quantum system in a statistical state P12 
composed of two components which mayor may not 
be independent. In either case, the state P12 induces 
certain states PI in (Jel , HI) and P2 in (Je2, H2) accord-

5 J. von Neumann and F. Murray, Ann. Math. 37(2), 116 (1936). 

for all closed subspaces M, N. In general, the induced 
states PI , P2 do not determine P12 uniquely unless the 
components are statistically independent. This is given 
by the following existence theorem: 

Theorem 2: Let (Jel , .,1(,1, PI) and (Je2, .,1(,2 , P2) be 
two Q-spaces. Then there exists one and only one 
probability measure on .,1(,1 ® .,1(,2, denoted by 
PI ® P2, such that 

(PI ® P2)(M ® N) = Pl(M)' beN) 

for all clvsed subspaces of the form M ® N. 

Theorem 2 follows at once from Theorem 1 and the 
following statement6 : 

Theorem 3: Let (Jel ® Je2, .,1(,1 ® .,1(,2, P12) be a 
composite system composed of the two components 
(Jel , .,1(,1, PI) and (Je2, .,1(,2, P2), and let D l2 , Dl , and 
D2 be their respective density operators. Then Dl2 = 

Dl X D2 if and only if P12(M ® N) = PI(M) . P2(N) 
for all closed subspaces M c Jel and N c Je2 • 

To prove Theorem 3, the following lemma is needed: 

Lemma 1: Let A be a self-adjoint operator of the 
trace class defined for all <I> E Jel ® Je2 • If 

Tr (APM@N) = 0 

for all projection operators of the form P M@N' where 
M, N are closed linear subspaces in Jel , Je2 , respec­
tively, then A = O. 

Proof'Let [rp] and [1jJ] denote the one-dimensional 
subspaces spanned by the unit vectors rp and "P' Then 
Tr (AP[9']@[IjJ]) = o implies (A(rp x "P), rp x "P) = o for 
all rp, 1jJ E Jel , Je2 • Using the distributive property of 
tensor multiplication, one finds that 

(A( rpl x "PI), rpl x 1jJ2) = 0, 

(A( rpl x "PI), (P2 x "P2) = 0, 

for all rpl, rp2 E Jel and all "PI, "P2 E Je2. It follows that 
(A<I>, <1» = 0 for all <I> E (Jel ® Je2)'. By the continuity 
of the inner product, we have (A<I>, <1» = 0 for all 
<I> E Jel ® Je2 • Hence A = O. 

Proof of Theorem 3: If D12 = Dl X D12 , then for all 
subspaces M c Je and N c Je2 we obtain 

P12(M ® N) = Tr (D1PM )' Tr (D2PN ). 

8 Theorem 3 is presumably well known to the experts; however, 
we have been unable to find a reference to it in the literature. 
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Hence P12(M ® N) = Pl(M)· P2(N). On the other 
hand, if P12(M ® N) = Pl(M) . beN) for all M, N, 
then 

Pl2(M ® N) = Tr (DlPM )· Tr (D2PN ) 

= Tr «Dl x D2)PM ®N). 

Since P12 corresponds to D12 , we also have 

Pl2(M ® N) = Tr (D12PM ®N) 

for all M, N. Therefore 

Tr ([(Dl x D2) - D12]PM ®N) = 0. 

Applying the lemma, we obtain 

D12 = Dl X D 2 • (2.1) 

Theorem 3 may be extended to the case of a com­
posite system composed of an arbitrary but finite 
number of components in a straightforward way. In 
the case of an infinite number of components, the 
technique of this paper breaks down since an infinite 
tensor product of Hilbert spaces (of dimension 
greater than one) is always nonseparable. However, in 
the next section we shall define a (possibly) nonde­
numerable collection of quantum systems for which 
Eq. (2.1) holds under the pairwise formation of 
composite systems. By placing appropriate conditions 
on the collection, the resulting family of operator 
equations may be solved to yield the canonical density 
operator. 

3. THE AXIOMS 

We shall view Q as a set in the mathematical sense. 
However, Q may be interpreted physically as a 
collection of systems, each pair of which can be 
brought together into equilibrium at a common 
temperature. We do not treat the mechanism for 
attaining equilibrium. We deal instead with the limit­
ing case of zero interaction, and postulate that each 
component is in a limiting state P, independent of the 
second component of the composite pair. It is not 
necessary to make an explicit assumption regarding a 
common temperature for all systems. The temperature 
simply appears as a free parameter in the class of 
canonical states. 

The axioms fall into three categories. The first 
axiom restricts the collection Q to systems whose 
Hamiltonian operators have pure point spectra, and 
the next three axioms ensure that Q is sufficiently large 
for our characterization to succeed. The last two 
axioms place natural restrictions on the equilibrium 
states. 

Axiom 1: For each system in Q, the Hamiltonian 
operator H has a pure point spectrum S(H) con-

sisting of zero and a sequence of real numbers in­
creasing to infinity: 

° = Ao < Al < A2 < ... < An < ... , lim An = 00. 
n .... oo 

Since the Hamiltonian operator is arbitrary up to 
an additive constant, the requirement that the smallest 
characteristic value be zero merely requires that each 
Hamiltonian be normalized by a constant energy 
shift. 

Let II, 12 denote the identity operators on Jel , Je2 , 

respectively. 

Axiom 2: The set Q is closed under the pairwise 
formation of noninteracting composite systems. That 
is, if (Jel , HI) and (Je2 , H2) are any two members of 
Q, then the composite system (Jel ® Je2 , HI X 12 + 
II x H 2) also belongs to Q. 

This axiom provides the mathematical counterpart 
for the physical assertion that each pair of systems 
can be brought into equilibrium with each other in 
the limit of zero interaction. Since HI and H2 are un­
bounded operators, HI X 12 + II X H2 is an un­
bounded essentially self-adjoint operator and has the 
spectrum {AIm + A,2n: m, n = 1,2, ... }, where {AIm} = 
S(HI ) and {A2n} = S(H2). To obtain the self-adjoint 
operator corresponding to the energy of the com­
posite system, one identifies the symbol HI x 12 + 
II X H2 with its smallest closed extension. It follows 
that the set ~ consisting of all Hamiltonian spectral 
values for systems in Q is closed under addition. The 
next axiom ensures that ~ is closed under positive 
differences. 

Axiom 3: Let ~ be the union of the Hamiltonian 
spectra for all systems in Q. Then ~ is closed under 
subtraction in the sense that if AI' A2 E ~ and A2 > AI, 
then A2 - Al E ~. 

The next axiom requires that Q contains certain 
systems which, for convenience, we call "harmonic 
oscillators. " 

Axiom 4: For each A E~, A:;f:. 0, there exists a 
system (Je, H) in Q such that S(H) = {nA: n = 0, 
1,2, ... }. 

Axiom 5: Let (Je, H) be a system in Q in the equilib­
rium state P, and let D be the density operator for this 
state. Then there is a function f(A) defined on S(H) 
such that D = f(H). 
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This axiom ensures that D commutes with the 
dynamical group {Tt = exp (-iHt): t E R} and there­
fore qualifies as a true integral of the motion. 

In view of Axiom 1, each Hamiltonian has a 
spectral representation H = L::o AnP n' where P n is 
the projection onto the characteristic subspace of Je 
corresponding to the characteristic value An' Iffis any 
function defined on Sell), then by the spectral 
theorem one may write f(ll) = I::o f(An)P n' Since 
Tr D = I, every function f defined by Axiom 5 must 
satisfy 

o ~ J(An) ~ 1 for n = 0, 1, 2, ... , 

00 

I mnJ(An) = 1, 
n=O 

where mn is the (necessarily finite) multiplicity of An' 
The final axiom presents the main statistical assump­

tion. It asserts that the mechanical independence of 
any pair of systems in Q implies their statistical 
independence also. 

Axiom 6: For a composite system (Je12 , H12) com­
posed of two noninteracting components (Jel , HI) 
and (Je2, H 2) in Q, the component systems are 
statistically independent; that is, their statistical states 
satisfy P12(M ® N) = Pl(M)' P2(N) for all closed 
subspaces M c Jel and N c Je2. 

It should be stressed that the axioms do not deter­
mine the set Q uniquely. For example, Q might con­
sist of only those systems built up by composition from 
a single harmonic oscillator, in which case all systems 
in Q would have the same spectrum ~ = {O, A, 2A, ... }. 
Therefore, it is important to know that any collection 
of systems Qo which we may wish to consider can be 
enlarged to obtain a collection Q satisfying Axioms I 
through 4, provided only that Qo satisfied Axiom 1. 

Theorem 4: Let Qo be any collection of systems 
satisfying Axiom 1. Then there exists a second col­
lection Q which contains Qo and satisfies Axioms I 
through 4. 

Proof' Let ~o be the union of all Hamiltonian 
spectra of systems in Qo. Enlarge ~o to obtain the set 

~l = {n1Al + ... + nkAk:k = 1,2, ... ; 

ni = 0, ±I, ±2,"', for allj = 1,2,'" k; 

Ai E ~o}. 

Let ~+ = {k A E ~l' A ;;:: O}. For each A E ~+, A ':;t: 0, 
adjoin to Qo the harmonic oscillator whose Hamil­
tonian spectrum is {nA:n = 0,1,2," .} and denote 
the enlarged collection by QI' Let Q~ be the collection 

obtained by noninteracting pairwise composition of 
members from Ql and define Q2 = Ql U Q~. Now, for 
each integer m ;;:: I, let Q~ be the collection obtained 
by noninteracting pairwise composition of members 
from Qm and define Qm+l = Qm U Q;". Then Q = 
U:=l Qm satisfies Axioms 1 through 4. 

4. THE FUNCTIONAL EQUATION 

It follows from Axiom 6 and Theorem 3 that to 
each pair of systems (Jel , HI) and (Je2, H 2) in Q 
there corresponds an operator equation D12 = 
Dl X D2 , or equivalently, 

f12(H1 x 12 + It x H2) =f1(H1) x f2(H2) (4.1) 

everywhere in Je1 ® Je2. From the spectral expansion 
of both sides of (4.1) one obtains 

/J.2(A1 + A2) = fl(A1) 'hCA2) (4.2) 

for all AI' A2 E S(H1), S(H2). By considering every 
pairwise combination of systems in Q, one obtains a 
system of functional equations 

fmnCAm + An) = fm(Am) 'fn(An), (4.3) 

which holds for all Am E S(Hm) and all An E S(Hn). 
The subscripts index the systems in Q and range over 
a possibly nondenumerable set. Our objective is to 
solve this system of equations to obtain the equilib­
rium density operator for each member of Q. 

We first note that iff is any function specified by 
Axiom 5, thenf(O) ':;t: O. Consider first the harmonic 
oscillators of Axiom 4. For two identical oscillators 
one obtains 

f12(nA + mA) = f(nA) ·f(mA). 

Consequently, iff(O) = 0, thenf12 is zero everywhere 
on S(H12), which contradicts the fact that Tr D12 = 1. 
If f(O) = 0 for an arbitrary system (Je, H) with 
D = f(H) , there exists a A' E Sell), A' > 0, such that 
f(A') ':;t: O. By considering the composite system com­
posed of (Je, H) and the harmonic oscillator (Je', H') 
havingS(H') = {nA':n = 0, 1,2," ·}and D' = I'(H') , 
one obtains h2(A') = 1'(0) 'f(A') = I'(A') ·f(O). If 
f(O) = 0, then I' (A') . f(O) is zero but I' (0) . f(A') is 
not, which again is a contradiction. 

The fact thatf(O) ':;t: 0 for every system in Q allows 
one to replace the system of equations C 4.3) by a single 
functional equation. 

Lemma 2: Consider the set ~ which is the union of 
all Hamiltonian spectra for all systems in Q. There 
exists a function F, defined on ~, satisfying the 
functional equation 

F(AI + A2) = F(AI) . F(A2) (4.4) 
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for all AI, A2 E!D and the initial condition F(O) = 1 
such that for each system (Je, H) in Q, with equilib­
rium density operator D = f(H), the function f 
satisfies 

f(A) = f(O) . F(A) (4.5) 

for all A E S(H). 

Proof' By considering two systems in Q with 
D1 = f1(H1) and D2 = f2(H2) which may have a 
characteristic value A common to both S(H1) and 
S(Hz), one obtains from (4.2) fl(A)Ih(O) = h(A)1!2(0). 
Consequently, (4.5) defines Funiquely on !D. To obtain 
(4.4), substitute (4.5) into (4.2) and use (4.2) with 
Al = A2 = O. 

Lemma 3: 0 :::;; F(A) < I for all positive A E!D. 

Proof' Consider the harmonic oscillator having 
S(H) = {nA:n = 0, 1,2, .. '}. Then, by induction from 
(4.4), one obtains F(nA) = [F(AW. Since 

00 00 

Tr D = ~ mnf(nA) ;;::: 1(0) ~ [F(AW, 
n=O n=O 

we must have 0 :::;; F(A) < 1. 

The next lemma defines the canonical state of zero 
absolute temperature, or equivalently, the micro­
canonical state of zero energy. It is convenient to 
include this limiting state in the family of canonical 
states. We note that the canonical density operator 
corresponding to an absolute temperature Tis 

e-H /kT 

D ---­
T - Tr e-H /kT 

00 

~ e-A 
• .IkTp" 

n=O 

Since we require Ao = 0, we have 

limDT=Do=~Po, 
T-+O mo 

Case II: If A2 < AI, then, for some positive integer 
n, we have nA2 > Al and by Case I we have F(nA2) = 
[F(A2)]n = O. Hence F(A2) = O. Consequently, F(A) = 0 
for all A > 0, and if (Je, H) is any system in Q with 
equilibrium density operator D = f(H), then 

I(A) = ~, if A = Ao = 0, 
mo 

f(A) = 0, if A ¢ O. 

This implies D = Do = (llmo)Po. 

The next lemma considers the alternative to 
Lemma 4. In this case, F(O) = 1 and 0 < F(A) < 1 
for all positive A E!D. It is convenient to define the 
function yeA) = In F(A) and work instead with the 
functional equation 

Y(A1 + A2) = Y(A1) + y(A2). (4.6) 

By defining Y( -A) = -yeA), it is straightforward to 
show that every such extended solution satisfies (4.6) 
for all AI' A2 in the extended domain!D U -!D and that 

y(mA) = mY(A) (4.7) 

for any integer m and all A E!D U -!D. We may now 
prove the following: 

Lemma 5: Consider the case where 0 < F(A) < 1 
for all positive A E!D. Then there exists a positive 
constant () such that F(A) = exp (-()A) and each 
system in Q is in the Gibbs canonical state with the 
density operator 

D = e-9H/Tr e-9H• 

Proof' We prove that Y(A)IA = -() for all positive 
A E!D. Suppose that Y(A)/A is not a constant. Then, 
for some AI, A2 E!D and any two positive numbers a 
and b, the equations 

IXY(A1) + PY(A2) = a, 

IXAl + PA2 = b 

where Po is the projector of Je onto the null space of can be solved for the real coefficients IX and p. More-
H. over, we can always find rational numbers r1/s1 , rZ/s2 

with Sl' S2 > 0, such that 
Lemma 4: If F(A) = 0 for some A > 0, then F(A) = 

o for all A > 0 and each system in Q is in its canonical 
state of zero absolute temperature. 

Proof' The proof depends on the fact that !D is 
closed under positive differences. Let F(A1) = 0 and 
let A2 be any positive number in !D. 

Case I: If A2 > AI' then A2 - Al E!D and F(A2) = 
F(A1) . F(A2 - AI)' Hence F(A2) = o. 

(r1/s1)Y(A1) + (r2/s2)Y(A2) > 0, 

(r1/s1)A1 + (r2/s2)A2 > O. 

Multiplying by SlS2 and using (4.6) and (4.7), these 
inequalities become 

y(m1A1 + m2A2) > 0, 

m1A1 + m2A2 > 0, 

where m1 and m2 are integers. This contradicts the fact 
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that 0 < F(A) < 1 for all positive A E il. Hence 
Y(A)jA is a constant and the result follows. 

We summarize the results of Lemmas 4 and 5 with 
the following theorem: 

Theorem 5: Let Q be any collection of quantum 
systems, each in an equilibrium statistical state, satis­
fying Axioms 1 through 6. Then each system is in a 

Gibbs canonical state at some absolute temperature 
T :2: O. The temperature is arbitrary, but it is the same 
for all systems in Q. 
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We show that the unrenormalized Hamiltonian in quantum field theory is unbounded from below 
whenever lowest-order perturbation theory indicates that this is true. We conclude that perturbation 
theory is an accurate guide to the divergence of the vacuum energy in quantum field theory. 

In this paper we show that the unrenormalized 
Hamiltonian is unbounded from below when lowest­
order perturbation theory predicts that this is true. 

The proof is a simple calculation. The unrenormal­
ized Hamiltonian H is a densely defined bilinear form 
on Fock space. l We choose a sequence 0" of unit 
vectors in the domain of H. As K -- 00, the expecta­
tion values of the Hamiltonian in the vectors 0" tends 
to - 00. The ground state of H given by first-order 
perturbation theory motivates our choice of the 
vectors 0". 

We concentrate on the boson self-interaction 
<l>2n in (s + I)-dimensional space-time. The second­
order vacuum energy has a momentum divergence for 
s:2: 2, n ~ 2 and for s ~ 3, n = 1, and these cases 
will be treated first. Afterwards, the remaining cases 
(which have a volume divergence) will be treated. 

The Hamiltonian that we study is 

H = Ho + A. J:<I>(x)2n: dx = Ho + A.Hl . (1) 

The methods and the results hold equally for the 
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spatially cut-off Hamiltonian: 

H(g) = Ho + AJ:<I>(Xr:g(X) dx, 0 S g(x) S 1. 

(2) 

We work on the Fock space; Ho is the free-field 
Hamiltonian for mass m > 0, and <I> is the standard 
boson field. 

We study fitst the cases s ~ 2, n ~ 2 and s ~ 4, 
n :2: 1. The vectors OK are defined by 

0" = c("Po - A"P2n), 

where "Po is the Fock no-particle vector and 1p2n is a 
2n-particle vector. The constant c is chosen so that 
110,,11 = I, and 

"P2n( kl' ... , k2n) 

= C~f(ki)rl«2n)!)th(~lki) fi [,u(kiy-tx,,(k;)]. (3) 

Here ,u(k) = (k 2 + m2)t and h is a smooth, positive, 
rapidly decreasing function. The function X,,(k) equals 
unity if Ikl ::;; K; it equals zero otherwise. We choose 

T = -(s - 1) 1 - - + -- , ( 
1) £+2 

2n 2n 
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that 0 < F(A) < 1 for all positive A E il. Hence 
Y(A)jA is a constant and the result follows. 

We summarize the results of Lemmas 4 and 5 with 
the following theorem: 

Theorem 5: Let Q be any collection of quantum 
systems, each in an equilibrium statistical state, satis­
fying Axioms 1 through 6. Then each system is in a 

Gibbs canonical state at some absolute temperature 
T :2: O. The temperature is arbitrary, but it is the same 
for all systems in Q. 
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where E is in the interval 0 < E < t. We remark that 
the choices h = 15, K = 00, 'T = 0 would give the 
ground state in first-order perturbation theory. With 
the above restrictions on n, s, and E, we have 'T < -l. 
Furthermore, 

E = 2n'T + (2n - l)s - (2n + 1). 

Theorem 1: 

Proof: We compute the inner product as 

(0", HO,,) = c2{Po + API + A2P2 + A3Pa}. 

In this expansion it is easy to see that 

Po = PI = 0 
and that 

P2 = (V'2n' HOV'2n) - ("1'0' H1V'2n) - (V'2n' H1V'o)· 

The proof is completed by showing that, for large K, 

c-2 = 1 + 1.2 IIV'2nll2 = 0(1), 

(V'2n, HOV'2n) = 0(1), 

Ps = 0(1), 

and that for some positive constant D, 

DK£ :$; ("1'0' H IV'2n) = (V'2n, H 1"1'0)· 

These orders of growth are established by standard 
power-counting arguments.2 This completes the proof. 
The remaining case n = 1, s = 3 is handled by similar 
methods, modified to deal with a logarithmic diver­
gence. 

In the cases not covered by Theorem 1, perturbation 
theory predicts no momentum divergence. Thus, when 

a S. Weinberg, Phys. Rev. 118, 839 (1960). 

g has compact support, perturbation theory predicts 
that H(g) is bounded from below. This lower bound 
has been proved rigorously.s Perturbation theory 
predicts that H has a vacuum-energy divergence which 
is linear in the volume, and thus it predicts a lower 
bound for H(g) which is linear in the volume. (The 
"volume" here is the area of the support of g.) 

It is known that the true bounds are no worse than 
this prediction. Thus, for s = 1 or s = 2, n = I, the 
lower bound diverges no faster than a constant times 
the volume.3 We now show that, for s = 1, the H 
defined in Eq. (1) is unbounded from below. The same 
proof shows that the lower bound on H(g) in Eq. (2) 
tends to - 00 as g --+ I, and similar results hold for 
the case s = 2, n = 1. 

Let 
hv(k) = Vh(k V). 

In the definition (3) for V'2n' we substitute hv for h 
and set 'T = 0, K = 00. We define 

0v = "1'0 - V-1AV'2n· 

As before, one proves the following theorem: 

Theorem 2: 
lim (Ov, HOv) = -00, 
v .... 00 

lim sup IIOvl12 < 00. 
v .... oo· 

We conclude that perturbation theory is an accurate 
guide to the divergence of the vacuum energy in 
quantum field theory. 

8 For the case s = 1, any n, see E. Nelson in Mathematical Theory 
of Elementary Particles (M.I.T. Press, Cambridge, Mass., 1966); 
J. Glimm, Commun. Math. Phys. 8, 12 (1968); J. Glimm and A. 
Jaffe (to be published). The case s = 2, n = 1 can be computed 
explicitly or estimated. 
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The relati~stic .e~ect of stro.ng bindi~g. o~ the eq~ations of m?tion o~ slow particles is derived by taking 
the appropnate hmlt of clasSIcal relatIvIstIC equatIons of motIon of Interacting particles. The expected 
effect on the total mass of the system is verified. The relative motion is also affected-in a model­
dependent way. 

1. THE MASS OF BINDING ENERGY 

Einstein derived his famous formula l 

E= mc2 (1.1) 

by. kinematic arguments showing that the emission of 
electromagnetic radiation carrying energy E reduces 
the mass of the emitting system by EJc2• The conserva­
tion of energy then leads to the general relation 
between energy and mass, Eq. (1.1). This argument 
cleverly evades the problem of actually computing the 
energy of a relativistic system of particles. In fact, 
most theories are not able to predict the total energy 
of a system of particles without encountering infinite 
self-energies. 

One common application of Eq. (1.1) is to a system 
of slowly moving particles. One uses the Newtonian 
equations of motion and separates them nonrela­
tivistically into center-of-mass motion and relative 
motion. One then uses the energy of the relative 
motion to correct the total mass via Eq. (1.1) in 
violation of the equation for the center-of-mass 
motion. Most calculations of nuclear structure start 
from this rather arbitrary premise, namely, that the 
defect in the total nuclear mass is not accompanied 
by any change in the equations of the relative motion.2 

Recently, an attempt was made to extend this 
approach to the quark model,3 i.e., to the systems 
of quarks that supposedly made up nucleons and 
mesons. In this case the effect of the relativistic 
connection between mass and energy became quite 
dramatic, since the mass defect was almost equal to 
the total original mass. A slight change in the param­
eters (or in the number of quarks grouped together) 
would send the mass of the system through zero and 

* This research has been sponsored in part by the Air Force Office 
of Scientific Research through the European Office of Aerospace 
Research, OAR, U.S. Air Force, under Contract F-61052-68-C-0070. 

1 A. Einstein, Ann. Physik 17, (1905) [English trans!.: The Principle 
of Relativity (Dover Publications, Inc., New York, 1923), p. 67]. 

• E.g., K. A. Brueckner in The Many-Body Problem, Notes of 
the 1958 Les Houches Summer School (John Wiley & Sons, New 
York, 1959). 

3 G. Morpurgo, Physics 2, 95 (1965). 

into the negative range. Still, the equations of relative 
motion were assumed unchanged. 

No experimental ':.~iification of the assumptions of 
the quark model is probable short of the discovery 
of quarks. Also in the nuclear case, the connection 
of theory and experiment is not quite direct. A 
theoretical study thus seems indicated. 

The natural way to verify a nonrelativistic approxi­
mation is to derive it from the full relativistic theory. 
This could not be done until recently for want of a 
suitable relativistic theory of interacting particles. 
The only theory free of infinite self-energies was the 
Fokker-Tetrode4,5 formulation of classical electro­
dynamics in terms of action at a distance. This theory 
was considered useless because it led to half-retarded­
half-advanced interactions. In any case, neither this 
form of electrodynamics nor related formulations of 
meson theory6 allow the coexistence of slow motion 
with strong binding by virtue of the virial theorem 
(see below). 

Recently, Van Dam and Wigner7 proposed a 
classical dynamics of interacting particles that is a 
natural generalization of the Fokker-Tetrode theory 
but features an arbitrary function characterizing the 
interaction. A corresponding "scalar" theory has 
been proposed by this author. 8 Either of these theories 
reduces in the classical limit to Newton's equations 
with an interparticle potential depending only on dis­
tance. A situation of slow motion and strong binding 
may be arranged by adjusting the arbitrary function 
in the relativistic theory so as to make the limiting 
classical potential a deep well with a flat bottom. This 
may be done in either the Van Dam-Wigner theory 
or the scalar theory. In this paper we use a linear 
combination of both to demonstrate that the effect of 

• H. Tetrode, Z. Physik 10,317 (1922); A. D. Fokker, Z. Physik 
58, 386 (1929); Physica 9, 33 (1929); 12, 145 (1932). 

• J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 21 425 
(1949). ' 

6 P. Havas, Phys. Rev. 87, 309 (1952). 
7 H. Van Dam and E. P. Wigner, Phys. Rev. 138, BI576 (1965). 
6 A. Katz, J. Math. Phys. 10.1929 (1969). 
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strong binding on the relative motion is model­
dependent. 

The relativistic theory is introduced in Sec. 2. The 
notation is that of Ref. 8 and the results of that 
reference are recalled. Section 3 explains the limit of 
slow motion and strong binding. Like the ordinary 
classical limit, it involves letting c tend to infinity. 
However, certain interaction terms are assumed of 
order c2• In Sec. 4 the limiting procedure is applied 
to the relativistic equation of motion. The limiting 
equations of motion [Eqs. (5.1), (5.2)] are discussed 
and separated into center-of-mass and relative equa­
tions in Sec. 5. The limits of validity of the limiting 
procedure are discussed in Sec. 7. It turns out that 
the case in which the contribution of the binding 
energy completely cancels the rest mass cannot be 
discussed within the present scheme. The relativistic 
dynamics we use is not the most general possible. In 
Appendix A we refer to a different form of dynamics, 
which, however, becomes identical with ours in the 
limit of slow motion but strong binding. 

The limiting equations of motion [Eqs. (5.1), (5.2)] 
are the main result of the present paper. 

2. RELATIVISTIC DYNAMICS AND 
CLASSICAL LIMIT 

Consider a system of classical relativistic particles. 
Let x i( T i) represent the world line of the ith particle 
(Xi is a four-vector and Ti a parameter). We derive 
our dynamical equations from the action 

A = mlc2f('xD! dTI + m2c2f(.xi)! dT2 

- t f X«xi - X2)2)XI . X2 dTI dT2 

- t f V'«XI - X2)2)(xD!(x~)t dTI dT2' (2.1) 

Xi IS the derivative of Xi with respect to T i • The 
generalization for more than two particles is obvious. 
X and V' are functions describing the two-particle 
interaction. They are subject only to the restriction 

X(P) = V'(p) = 0, when p > 0. (2.2) 

Our metric is goo = c2, gOr = 0, gr. = -br.; the 
interaction thus occurs at spacelike separations, 
which is the relativistic generalization of an instan­
taneous interaction. [Condition (2.2) may be weakened 
to require only that X and "P tend to zero as p -- 00 fast 
enough for the integrals used to converge.] 

The X and V' terms correspond to interactions of 
the Van Dam-Wigner7 type and of the "scalar" type,S 
respectively. It has been shown in Ref. 8 that, in the 

ordinary nonrelativistic limit, both interactions reduce 
to Newtonian potentials depending only on the 
interparticle distance r given by 

VCr) = t f X(02 - r2) dO, (2.3) 

U(r) = t I "1'(02 - r2) dO. (2.4) 

The full relativistic equations of motion for the 
action (2.1) are 

(ml + 2
1
e f"l' dT2)Xl 

= ~ f X' dT2{Xl . X2(XI - X2) - (Xl - x2) . X1X2} 

+ ~ f "1" dT2{C2(XI - x2) - (Xl - x2) . XlXI} 

(2.5) 

and the equation obtained by exchanging the particle 
indices I and 2. X' and "1" are the derivatives of X and V' 
with respect to their arguments, the arguments still 
being (Xl - X2)2. In Eq. (2.5) the arbitrariness con­
nected with the choice of the parameters Tl and T2 has 
been removed by enforcing the requirement 

x; = c2
, i = 1,2. (2.6) 

This turns T i into the proper time of particle i. 

3. THE LIMIT OF SLOW MOTION BUT 
STRONG BINDING 

The procedure for obtaining the limit of slow 
motion while retaining the effects of strong binding 
is to let c tend to infinity while assuming that the 
classical potential energies V(r) and U(r) of Eqs. 
(2.3) and (2.4) are large of order c2• This means that 
quantities such as V(r)/c2 and U(r)/c2 cannot be 
neglected. Terms proportional to any power of xJc 
will be discarded. 

The above prescription assumes that the potential 
energy V(r) + U(r) is of order c2 while the kinetic 
energy imlx~ + im2x~ is of order 1. However, the 
virial theorem9•1o connects the average kinetic energy 
to the average of (Xl - x2) • (O/oxI)[V(r) + U(r)]. 
For consistency we therefore assume that while VCr) 
and U(r) are of order c2, their derivatives dV(r)/dr 
and dU(r)/dr are of order 1. This means that we 

• H. Goldstein, Classical Mechanics (Addison-Wesley Pub!. Co., 
Inc., London, 1959), Sees. 3-5. 

10 The virial theorem in Ref. 9 applies to ordinary Newtonian 
mechanics. We anticipate that a similar relation obtains also in the 
case of the equations of motion of strongly bound slow particles 
that we are about to derive. This assumption may be verified a 
posteriori by inspecting Eqs. (5.1) and (S.2). 
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consider motions where each particle is near the 
bottom of a deep potential well where the "floor" of 
the well is not steep.1l·l2 

As the changes in U(r) and VCr) during the motion 
are of order 1, the limits 

v == lim V(r)/c2
, (3.1) 

C-> 00 

u == lim U(r)/c2 (3.2) 
C-> 00 

for a given solution are constants independent of r. 
Our next task is to expand the equation of motion 

(2.5) in powers of l/c. Terms containing X and 1jJ must 
be expanded up to order (1/c)2. In fact, by our 
assumptions 

VCr) = 1 J X(02 - r2) dO = - J X'(02 - r2W dO 

= i J XI/(02 - r2)04 dO = ... , (3.3) 

U(r) = 1 J 1jJ(02 - r2) dO = - J 1jJ'(02 - r2)02 dO 

= iJ 1jJ1/(02 - r2)04 dO = ... 

are of order c2, but 

(3.4) 

= 2 J XI/(02 - r2)02 dO = .. " (3.5) 

! dU(r) = -J 1jJ'(02 - r2) dO 
r dr 

= 2 J 1jJ1/(02 - r2)02 dO = . . . (3.6) 

are of order 1. Therefore, integrals of the form (3.3)' 
and (3.4), when multiplied by 1/c2

, will be replaced by 
v and u, respectively; integrals of the form (3.5) and 
(3.6), when multiplied by powers of l/c, will be 
discarded. 

Up to the order 1/c2, the time coordinates of the 
particles may be expressed as 

XKTi) = Ti + !'i(T;)/C2, i = 1,2. (3.7) 
The condition (2.6) then requires 

j;(T;) = lX;h)2. (3.8) 

The argument of the function X and 1jJ, when expanded 
to the same order, becomes 

(Xl - X2)2 = C
2(T1 - T2)2 + 2(T1 - T2)[11(T1) - 12(T2)] 

- [x1h) - X2(T2)]2; (3.9) 
11 Quantum-mechanical considerations allow slow motion in a 

deep potential well only if it is wide enough (cf. Ref. 4). 
10 The prescription for obtaining the X or tp corresponding to a 

given V(r) or U(r) is given in Ref. 8. 

also 

(Xl - X2) . Xl = c2h - 7"2) + 1lh) - 1b2) 

+ t( T1 - T2)X1( T1)2 

- [x1h) - X2(T2)] . X1(T1), (3.10) 

Xl' X2 = c2 + !lx1h) - XlT2)]2. (3.11) 

Equations (3.10) and (3.11) may be obtained from Eq. 
(3.9) by taking its derivatives first with respect to T1' 
then with respect to T2' 

4. THE LIMIT OF THE EQUATION 
OF MOTION 

In this section we apply the preparations of the last 
section to the equation of motion (2.5). 

Let us first change the variable of integration in all 
the integrals in Eq. (2.5) from T2 to 

(4.1) 

This together with the expanded expressions (3.7) 
through (3.10) turns the space components of Eq. 
(2.5) into 

( m1 + c12 J 1jJ dO )Xl 

= J (X' + 1jJ'>[ xlh) - X2( T1 + ;) ] dO 

+ :2 J X' dO ~[x1h) - X2(T1 + ~) r 
X [X1h) - X2(T1 + ;)] 

- ~ f[X2(Tl + ;)X' + Xl h)1jJ'] 

X [CO + 11h) - 12(T1 +;) + ~;Xlh)2 
- [Xb1) - X2( T1 + ;)] . X1(T1)] dO, (4.2) 

where the argument of the functions X, 1jJ, X', and 1jJ' 

is 

(Xl - X2)2 = 0
2 + 2 ;[N T1) - 12( T1 + ;) ] 

- [X1(T1) - X2(T1 + ;) r. (4.3) 

One should now complete the expansion to order 
l/c2 by applying the Taylor expansion to all functions 
the arguments of which contain parts proportional 
to ()/c: 

x2h + ()/c) = Xb1) + (OjC)X2(T1) + tc0/C?Xb1), 
(4.4) 
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etc. The functions X, 1p, X' , 1p' should also be expanded. where 
When this process is finished, all the e integrals are of (5.4) 
the form and 

f X(n\e2 - r2)e m de or f 1p(n)(e2 - r2)em de, (4.5) 

where X(n), 1p(n) are the nth derivatives of X, 1p with 
respect to their argument and 

r2 = [xlh) - x2h)t (4.6) 

Of these integrals, the ones with odd m vanish by 
symmetry. The others are either of the form (3.3), 
(3.4) or' of the form (3.5), (3.6). The latter, when 
multiplied by 1/c2, are discarded; the former are 
replaced by v or u. This turns Eq. (4.2) into 

(ml + U)XI + Hv - U)X2 = - ~ [VCr) + U(r)]. 
aXI 

(4.7) 

In the last equation both Xl and X 2 depend on TI' 

which becomes the common time. It may be checked 
that the time component of Eq. (2.5) is satisfied 
identically. 

5. CENTER-OF-MASS AND RELATIVE 
MOTIONS 

Let us reproduce the equations of motion in the 
limit of slow motion but strong binding: 

(ml + U)XI + l(v - U)X2 

a = - - [VCr) + U(r)] + FI , (5.1) 
aXI 

t(v - U)XI + (m2 + U)X2 

= - ~ [V(r) + U(r)] + F2 • (5.2) 
aX2 

We have tentatively included external forces FI , F2 
acting on particles 1 and 2. These forces could be 
produced by interaction of the two particles with a 
third particle that is extremely heavy and extremely 
far away. They are necessary in order fully to appreci­
ate the effect of strong binding on the center-of-mass 
motion. Otherwise, Eq. (5.1) is identical with Eq. 
(4.7) and Eq. (5.2) is obtainable from it by exchanging 
the indices 1 and 2. Both Xl and X2 depend on a 
common time; dots denote derivatives with respect 
to this common time. 

When the two equations (5.1) and (5.2) are added 
together, the interparticle force cancels and we find 
that 

(5.3) 

MX = mixi + m2x 2 + t(v + U)(XI + x2). (5.5) 

Obviously, X plays the role of a center-of-mass 
coordinate and Eq. (5.3) shows that M is the inertial 
mass of the two-particle system. 

For the purpose of studying the relative motion, 
let us neglect the external forces FI and F2 and define 
a relative coordinate 

(5.6) 

Equations (5.1) and (5.2) then lead to 

,u~ = - :~ [V(I;!) + U(I;I)], (5.7) 

where 

(m1 + u)(m2 + u) - Hv - U)2 ,u = (5.8) 
ml + m2 + v + U 

The last equation replaces the usual expression for 
the reduced mass. 

Note that the total mass (5.4) agrees with Einstein's 
formula (Ll) regardless of the part of the potential 
energy contributed by the X and 1p terms of the inter­
action. The effect of strong binding on the reduced 
mass (5.8) is crucially model-dependent. It may 
altogether disappear for a suitable choice of U and v, 
e.g., when ml = m2 = m, and v = 3u, the reduced 
mass retains its usual value tm although the total mass 
is shifted to 2m + 4u. 

6. TOTAL ENERGY AND GRAVITATIONAL 
MASS 

It might be of value to compare the total mass M 
of the last section with the zero component of the 
energy-momentum vector [cf. Eqs. (3.1) and (4.4) of 
Ref. 8]. One finds that the total energy is equal to 
Mc2 in leading order. 

Another approach to the total energy is to con­
sider space-time as infinitesimally curved and to 
evaluate the stress-energy tensor as 

T IH( ) = bA x, t , 
bgllv(x, t) 

(6.1) 

where A is the action (2.1). The energy calculated as 
the integral of TOO over all of space also agrees with 
Mc2 in leading order. The mass obtained in this way 
may be considered the active gravitational mass of 
the system, since the TIlV serves as the source in 
Einstein's equations of gravity. 
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7. LIMITS OF VALIDITY 

The equations of motion (5.1) and (5.2) relate a 
linear form in the accelerations to the forces. For some 
values of v and u the linear form may become singular, 
forcing certain components of the acceleration to 
become infinite. When this happens, we have exceeded 
the limits of validity of our assumptions. The moment 
one of the eigenvalues of the matrix multiplying the 
accelerations becomes small of order 1/ c, accelerations 
of order c are indicated and our assumption of slow 
motion is violated. 

The vanishing of the determinant of the linear form 
in Eqs. (5.1) and (5.2) occurs on a hyperbola in the 
v, u plane described by 

(ml + u)(m2 + u) - Hv - U)2 = 0 (7.1) 

(see Fig. 1). This coincides with the vanishing of the 
reduced mass f-l. The total mass M vanishes on the 
straight line 

ml + m 2 + v + u = 0. (7.2) 

I t is not possible to connect continuously the origin 
v = u = 0 with the points of the line (7.2) without 

'\. 
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FIG. 1. The straight line m1 + m. + u + v = 0, on which the 
total mass vanishes is an asymptote of the hyperbola 

(m1 + u)(m. + u) - 1(v - u)' = 0, 

on which the reduced mass vanishes. 

cutting the hyperbola (7.1). Therefore, the vanishing 
of the total mass occurs outside the region of validity 
of our approximation of slow motion and strong 
binding.13 For the case of equal masses, the hyperbola 
degenerates into its two asymptotes, one of which is 
(7.2). 

APPENDIX A 

In this appendix we consider an action of the form 

A = mlc2f(xi) d'Tl + m2c2f(x~) d'T2 

- t f f a«xl - X2)2)(Xl . x2)1-0(xi)h(x~)h d'Tl d'T2' 

(AI) 
The corresponding equation of motion is 

= c a 'T2 Xl • X2 20-lf I d (. . )1-0 

(A2) 

The present theory depends on a continuous param­
eter q. For q = ° we recover the Van Dam-Wigner 
theory, for q = 1 the scalar theory. 

For q ¥= 0, 1 we have a new theory distinct from the 
combination of Van Dam-Wigner and scalar theory 
considered in this paper. However, in the limit of slow 
motion and strong binding this new theory becomes 
identical to our mixed theory of Sec. 2 with 

x = (1 - q)a, 

1jJ = qa. 

(A3) 

(A4) 

13 There is one case in which the approximation of slow motion 
involves no error: It is the case of two particles at rest, each at the 
bottom of the potential well created by the other. This situation is 
an exact solution of the full relativistic equation of motion (2.5). 
The energy taken as the zero component of the energy-momentum 
vector of Ref. 8 is, in leading order, (ml + m. + v + u)c', and can 
be made to vanish by increasing the interaction terms by a factor. 
This approach neglects questions of stability. Also the case of 
stationary particles may be exceptional. 
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A method for solving various half-space multigroup transport problems for the case of a symmetric 
transfer. matrix is. exp!ained .. This ~ethod i~ based. on the full-range completeness and orthogonality 
propertIes ?f the mfimte~medl.um e~genfunctlons. First, the albedo problem is considered. A system of 
Fredholm mt~gral equatIOns IS. derIved f?r the emergent distribution of the albedo problem, and it is 
sho~n .that thIS syste~ ~as ~ un!que solutIon. Then, by using the full-range eigenfunction completeness, 
the mSlde angular dlstnbutlOn IS. obtained from the emergent distribution. Finally, the Milne problem 
and the half-space Green's functIon problem are solved in terms of the emergent distribution of the 
albedo problem and the infinite-medium eigenfunctions. 

1. INTRODUCTION 

In recent years much effort has been given to solving 
the energy-dependent Boltzmann equation. Various 
approximations have been used. The most rewarding 
approximation to date has been the multi group 
technique, and often the diffusion-theory approxi­
mation is employed to simplify the calculations 
further. However, there is a definite need for exact 
solutions of the multigroup transport equations, 
since these solutions serve as a standard against which 
one can compare the approximate results. 

Recently, the solution of the infinite-medium 
Green's function has been obtained explicitly for the 
two-groupl and N-group2.3 cases. Several two-group 
half-space problems have been investigated ,HI and 
in a paper by Siewert and ZweifeF a special N-group 
Milne problem for radiative transfer was solved. The 
general case of N-group half-space problems with 
symmetric transfer matrix was studied by Leonard and 
Ferziger3; they proved full- and half-range complete­
ness of the N-group transport-equation eigenfunc­
tions. In all these works, the solution of a half-space 
transport problem is expanded in terms of the eigen­
functions and then a set of equations for the expansion 
coefficients is derived. 

In this paper we consider also N-group half-space 
problems for a symmetric transfer matrix. This form 
of C is not so restrictive as may appear at first 
glance. For instance, all two-group problems (see 
Appendix B) and the N-group equations for thermal 

* Work supported by the National Science Foundation, and 
based, in part, upon a Ph.D. thesis of one of the authors (J. K. S.). 

t On leave from the University of LjUbljana. Yugoslavia. 
t Present address: Dept. of Nuclear Engineering, Kansas State 

Univ., Manhattan, Kansas. 
1 C. E. Siewert and P. S. Shieh, J. Nue!. Energy 21, 383 (1962). 
2 T. Yoshimura and S. Katsuragi, Nuc!. Sci. Eng. 33, 297 (1968). 
• A. Leonard and J. H. Ferziger, Nuc!. Sci. Eng. 26,170 (1966). 
• R. Zelazny and A. Kuszell, Ann. Phys. (N.Y.) 16, 81 (1961). 
• D. Metcalf, Ph.D. thesis, University of Michigan. 
• C. E. Siewert and P. F. Zweifel, Ann. Phys. (N.Y.) 36, 61 (1966). 
7 C. E. Siewert and P. F. Zweifel. J. Math. Phys. 7, 2092 (1966). 

neutrons may be transformed into such a case (see 
Appendix A and Ref. 3). Symmetric transfer also 
appears in special astrophysical radiative transfer 
problems for a medium in local thermodynamic 
equilibrium.7 

In our approach, we do not need the half-range 
completeness property of the eigenfunctions. We 
solve half-space transport problems in two steps: 
First the emergent distribution is calculated and then 
the distribution inside the medium is evaluated by 
using the full-range completeness and orthogonality 
properties of the N-group eigenfunctions. These 
eigensolutions to the N-group isotropic transport 
equation and their full-range completeness theorem 
have been known for several years,8 while their 
orthogonality relations have recently been obtained 
by Leonard and Ferziger3 and Yoshimura. 2 

Section 2 briefly summarizes the N-group eigen­
functions and their full-range orthogonality relations 
as described by Yoshimura. 2 In addition, it is shown 
for symmetric C that the discrete eigenvalues are real 
or purely imaginary. In Sec. 3, a system of Fredholm 
equations is obtained which uniquely determines the 
emergent distribution for the albedo problem. It is 
shown that the uniqueness of solution of this system 
of Fredholm equations also implies half-range 
completeness of the eigenfunctions. Finally, in Sec. 
IV, the emergent distributions of the Milne's- and 
Green's-function problems are expressed in terms of 
the emergent albedo-problem distribution and the 
complete solutions obtained from the full-range 
completeness and orthogonality properties. 

2. INFINITE-MEDIUM EIGENFUNCTIONS 

The linear Boltzmann equation for N energy 
groups in plane geometry and with isotropic scattering 

8 R. Zelazny and A. Kuszell, Physics of Fast and Intermediate 
Reactors (IAEA, Vienna. 1964), Vol. II, p. 55. 
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can be written in the form4 

ft i. ~(x, ft) + E~(x, ft) = cfl d,Lt'~(X, ft'). (2.1) ax -1 

The vector ~(x, ft) is an N-component vector, of which 
the ith component, "Pi(X, ft), is the angular flux of the 
ith group. The components ofthe diagonal matrix, the 
E, are the (J/>ij, where (Ji is the total interaction cross 
section for the ith group. The elements Cii of the 
transfer matrix C describe the transfer of neutrons 
from thejth group to the ith group. In some problems, 
for instance, thermal neutron-transport theory, C 
can be written as a product of diagonal matrices Di 
and a symmetric matrix A (see Appendix A), as 

(2.2) 

Equation (2.1) can then be so transformed that the 
elements of the transformed E matrix are ordered as 

(2.3) 

and the new C matrix is symmetric (Appendix C). It 
will be assumed for the remainder of the paper that 
the transport equation has this special form of an 
ordered E matrix and symmetric C matrix. Finally, 
by measuring distance in units of the smallest mean 
free path, we can set (IN = 1. 

Using the analogy of the one-group problem,9 we 
seek a set of eigenfunction solutions ~(v, x, ft) to 
Eq. (2.1) of the form 

~(v, x, ft) = e-x(vcp(v, ft). (2.4) 

Substituting Eq. (2.4) into Eq. (2.1), the self-adjoint 
equation for the eigenvectors <I>(v, ft) is obtained as 

(E - (ft/v)E)cp(v, ft) = C f/ft'<I>(v, ft'), (2.5) 

where E is the unit matrix. The explicit form of 
these eigenfunctions has been obtained by several 
authors. I - 3•8 We will use, with slight changes, the 
notation of Yoshimura. 2 

The eigenvector spectrum is divided into two regions. 
(a) Region I: v fj: (-1, 1). In this region there may 

exist an even number, say 2M, of discrete eigenvectors, 
which are written in component form as 

cPi(VOs> ft) = vO.bi(vO.)/( (JiVO. - ft), i = 1, ... , N, 

(2.6) 

where b(vo.) is a well-defined vector.2 It can be shown 
that if Vo. is an eigenvalue, then also -Vos and vts 

• K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison­
Wesley, Reading, Mass., 1967). 

(complex conjugate) are eigenvalues with 

For our case of symmetric C, the discrete eigen­
values vOs are either real or imaginary-never complex. 

To see this, multiply Eq. (2.5) by cP*(v, ft) and inte­
grate over ft. (Here the superscript tilde denotes the 
transpose.) In this way one obtains the equation 

Since E is diagonal and C is symmetric, the right­
hand side of Eq. (2.8) is real since it is a sum of 
products of complex-conjugate terms. The integral 
on the left-hand side of Eq. (2.8), which in view of 
Eq. (2.6) can be written as 

fldftft4>*(vos, ft)<I>(vo s, ft) 

N fl ft dft 
= vosvo~ ~ bbos)bi(vos) ( )( * ) , 

i=1 -1 VOs(Ji - ft VOs(Ji - ft 

(2.9) 
is also real. 

If the above integral (2.9) is not zero, it follows 
then that the eigenvalue VOs must be real! It will now 
be shown that this integral can vanish only for purely 
imaginary eigenvalues. 

Let us assume, for the sake of the argument, that 
VOs is complex and Re {vo.} > O. It can easily be veri­
fied that in this case 

o < (Vos(Ji - ft)(VO~(Ji - ft) < (VOS(Ji + ft)(VO~(Ji + ft), 
ft > 0, i = 1, ... , N. (2.10) 

Hence, each integral in the sum on the right-hand side 
of Eq. (2.9) is strictly positive and, since at least one 
of the terms bi(vos)bi(vos) is also strictly positive in 
view of Eq. (2.7), the sum is strictly positive for 
Re {vo.} > O. Similarly, it can be proved that for 
Re {vos} < 0 the sum is strictly negative. Thus the 
integral (2.9) never vanishes if Re {vo.} =F: O. 

However, if VOs is purely imaginary, we have 

(Vos(Ji - fl)(VO~(Ji - fl) = (VOs(Ji + ft)(VO~(Ji + ft) (2.11) 

and each integral in the right-hand side of Eq. (2.9) 
is zero. Thus, we conclude, the discrete eigenvalues 
VOs lie on only the real or imaginary axis. 
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(b) Region II: This region is divided into N 
subintervals v"j = 1,"', N, such that for v E Vi' 
l/O'J_l < Ivl ~ 1/0'" where 0'0 = 1. For the jth sub­
interval, there are (N - j + 1) linearly independent 
eigenvectors <I:»;'(v, #), whose ith component has the 
form 

[<I:»;'(v, #)]i = P V [br(V)]i + c5(O'iV - #)[).;'(V)]i, 
O'iV - # 

m = j, ... ,N, j = 1, ... ,N, (2.12) 

where P indicates the Cauchy principle value is to 
be used when these functions are integrated. The 
vectors br(v) and ).;'(v) are also defined by 
Yoshimura.2 

From the eigenvalue equation (2.5), one finds that 
the eigenvectors are orthogonal in the following sense: 

I
i -

_ld##<I:»(V,#)<I:»(v',#) = ° if v' ¢ v. (2.13) 

Moreover, it is possible to choose particular linear 
combinations of eigenvectors for the independent 
eigenvectors of each subinterval vi' such that all the 
"continuum" eigenvectors are orthogonal in the 
following sense: 

fld##tP']'(±v, #)<I:»r'(±v', #) 

= ±N;'(v)c5mm,c5(v - v'). (2.14) 

Similarly, for the "discrete" eigenvalues we have 

I
i -

_ld##<I:»(±vo", #)<I:»(±vos" #) = ±Nsc5ss" 

s = 1, ... ,M. (2.15) 

The functions N. and Nj(v) are given by Yoshimura,2 
and it can be shown that Nj(v) is positive for v ~ 0. 

Finally, there is one more relationship between the 
eigenvectors which we will need later. From Yoshi­
mura's work,2 the functions b;'(v) and ).;,(v) are even 
functions of v, and it follows that 

<1:»( -v, #) = <I:»(v, -#). (2.16) 

3. THE ALBEDO PROBLEM 

In this section we will consider the albedo problem 
for a half-space. This problem will be shown to be 
important because the solutions of all other half­
space problems can be expressed in terms of the 
albedo solution. 

A. Emergent Distribution 

Let us now consider the albedo problem for which 
the incident neutron beam belongs solely to the ith 
energy group. In this case the angular flux will be 

denoted by ~i(O, #0; x, #). It is the solution of Eq. 
(2.1) with the boundary conditions 

~i(O, #0; 0, #) = ei c5(# - #0), # > 0, #0> 0, 

(3.1) 

lim ~i(O, #0; x, p,) = 0, (3.2) 
:t-+ 00 

where e i is a vector, all of whose components are zero 
except the ith, which is unity. Since our eigenfunctions 
are complete,2,8 the solution for this albedo problem 
can be expanded in terms of the eigenfunctions which 
satisfy the boundary conditions at infinity: 

M 

~i(O, P,o; x, #) = L oc(vos)<I:»(vos, p,)e-:t/vo• 
s=l 

+ ~1 i:~ldv{i/;'(v)<I:»;'(v,#)e-:t/V}, 
i = 1, ... ,N, (3.3) 

where 'fJ, = I/O'" j = 1,"', N, and 'fJo = 0. We 
will assume that all the Vo. are real. Clearly, eigen­
functions with imaginary eigenvalues cannot satisfy 
our infinity boundary condition. Setting x = ° and 
using the full-range orthogonality relations plus 
boundary condition (3.1), we obtain the expansion 
coefficients as 

#0 -
oc(vos) = - <I:»(v08 , #o)ei 

N. 

- ~. fdP,p,~(vo", _#)~i(O, P,o; 0, -p,) 

and 

A7(v) = J:L ~7(v, #o)ei 
NrCv) 

(3.4) 

__ 1_ ed##~;'(v, _#)~i(O, p,q; 0, _p,). 
N;'(v) Jo 

(3.5) 

Substituting these coefficients into Eq. (3.3) with 
x = 0, we obtain the following inhomogeneous 
Fredholm equation for the emergent distribution: 

~i(O, #0; 0, -#) 

= F(#)ei - fd#'#'K(#,,#)~i(O, #0; 0, -fl,'), 

# > 0. (3.6) 

Here we have defined the matrices 
M 1 _ 

F(#) = #0 8~1 Ns 4>(vo", -#)4>(vo", #0) 

+ #Offil I:~ldv{il N;(V) 4>;'(v, -#)4>i(v,#o)} 

(3.7) 
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and 

K(p:,Jl) = 8~~8 ~(yo., -Jl)4>(y08' -p:) 

N J.~j {N 1 - } + ~ dy L Nm( ) ~7'(y, -Jl)~7'(Y, -Jl') . 
3~1 ~;-l m~i j V 

(3.8) 

It can be verified that K(Jl', Jl) and F(Jl) are contin­
uous functions of their arguments for Jl, t-t' > 0. 

One can also obtain a singular integral equation 
for \fJi(O, Jlo; 0, -Jl) by considering the incident 
distribution as given by Eqs. (3.3)-(3.5); explicitly, 
we have 

b(Jl - Jlo)ei 

= F(-Jl)ei - fdJl'Jl'K(Jl', -Jl)\fJi(O,Jlo;O, -Jl'). 

(3.9) 

Either Eqs. (3.6) and/or (3.9) may be used to 
determine the emergent distribution. Case has 
obtained the same pair of equations, expressed in 
terms of the infinite-medium Green's function,lO by 
using a different approach. When explicit expressions 
for the Green's functions are substituted into his 
equations, Eqs. (3.6) and (3.9) are obtained. 

In the one-speed case, the singular integral equation 
(3.9) and the Fredholm equation (3.6) may be solved 
together in closed form.10 However, for the multigroup 
situation, no closed-form solutions have been obtained, 
and numerical procedures must be used to determine 
the emergent distribution. 

It will be shown that the emergent distribution is 
uniquely determined by the system of Fredholm 
integral equations (3.6) alone, and this system of 
equations can be solved by standard numerical 
techniques. 

Once Eq. (3.6) has been solved for \fJi(O, Jlo; 0, - Jl), 
Jl > 0, the expansion coefficients can be completely 
determined from Eqs. (3.4) and (3.5). Then Eq. (3.3) 
gives the complete solution for the albedo problem. 

B. Uniqueness of Solution of Fredholm Equation 

To show that our Fredholm equation has a unique 
solution, we consider the homogeneous equation 

'-/1'(0, Jlo; 0, -Jl) 

= - fdJl'Jl'K(Jl', Jl)'-/I'(O,Jlo; 0, -Jl'), Jl > o. 
(3.10) 

10 K. M. Case, in Transport Theory, SIAM-AMS Proceedings 
(Am. Math. Soc., Providence, R.I., 1969). 

Defining 

we have 

X(Jl) = (,u)!\fJ'(O, ,uo; 0, -,u), 

D(Jl', Jl) = (JlJl,)iK(Jl', Jl), 

X(Jl) = - f DCt-t', Jl)X(Jl') dJl'. 

(3.11) 

(3.12) 

(3.13) 

Let us assume a nontrivial solution exists. Multiplying 
Eq. (3.13) by X*(Jl), integrating over Jl, and sub­
stituting explicitly for D(,u', Jl) from Eqs. (3.12) and 
(3.8), one obtains 

f dJlX*(Jl)X(Jl) 

= - ~l ~s il dJl(,u)i[4>(Y08' -Jl)X*(Jl)] 

X fdJl'(Jl}4>(v08' -Jl')X(Jl') 

- ~l f~ldv{ii N;(V) i 1dJl
Ct-t)i[4>7'(v, -Jl)X*(Jl)] 

x fdJl'(Jl,)i4>r(y, -Jl')X(Jl')}. (3.14) 

Since all the eigenvalues are real, ~(Y, Jl) is also real, 
and hence both sides of Eq. (3.14) are composed of 
terms which are products of complex conjugates. Thus 
we have a contradiction: the right-hand side of 
Eq. (3.14) must be real and negative, while the left­
hand side is real and strictly positive. Hence X(Jl) 
must be identically zero, or equivalently, the homo­
geneous equation (3.10) has only the null vector as a 
solution. 

Because a system of integral equations may be 
transformed into a single integral equation,l1 it 
follows from the known properties of Fredholm 
integral equations that the solution of Eq. (3.6) exists 
and is unique since the homogeneous equation has 
only the trivial zero solution.12 

An immediate consequence of this result is that the 
eigenvectors ~(v, Jl), v ;;:: 0, Jl E (0, 1), are half-range 
complete in the sense of Case.9 In fact, with 
\fJi(O, Jlo -+ 0, -Jl) being uniquely determined by Eq. 
(3.6), we see that Eq. (3.9) is just the half-range 
expansion of the vector b(Jlo - Jl)ei . 

4. SOLUTIONS OF TYPICAL HALF-SPACE 
PROBLEMS 

By using the results of the previous section, it will 
be shown how the emergent distributions for various 

11 S. G. Mikhlin, Integral Equations (Pergamon Press, Inc., New 
York, 1964). 

11 w. Pogorzelski, Integral Equations and Their Applications 
(pergamon Press, Inc., New York, 1964). 
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half-space problems may be expressed· in terms of 
the emergent distributions of the albedo problems, 
~i(O, Po; 0, -p), i = 1, ... ,N. 

A. Generalized Milne Problem 

For every positive eigenvalue v E (0, 1) or v = Vo., 
S = 1, ... ,M, we define a Milne problem ~v(x, p) 
by Eq. (2.1) and the following boundary conditions: 

~.(O, p) = 0, p > 0, (4.1) 

Finally, to obtain the complete solution for the 
generalized Milne problem, we use the following 
expansion: 

M 
\jJv(x, p) = <p( -v, p)eX/v + L IX(V08)<p(v08> p)e-x/vo. 

8=1 

(4.2) The expansion coefficients are obtained by applying 
full-range orthogonality relations and Eq. (4.11). 
Explicitly they are 

X'" 00 

where <p( -v, p) may be any of the eigenvectors­
regular or singular. 

First let us determine the emergent distribution 
~.(O, - p). Consider a solution ~(x, p) of the trans­
port equation defined as 

~(x, p) = ~v(x, p) + ~a(x, p), (4.3) 

where ~aCx, p) is also a solution of the transport 
equation with the boundary conditions 

~,,(O, p) = <p( -v, p), p > 0, 

lim ~a<x, p) = o. 
X'" 00 

(4.4) 

(4.5) 

From (4.3), therefore, ~(x. p) must have the boundary 
conditions 

~(O, -p) = <p( -v, p), p > 0, 

lim ~(x, p) = <p( -v, p)ex/v. 
x'" 00 

Clearly the unique solution for ~(x, p) is 

(4.6) 

(4.7) 

~(x,p) = <p(-v,,u)ex/v. (4.8) 

Equations (4.3) and (4.8) then yield, for x = 0, 

<p( -v, -p) = ~v(O, -p) + ~aCO, -p), 

-1 ~p~ 1. (4.9) 

Using the results of the previous section, the reflected 
distribution ~a<0, -p), p > 0, can be expressed in 
terms of the incident distribution <p( -v, ,u) as 

\jJio, -p) = i~fd,u'[<P(-V,,u')]i\jJi(O,p'; 0, -p), 

p > 0. (4.10) 

Thus the emergent distribution for the Milne problem 
becomes, in view of Eqs. (4.9) and (2.16), 

\jJ.(O, -p) = <p(v,,u) 

- i~fdP'[<P(-v,,u'n\jJ\O,p'; 0, -p). 

(4.11) 

1 il 

-o:(vo.) = - - dpp<p(vos> -p) 
N. 0 

and 

x [<p(v,P) -i~LldP'[<P(-V'P')]i 

X ~i(O,,u'; 0, -,u) ] 

Aj"(v) = - _1_ rldpp~j"(v, _p) 
Nj"(v) Jo 

x [<p(v, p) - i~ f dp'[<p( -v, P')Ji 

x ~i(O,p'; 0, -P)} 

B. Half-Space Green's Function 

(4.13) 

(4.14) 

In a manner similar to that used for the Milne 
problem, the emergent distribution for the half-space 
Green's function can be expressed in terms of the 
emergent albedo-problem distributions. The half-space 
Green's function, with the source neutrons belonging 
to the ith group Gi(XO' Po; x, p), is defined by the 
equation 

(p :x E + l: ) Gi(xo ,Po; 0, p) 

= c fldf/,'G\xo, ,uo; x, ,u') + b(,uo - ,u)b(x - xo)e., 

Xo > 0, (4.15) 
with the boundary conditions 

X-+oo 

(4.16) 

(4.17) 

To determine this function, we will assume that the 
infinite-medium Green's function Gt,(xo, Po; x, p), 
which also satisfies Eq. (4.15), is known.2 This 
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infinite-medium Green's function can be expressed in 
terms of the half-space Green's function as 

G!"(xo,,uo; x,,u) = Gi(XO',uo; x,,u) + ~aCx,,u), 
Xo > 0, (4.18) 

where ~a(x,,u) is an albedo-problem solution satis­
fying Eq. (2.1) with boundary condition 

~a(O,,u) = G!"(xo,,uo;O,,u), ,u > 0, (4.19) 

lim ~aCx,,u) = 0. (4.20) 

Expressing the emergent distribution for this albedo 
problem in terms of the known incident distribution 
and the vectors ~i(O, ,uo; 0, -,u), Eq. (4.18) yields 

Gi(xo, ,uo; 0, -,u) 

= G!,,(xo, ,uo; 0, -,u) 

Since the angular flux for the half-space Green's 
function is now known at x = 0 for all ,u, the com­
plete solution can be found by using the full-range 
completeness and orthogonality theorems. Explicitly, 

Gi(xo, ,uo; x,,u) 
M 

= G!,,(xo, ,uo; x,,u) + I 0(VOS)<I>(v08 , ,u)e-a:fVOB 
s=1 

where 

1 il - . Cl(Vos) = - - d,u,u<l>(vo.,,u)G~(xo,,uo;O,,u) 
Ns 0 

1 r1 

+ Ns Jo d,u,ucf)(vos, -,u) 

x ~ r1 

d,u'[G!,,(xo, ,uo; 0, ,u')]k 
k=1 Jo 

X ~k(O,,u'; 0, -,u), (4.23) 

A7(v) = - _1_ ed,u,ucf)7(v,,u)G!,,(xo,,uo;0,,u) 
N'J'(v) Jo 

1 e -
+ N7(v) Jo d,u,u<l>i(v, -Jl) 

x kt f dJl'[G!,,(xo, Jlo; 0, Jl')]k 

X ~k(O, Jl'; 0, -Jl). (4.24) 

5. SUMMARY 

It has been shown that the solutions of all multi­
group half-space problems involving a symmetric 
transfer matrix can be expressed in terms of the 
emergent albedo-problem distribution and the infinite­
medium eigenfunctions. This emergent albedo distri­
bution is uniquely determined by the Fredholm 
equation (3.6), which can be solved by standard 
numerical procedures. 

In this paper, attention was restricted to those 
cases which could be transformed such that the 
transfer matrix was symmetric. This assumption was 
necessary to prove that (i) the eigenvalues of the 
transport equation are real or imaginary, and (ii) the 
emergent albedo distribution is uniquely determined 
by Eq. (3.6). In a future paper, this restriction will be 
relaxed and the case of a general transfer matrix will 
be discussed. 
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APPENDIX A. THERMAL REACTOR MODEL 

The linear Boltzmann equation for a homogeneous 
nonmultiplying medium in plane geometry and with 
isotropic scattering may be written as 

(.u :x + L(E) )1JI(X,,u, E) 

=Jl d,u' r"''f..(E' -+ E)tp(x, Jl', E'), (AI) 
-1 Jo 

where tp(x, Jl, E) is the angular flux, and 'f.(E) and 
'f..(E' -+ E) are the total and differential scattering 
cross sections, respectively. 

Using the usual multigroup technique,13 the energy 
variable is split into N regions; integrating Eq. 
(AI) over the ith region, we obtain the ith multigroup 
equation 

(Jl i. + Gi)tp;(X,,u) = f CiiJI dJl'tplx, ,u'), (A2) ox i=1 -1 

13 J. H. Ferziger and P. F. Zweifel, Theory of Neutron Slowing 
Down in Nuclear Reactors (MIT Press, Cambridge, 1967). 
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where we define 

"Pix, It) = r dE"P(x, It, E), (A3) 
),1Ei 

(1i = _1_ r dEI.(E)"P(x, It, E), (A4) 
"P/x, It) ),1E; 

Cil = 1 r dE r dE'I..(E' _ E)"P(x, It, E'). 
"Pix, It) J.1E; J.1E; 

(AS) 

To make the multigroup constants (1i and Co 
independent of x and It, it is usual to assume that the 
energy dependence of the angular flux is separable. 
Further, for a system in thermal equilibrium, a good 
first approximation is to assume this energy depend­
ence is Maxwellian with some effective temperature T. 
With these assumptions the multi group parameters 
are given by 

Cij = IX; r dE r dE'I..(E' _ E)M(E', T), (A6) 
J.1Ei J.1E; 

(Ji = IXi r dEI.(E)M(E, T), (A 7) 
J.1E; 

1. = r dEM(E, T). 
IXi J.1E; 

(AS) 

The cross section I..(E' - E) must obey the detailed 
balance relation14 

I..(E' - E)M(E', T) = I..(E - E')M(E, T) (A9) 

It is possible to transform Eq. (2.1) into a form which 
has a purely symmetric transfer matrix and an 
ordered matrix. First, we construct a permutation 
matrix P, such that 

[Pllk = 1, [P]li = 0, i #: k, 

[P]2! = 1, [P]2i = 0, i #: I, 

[P]Nm = 1, [P]Ni = 0, i #: m. 

(B2) 

By multiplying Eq. (2.1) from the left by P, one 
obtains 

[w~ E + 1:']\jJ'(X, It) = D{A'D~f1 dlt\jJ'(x, It), ax -1 

where 

~'(x, It) = P~(x, It), 
1:' = P1:P-I, 

A' = PAP-I, 

D; = PDi P-1
, i = 1,2. 

(B3) 

(B4) 

Since P-1 = P, it can be shown by inspection that 
1:' is a diagonal matrix with ordered elements 

(BS) 

Furthermore, D~ and D~ are diagonal matrices with 
positive diagonal elements and A' is symmetric. 

or Now we define the diagonal matrices Dt and Dil 
(AlO) as 

Finally, defining the symmetric matrix A as 

[Al;; = IXj
1Cij' (All) 

the transfer matrix can be written in the special form 

C=AD, (AI2) 

where D is a diagonal matrix with elements IXi > 0. 

APPENDIX B. THE TRANSFER MATRIX 

In certain physical models, the transfer matrix 
may be written as C = D1AD2 , where D1 and D2 are 
diagonal matrices with strictly positive diagonal 
elements and A is a positive symmetric matrix. The 
elements of the 1: matrix generally will not be 
ordered, but will be arranged as 

(1k ~ (11 ~ ••• ~ (1m > 0, 1 ~ k, I, ... , m ~ N. 

(BI) 

14 M. M. R. Williams, The Slowing Down and Thermalization of 
Neutrons (North-Holland Publishing Co., Amsterdam, 1966). 

(B6) 

Multiplying Eq. (B3) from the left by DllDt, we have 

[ It ~ E + 1:']\jJ"(X, It) = A"f1 dlt~"(x, It), (B7) ax -1 

where 

\jJ"(x, It) = D1lDt\jJ"(x, It), 

A" = DtDtA'DtD[ = A". (BS) 

For the two-group model, there exists a transforma­
tion S which will symmetrize any strictly positive C 
matrix and leave 1: diagonal, namely, 

S- . _ (0 (C12)l) 

(C21)l ° (B9) 

On the other hand, if one or both off-diagonal ele­
ments are zero, the resulting multigroup equations 
can be solved consecutively by applying one-speed 
theory. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 10, NUMBER 12 DECEMBER 1969 

Substitution Group and the Stretched Isoscalar Factors 
for the Group R5 
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The phase relations for basis functions and Clebsch-Gordan coefficients of the representations of the 
group R5 under the elements of the substitution group are given. The stretched isoscaIar factors as well 
as the semistretched factors of the first kind are expressed in terms of the quantities of the theory of 
representations of SU2 • 

1. INTRODUCTION 

In contemporary theoretical and mathematical 
physics the theory of representations of semisimple 
Lie groups assumes ever greater importance. The 
simplest of these, SU2 , is of the first rank and has 
been investigated in detail. Much attention has also 
been paid to the representations of the groups of the 
second rank, SU3 and R5 • The Clebsch-Gordan 
coefficients of the representations of these groups are 
under intensive examination. For SU3 they have 
been examined in a more detailed way than those 
of R6 • 

The representations of R5 are considered in a 
review paper by Behrends et aU and in a paper of 
Hecht. 2 In the latter, expressions are given for the 
isoscalar factors (iJ.) of the Clebsch-Gordan coeffi­
cients when one of the representations is a funda­
mental, or the regular, one. In this paper we are going 
to find expression~ for more general i.f. However, 
we are limiting ourselves to particular types of them. 
These will be the stretched ones and one kind of 
semistretched i.f. 

For SU2 and SU3 the substitutions of the param­
eters characterizing the representations were very 
usefuI.3•4 •s These substitutions constitute the group 
isomorphous to the Weyl group of the same Lie group. 
In this paper we are going to find such a substitution 
group, the corresponding phase relations for the 
basis functions and its connection with the contra­
gredience operation for R5 • We give the phase 
relations for those Clebsch-Gordan coefficients which 
are to be used for the simplification of the calculations 
to be carried out in order to obtain the formulas for 
some of the i.f. 

1 R. E. Behrends, J. Dreitlein, C. Fronsdal, and W. Lee, Rev. 
Mod. Phys. 34, 1 (1962). 

• K. T. Hecht, Nuc\. Phys. 63, 177 (1965). 
• A. P. Jucys and A. A. Bandzaitis, The Theory of Angular 

Momentum in Quantum Mechanics ("Mintis," Vilnius, 1965), in 
Russian. 

• S. J. Ali§auskas, Z. D. Rudzikas, and A. P. Jucys, Dok\. Akad. 
Nauk-SSSR 172, 58 (1967). 

• S. J. AIi§auskas and A. P. Jucys, J. Math. Phys. 8, 2250 (1967). 

We use methods similar to those of Sharp and 
von Baeyers6 and of Alisauskas and Jucys7 for 
obtaining the recurrence formulas for the i.f. of the 
stretched Clebsch-Gordan coefficients. By the term 
"stretched" we understand such a coupling in which 
the highest weight of the resulting representation is 
equal to the sum of highest weights of the representa­
tions being coupled. The iJ. obtained from the 
stretched ones with the help of the elements of the 
substitution group are considered as stretched i.f. 

In obtaining the expression for semi stretched 
i.f. of the first kind (a concept to be introduced in 
Sec. 7), we use the formulas for those of the stretched 
ones. In all cases the i.f. are expressed in terms of 
quantities of the theory of representations of SU2 , 

which are examined in detail in Ref. 3. 

2. THE SUBSTITUTION GROUP OF THE 
GROUP R5 

The group Rs is isomorphous to the symplectic 
group Sp4 and has 10 infinitesimal operators. The 
notations and commutation relations are given in 
Ref. 2. We denote the representations by the symbol 
(KA) which corresponds to (JmAm) of Ref. 2; K 
and A may take on integer or half-integer values 
independently of one another. They are related to 
integers .1.1 and .1.2 by the expressions 

K = HAl + .1.2), A = !A2' (1) 

.1.1 and .1.2 being the coefficients in the expression for 
the dominant weight in terms of the fundamental 
dominant weights [formula (111.1) of Ref. 1]. 

For labeling the basis functions we shall use the 
reduction scheme 

Rs ~ SU2 X SU2 

rather than 
Rs ~ R4 ~ R3 ~ R2 , 

because in the last case we lose one weight component. 
We label the representations of the subgroups SU2 

8 R. T. Sharp and H. von Baeyers, J. Math. Phys. 7, 1105 (1966). 
7 S. J. AMauskas and A. P. Jucys, Preprint, 1968. 
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by I and J and their basis functions by M and N, 
respectively. The basis functions of the representa­
tion of R5 are 

I 
(KA) \ 
IMJN I· (2) 

They are invariant (up to a sign) under the substitu­
tions 

KA-+ -K - 2, A, 

-+K, -A - 1, 

-+A - t, K + t, 

(3a) 

(3b) 

(3c) 

and their compositions. All eight substitutions 
(including identity) constitute the substitution group 
isomorphous to the Weyl group of Rs. To these 
substitutions corresponds the similarity transforma­
tion of basis functions, i.e., the passage to the equiva­
lent representations. These similarity transformations 
reduce to the phase relations between the basis func­
tions of equivalent representations. These phase 
relations may be found by the use of the explicit 
expressions for the matrix elements of the infinitesimal 
operators of the group.2 It is easy to see that the phase 
factors depend on the parameters I, M, J, and N in 
the following way: 

I 
(KA) \ = (_1l-J +K - A I (A - t, K + t)\ (4a) 
IMJNI IMJN I 

= (_1)I+J-K-A I (-K - 2,A)\ (4b) 
IMJN I 

= (_1)2J I (-A - t, K + t)\ (4c) 
IMJN I 

= (_l)I+J-K+A! (K, -A - 1)\ (4d) 
IMJN I 

= (_1)2J I (A - t, -K - t» (4e) 
IMJN 

= (_1)I+J-K+A\ (-K - 2, -A - 1)\ 
IMJN I 

__ 1 2J \(-A-t,-K-t)\ 
- () IMJN I 

(4[) 

(4g) 

It must be noted that these phase relations enable 
us to compare two basis functions, one of which is 
defined by parameters in the normal region, the 
parameters of the second one being subjected to the 
transformation according to the elements of the sub­
stitution group. The parameters K and A are in­
cluded in the phase factors in order to make them 
real. The dependence of the phase factors on K and 

A is connected with the phase system of the repre­
sentations. 

Realizing the mirror-reflection symmetry transfor­
mation3 in SU2 , we obtain the phase relations 

I 
(KA» 
IMJN 

= (_It+M - K+A I (KA) \ (Sa) 
-I -1,MJNI 

= (_I)I+N-K+A! (KA) \ (5b) 
1M, -J -1, NI 

= (_I)M+N-K+A! (KA) \, (Sc) 
-I - 1, M, -J - 1, NI 

where the dependence of the phases on K and A is 
brought into accordance with the phase system of 
Ref. 2. It is appropriate to mention that, upon 
performing several substitutions in succession, the 
resultant factors are not simply the products of the 
individual phase factors. 

Of particular importance is the relation 

I 
( -K - 2, -A - 1> \ 

-I - 1, M, -J - 1, N/ 

= (_l)I+J+M+NI (KA». (6) 
IMJN 

Here the phase factor is equal to the phase factor of 
the contragredience transformation. For this reason 
we obtain the relation 

I 
(KA) V = ! (-K - 2, -A - 1) \ (7) 
IMJNI -I - 1, -M, -J - 1, -N/' 

in analogy with that for the representations of SUn 
(Ref. 5). The substitutions 

M,N-+-M, -N (8a) 

mean the inversion of the weight space and 

K, A,I,J-+ -K - 2, -A - 1, 

- I - 1, -J - 1 (8b) 

is to be interpreted as the reflection of the coordinate 
system of the weight space or that of tbe coordinates of 
commuting infinitesimal operators with respect to the 
rest ofthe whole space. This constitutes the generalized 
mirror reflection symmetry.3 

3. THE STRETCHED ISOSCALAR FACTORS 
OF SYMMETRIC REPRESENTATIONS 

The symmetric representations are (KO) and (AA). 
The first one we shall call the representation of sym­
metrized spinors and the second one that of sym­
metrized vectors. In both cases the parameters I and 
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J of the basis functions are linearly dependent. In 
the first case I + J = K, and in the second I = J ::;; A. 
The aim of this section is to find explicit expressions 
for the i.f. giving the coupling of two representations 
of the maximal highest weight. 

Gordan coefficients of the subgroups SU2 • The index 
ill labels the representations in the case of multiplicity. 
In this paper this index will not be needed. 

We use the method of Ref. 6 to obtain the recur­
rence formulas; it is based on the fact that the result 
of the coupling of three basis functions into a maximal 
one does not depend on the coupling scheme. The 
generalized Clebsch-Gordan coefficients must be 
equal to each other, independently of the coupling 
scheme. Both sides of the equality are to be multiplied 
by two Clebsch-Gordan coefficients of SUi of such a 
kind that subsequent summation with respect to 
parameters M and N leaves only isoscalar factors 
on the one side and the same number of i.f. and two 
recoupling matrices of SU2 on the other side. 

We denote the general Clebsch-Gordan coefficient 
of Rs by 

[ (K1A1) (K2A2) (KA)w] 
I1M1J1N1 12M2J2N2 IMJN 

= [(K1A1) (K2A2) (KA)w] [ 11/21 ] [ J1J2J2} 
I1J1 12J2 /J M1M2M N1N2N 

(9) 

The first factor of the right-hand side is the i.f., 
and the remaining two factors are the Clebsch-

For representations of symmetrized spinors one 
obtains the recurrence formula 

[ 
(K2 - t, 0) (to) 

I2 - t, K2 - 12 to 

(K20) ] [(K10) (K20) (K1 + K2, 0) ] 

12,K2-/2 11,K1-/1 12 ,K2-12 11+/2,K1+K2-11-12 

_ [(K10) (K2 - t, 0) (K1 + K2 - t, 0) J 
II' K1 - II 12 - t, K2 - 12 II + 12 - t, K1 + K2 - II - I 

[ 
(K1 + K2 - t,O) (to) (K1 + K2, 0) J 

X II + 12 - t, K1 + K2 - II - 12 to II + 12, K1 + K2 - II - I 

X (/1,12 - H(12)11 + 121 11/2 - t(11 + 12 - !)!I1 + 12)· (10) 

(Here one of two recoupling matrices of SU2 equals unity.) The parameters of the types I and J satisfy 
the relations I = II + 12 , J = J1 + J2 • Taking the expression for the i.f. containing the representation 
(t,0) from the table of Ref. 2 and then using the recurrence formulas of the type (10), one obtains the 
expression 

[ 
(K10) (K20) 

11,K1 -11 12,K2 -12 

(K1 + K 2 , 0) ] 

11 + 12, K1 + K2 - II - 12 

[
(2K1)! (2K2)! (2/1 + 212)! (2K1 + 2K2 - 211 - 2/2)!]! 

= (2K1 + 2K2)! (211)! (2K1 - 211)! (212)! (2K2 _ 212)! ' (11) 

which is normalized (equals unity when II = K1 and 12 = K2). 
For the i.f. coupling the representations of symmetrized vectors we obtain 

[
(AlAI) (A2A2) (AI + A2, Al + A 2)] 

1111 1212 II 

= (_1)lt+l2-I [ 2(211 + 1)(212 + 1)(4A1 + 1)! (4A2 + 1)! (2A1 + 2A2 -21)! (2A1 + 2A2 + 21 + 2)! ] 

(21 + 1)(4A1 + 4A2 + 1)! (2A1 - 211)! (2A1 + 211 + 2)! (2A2 - 212)! (21\2 + 2I2 + 2)! . 

Using the recurrence formula 
(12) 

[
(AlAI) (A2A2) (AI + A2, Al + A 2)J [(1\2 - t, A2 - t) (H) (A2A2)J 

1111 1212 II 1212 00 12I2 

= [(AlAI) (A2 - t, A2 - t) (AI + A2 - t, Al + A2 -t)] 
11/1 1212 II 

X [(AI + A2 - t, Al + A2 - t) (H) (AI + A2, Al + A2)J (13) 
II 00 II 
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(with recoupling matrices of SU2 equal to unity) and the recurrence formula obtained by transposition of 
AI' 11 , A2 , 12 , expression (12) is brought to the form in which 11 = A1 and 12 = A2 • Afterwards, we take 
the formula, analogous to (13), in which one of the basis functions of the representations (!, t> has 
i1 = i2 = t. These operations lead us to expression (12). 

It is more difficult to prove the expression 

[ 
(KO) <AA) 

K - J1 , J1 1212 
(K + A,A)J = (_l)l{+2Il-I-J[(AA) (KO) (K + A,A)] 

IJ 1212 K - J1> J1 IJ 

B[(K + A, A)IJ1'V(KIJ) [ 2(2/2 + 1)(2K)! (4A + 1)! J! 
= V(K - J u [2, I)V(J1/2J) (2A - 212)! (2A + 2/2 + 2)! . 

Here and in the following text we use the notation 

(14a) 

(14b) 

B[(KA lJJ = [(K + A-I - J)! (K + A - 1 + J + 1)! (K + A + 1 - J + 1)1 (K + A + 1+ J + 2)IJ1 
) (2A)! (2K + 1)1 (2K - 2A)! (2K + 2A + 2)! ' 

(1S) 

V(abc) = [(a + b - c)! (a - b + c)! (a + b + c + 1)IJ!, 
. (-a+b+c)! 

(16) 

In order to prove expression (14b), we first obtain a formula similar to (13), and with its help we express 
the i.f. (14b) through the one with A = 12 , Afterwards, in analogy to (10), we obtain the recurrence formula 

[ 
(KO) (AA) <K +IJA , A)J(211)(21 + 1)[(2K + 2A + 1)(2K + 4A + 1)]1 

K - J1 ,J1 AA 

diminishing the parameter K. 

= [(K - 1 + J)(K - J1 + A - 1)(1 + J - K + 1)(1 - K + J1 + A + 1) 

x (K + 2A - 1 - J)(2A + K - 1 + J + 1))1 

x [ (K - t, 0) (AA) (K + A - t, A)] 
K - J1 - t, J1 AA 1 + t, J 

+ (K + 1 + J + l)(K + 1 - J)(K - J1 - A + I)(K - J1 + A + I + 1) 

x (2A + K + I - J + 1)(2A + K + I + J + 2)]t 

x [ (K - t,O) (AA) (K + A - t, AI], 
K - J1 - t, J1 AA 1 - t, J 

(17) 

Formula (l7) resembles the recurrence formula (23.16) of Ref. 3 for the 6j coefficient of SU2 • Dis­
regarding the last two factors under the square roots in the terms on the right-hand side, we observe that (17) 
is satisfied by the stretched 6j coefficient 

(18) 

The remaining two factors give no complementary selection rules. This shows that the i.f. (14b) is pro­
portional to (18). To complete the demonstration of formula (l4b), several other recurrence formulas must 
be used until the maximal weights are obtained. 

4. THE STRETCHED ISOSCALAR FACTORS OF THE GENERAL FORM 

By the methods of Ref. 6 we are going to find the expression for general stretched iJ. of R". We couple 
basis functions of four symmetric representations by two different coupling schemes with the help of the 
formulas of Sec. 3 and the Clebsch-Gordan coefficients of SU 2' Then we compare the coefficients at the 
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functions with the same coupling scheme relative to subgroups SU2 • The result is 

[
(KlAl) (K2A2) (Kl + K2, Al + A 2)J [(Kl - AI' 0) (AlAI) (KlAl)J [<K2 - A2 , 0) (A2A2) (K2A2>J 

IlJl 12J2 IJ idl i{i{ IlJl i2j2 i~i~ 12J 2 

= [(Kl - AI' 0) (K2 - A 2 , 0) (Kl + K2 - Al - A 2 , O)J 

iljl i2j2 il + i 2 , jl + j2 

X I [(~~~l) (~~~2) (AI + AI2 ;I~l + A2)J 
I' 1111 12'2 

X [(Kl + K2 -. Al - A2, 0) (AI + A2, Al + A2) (Kl + K 2 , Al + A2)] 

i1 + i 2 • jl + j2 1'1' IJ 

x (i1ilil + i2)i{i~(I')I I iIi{(I1)i2i~(I2)I)(j1j2(j1 + j2)i{i~(I')J I j1i{(J1)j2i~(J2)J). (19) 

Here i l + j1 = K1 - Al and i2 + j2 = K2 - A2. Expressing the i.f. according to the formulas of Sec. 3 
and using the definition (27.4) of Ref. 3, we obtain the stretched 15j coefficient of the type {2,2}. Bisecting 
the diagrams of this coefficient by the methods of Ref. 3, we reduce it to a 9j coefficient because many of the 
triads are stretched. In this way we finally obtain the expression 

[
(K1A1) (K2A2) (K1 + K 2 , Al + A2)] 

I1J1 12J 2 IJ 
= (_1)[,+12-1 B[(KI + K2,Al +A2)IJ] 

B[(K1A1)I lJ dB[ (K2A 2)I 2J 2] 

x [(211 + 1)(211 + 1)(212 + 1)(2J2 + 1)(2K1 + 2K2 - 2A1 - 2A2 + I)!]! 
(2K1 - 2A1)! (2K2 - 2A2)! 

{

K1 - Al K2 - A2 Kl + K2 - Al - A2) 

X II 12 I . 

J1 J2 J 

(20) 

The stretched 9j coefficient may be expressed with the help of formula (25.20) of Ref. 3 or by the corre­
sponding formula given by Sharp.s Such an expression contains two summation parameters. In more special 
cases this 9j coefficient turns into a 6j coefficient (which contains one summation parameter only) or into a 
double stretched 9j coefficient (which contains no summation parameters at all). 

5. THE PHASE RELATIONS FOR THE ISOSCALAR FACTORS UNDER THE SUBSTITUTION GROUP 

We confine ourselves to giving the phase relations for the iJ. under three elements of the substitution group 
and for one substitution of parameters of the subgroups SU2 • These relations are 

[
(KA) (K'A') 

IJ I'J' 
(K + a,A + b)J 

I + IX, J + f3 
= ~ b~w'( _I)a+p-/a/-b[ (- K ;; 2, A) 

= I l5~w'( _l)a+p-a+/b/ [(Kl - A - 1) 
w' IJ 

(21a) 

(K'A') (-K - 2 - a, A + b)W'J 

/'J ' 1+ IX,J + f3 
(2Ib) 

(K'A') (K + a, -A - 1 - b)w'] 
I' J' I + IX, J + f3 

(21c) 

= I (jd ,( _ly-P+a+b+2A' [(A - t, K + t) (K'A') (A - t + b, K + t + a)w,] (2Id) 
w' ww IJ I' J' I + IX, J + f3 

= (_l)J'-a+a-b[ (KA) (K'A') (K + a, A + b)w J. (22) 
I, -J - 1 I' J' I + IX, -J - 1 - f3 

When multiple representations are labeled in a proper way, the 15;"" are diagonal. This will be discussed in 
our next paper. The dependence of the phase factors on the parameters characterizing the representations of 
Rs are coordinated with the phases of i.f. containing fundamental representations, as given in Ref. 2. 

8 R. T. Sharp, Nucl. Phys. A9S, 222 (1967). 
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From the expression (20), together with the phase 
relations (21), we obtain the iJ. having these resultant 
representations: 

(K1 + A2 , Al + K2), (Kl - K2, Al + A2), 

(Kl - K2, Al - A2), (Kl - A2 , Al + K2), 

(K1 - A2 , Al - K2), (Kl + K2, Al - A2), 

(K1 + A2 , Al - K2 ). (23) 

Whenever factorials of negative numbers appear, 
these are to be transformed by the methods given in 
Sec. 10 of Ref. 3. In some cases the 9j coefficient 
undergoes no change when its parameters are reflected 
in the ordinary way, according to formulas (24.19)­
(24.31) of Ref. 3. For several substitutions two of the 
parameters exceed in absolute value the sum of two 
other parameters of corresponding triads. These 9j 
coefficients we call nonstandard. However, they have 
definite values and may be calculated with the help 
of corresponding algebraic expressions. It must be 
emphasized that substitutions can be applied only in 

(K20) (Kl + K2 - A, A>] 
I2,K2-I2 1J 

those columns of i.f. in which the parameters I, J, K, 
and A are linearly independent. 

6. ISOSCALAR FACTORS COUPLING TWO 
REPRESENTATIONS OF SYMMETRIZED 

SPINORS 

By graphical methods1 it may be shown that 

(K10) X (K20) 

= ~ (K1 + Hm - n), K2 - t(m + n» (24) 
m20.n20 
m+ns2Ks 

when Kl ~ K2. 
Particular cases of (24) will be the representations 

(Kl + K2, 0), (Kl - K2, 0), and (KIK2)' The Lf. for 
the first case is given by formula (11), the second may 
be obtained easily from formula (A22) of Ref. 2 by 
permutation of parameters, and the third is obtained 
by applying relation (21d) to a particular case of (20) 
after performing a simple transformation according 
to the methods of Ref. 3. 

For a more general case we obtain 

= (_1)h+h-Z[(2K1 + I)! (2K2 + 1)! (2Kl + 2K2 - 4A + I)!]! 
(2I1)! (2Kl - 211)! (212)! (2K2 - 212)! 

{
II 12 I) 

X B[(KI + K2 - A, A)1J] Kl - 11 K2 - 12 J . (25) 

Kl K2 Kl + K2 - 2A 

In order to derive this formula, the representation (K20) is constructed from two representations. The 
resultant representation will be produced by coupling three representations. This may be done by the 
stretched Clebsch-Gordan coefficients. Then we take the scalar product of basis functions of initial and 
resultant representations which is proportional to the Clebsch-Gordan coefficient of R5 • After multiplica­
tion by Clebsch-Gordan coefficients of SU2 and summation with respect to parameters M and N, we obtain 
a relation, which,after substitution of the expression for the stretched i.f., resembles one of the expressions 
for the Clebsch-Gordan coefficient of SU2 • This last fact allows us to obtain Eq. (25). 

The most general case under consideration is 

(K20) (KA>] = ( _1)h+I2+J-K-A[ I J K - AJ 
12 , K2 - 12 1J II - 12 Kl - K2 - II + [2 Kl - K 

[ 
t(Kl + K2 - I - J) i(KI + K2 + I + J) + 1 K + A + 1J. 

X t(Kl + K2 + I - J) - II - 12 II + 12 + t(I - J - Kl - K2) 1- J 
(26) 

The derivation of Eq. (26) is similar to that for the 
preceding formula. The resultant representation may 
be expressed as (Kl + K2 - m - A, A) and con­
structed with the help of representations (KIO) , 
(K2 - lm, 0), and (tm,O) (where m = integer). 
Coupling the three representations to the resultant 
one, we obtain (26) in a way similiar to that described 
above. 

7. SEMISTRETCHED ISOSCALAR FACTORS 
OF THE FIRST KIND 

When the parameters of the representations satisfy 
the condition 

KI +.AI + K2 + A2 = K + A, (27) 

we call the corresponding multiplicity-free i.f. semi­
stretched of the first kind. I.f. of the second kind will 
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be those with 
Kl + K2 = K. (28) 

This term includes all i.f. obtained with the help of the substitution group. 
For the i.f. under consideration we obtain 

[
(K1A 1) (K2A2) 

I 1J 1 12J 2 

(K1 + K2 - tm, Al + A2 + tm)] 
IJ 

= ( _1)lt+Iz- I B[(K1 + K2 - tm, Al + A2 + tm)IJ] 
B[ (K1A1)1 1J l]B[ (K2A2)1 2J 2] 

X [(211 + 1)(211 + 1)(212 + 1)(2J2 + 1)(2K1 + 2K2 - 2A1 - 2A2 - 2m + l)!]i 
(2K1 - 2A1)! (2K2 - 2A2)! 

{

K1 - Al K2 - A2 K1 + K2 - Al - A2 - m} 
X 11 12 I . 

J1 J2 J 

(29) 

Here m is an integer. 
To derive Eq. (29) we use techniques similar to those 

used in obtaining (19). In the formula obtained in this 
way, which resembles Eq. (19), we substitute the 
expressions for the i.f. already obtained. The trans­
formation matrices involved are expressed in terms 
of 3nj coefficients. The resulting sum must be dealt 
with by the methods of Ref. 3 in order to obtain 
Eq. (29). 

It is easy to see that the preceding expressions for 

the iJ. are particular cases of Eq. (29). The only 
exception is formula (26). 

The elements of the substitution group bring us to 
another iJ. of the same kind (with different values 
of m) or to that obtained by transposition of the 
first and third columns of (17.22) of Ref. 2 with 
subsequent renumbering of parameters. Some of the 
elements of the substitution group transfer the 9j 
coefficient to the nonstandard form, as indicated in 
Sec. 5. 
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INTRODUCTION 

It was first observed by Koopman! that the motion 
of a classical mechanical system of point particles, 
regarded as a motion of its phase space, preserves the 
volume element of the phase space, and so induces 
a motion on the space of square-integrable functions 
which preserves the norm. Koopman showed that 
statistical properties of the motion of the phase space 
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were reflected in the spectral properties of the induced 
motion of the function space. Subsequent develop­
ments have established the fundamental importance 
of this observation. In particular, the study of the 
ergodic and steady-state properties of the system has 
found a natural expression within this framework 
and has yielded a considerable body of results. 

If the spectrum of the motion in the function space 
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be those with 
Kl + K2 = K. (28) 

This term includes all i.f. obtained with the help of the substitution group. 
For the i.f. under consideration we obtain 

[
(K1A 1) (K2A2) 

I 1J 1 12J 2 

(K1 + K2 - tm, Al + A2 + tm)] 
IJ 

= ( _1)lt+Iz- I B[(K1 + K2 - tm, Al + A2 + tm)IJ] 
B[ (K1A1)1 1J l]B[ (K2A2)1 2J 2] 

X [(211 + 1)(211 + 1)(212 + 1)(2J2 + 1)(2K1 + 2K2 - 2A1 - 2A2 - 2m + l)!]i 
(2K1 - 2A1)! (2K2 - 2A2)! 

{

K1 - Al K2 - A2 K1 + K2 - Al - A2 - m} 
X 11 12 I . 

J1 J2 J 

(29) 

Here m is an integer. 
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the system takes a particularly simple form. 2 It is 
therefore of interest to determine for which system 
the spectrum of the motion is absolutely continuous. 
We have already verified that this is the case for a one­
dimensional particle subject to a nonlinear restoring 
force. 2 In this note we show that this is also the case 
for a three-dimensional particle subject to a non­
linear central restoring force, by relating the spectrum 
to the fundamental periods of the motion. 

It follows that every absolute continuous initial 
distribution on the phase space of this system ap­
proaches a steady-state distribution in the far reaches 
of time, and that the entropy of the initial distribution 
ultimately increases to the entropy of the steady-state 
distribution. An extension of the same arguments to 
the analogous nobody problem shows that the same 
conclusion holds for a monatomic ideal gas enclosed 
in a spherical container. 

1. THE CENTRAL FORCE SYSTEM3 

For our canonical coordinates of the one-particle 
central force system, we shall take the spherical co­
ordinates (r, e, cp) of the particle position and the 
conjugate momenta (Pr' Po' p",), with 

dr 
Pr = m dt' 

2 dO 
Po = mr -, 

dt 

2 • 2 £j dcp 
P", = mr sm v dt ' 

(1.1) 

where m is the particle mass. In these coordinates the 
total energy of the particle is 

H = T + V, (1.2) 

where the kinetic energy T is given by 

T = (2m)-1(p: + p:/r2 + p;/r2 sin2 0), (1.3) 

and the potential energy V is a function of r alone. 
We shall assume throughout that V(r) is a differ­

entiable monotonic increasing function of r, defined 
for all r ~ 0, so that 

V'er) ~ 0, 0 < r < 00. (1.4) 

In this case, the particle is subject to the central 
restoring force - V'er) directed toward the origin. 
It is known that if the total energy E of the particle 
does not exceed the limiting value 

V(oo) = lim VCr) 
..... 00 

J R. T. Prosser, "An Example of Irreversibility," submitted to 
AnI. Math. Monthly. 

I The development in this section is orthodox and may be found 
in any standard text on mechanics; see, e.g., Ref. 4. 

of the potential, then the motion of the particle is 
bounded and multiply periodic, and thus may be 
compactly described in terms of the associated action 
and angle variables. We now proceed to exploit this 
knowledge directly. 

We first introduce Hamilton's principle function 
S(r, e, cp, t) for the problem. This function generates 
a canonical transformation of the coordinates such 
that the transformed coordinates are constants of the 
motion.4 It is obtained from the Hamilton-Jacobi 
equation 

(
OS)2 1 (OS)2 1 (OS)2 
or + ~ 00 + r2 sin2 

() ocp 

+ 2m( VCr) + ~~) = O. (1.5) 

If we assume for S the form 

S{r, 0, cp, t) = Sr{r) + SoCO) + S",{cp) + St(t), (1.6) 

then (I.5) separates into ordinary differential equa­
tions 

dS t = -E 
dt ' 

dS", 
-=a 
dcp "" 

(
dSO)2 a; 2 

do + sin2 0 = ao, 

(
dSr )2 + a: + 2m[V{r) _ EJ = 0, 
dr r2 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

which can be solved for the derivatives of S, giving 

dS t 
H = -- = +E, 

dt 

dS", 
P", = dcp = a"" 

dSo (2 a;)! 
Po = dO = ao - sin2 0 ' 

Pr = dSr = (2m[E _ VCr)] _ a=)!. 
dr r2 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

Of the three integration constants, E denotes the 
energy, a", the angular momentum about the polar 
axis (O = 0), and ao the magnitude of the resultant 
angular momentum.4 

An analysis of the motion now shows that, under 
our assumption (1.4) on V, the variables (r, e, cp) are 
all periodic variables whenever YeO) < E <V( (0). 

• H. Goldstein, Classical Mechanics (Addison-Wesley Pub!. Co., 
Inc .. Reading, Mass., 1950). 
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It follows that they may be compactly described in 
terms of the action variables (jr>je,jtp) and their 
conjugate angle variables (wr> We, wtp), defined as 
follows4 : 

j; = f p; dq; = f dS;, i = r, e, cp, (1.15) 

W. = as; 
• oj;' 

j = r, e, cp. (1.16) 

Here the integrals defining the j; are each extended 
over one period of the running variable, and hence 
are constants of the motion. The motions of the Wi 

are determined from 

dWi iJH -=-=')1. 
dt oji ., 

(1.17) 

where the ')Ii are also constants of the motion; hence 

(1.18) 

Thus the ')Ii are the frequencies of the angle variables 
and the P; are the initial values. 

Substituting from (1.12)-(1.14) in (1.15), we find 
that 

jtp = f atp dcp, (1.19) 

je = f (a: - a~/sin2 e)i de, (1.20) 

jr = f {2m[E - VCr)] - a;/r2}i dr. (1.21) 

The first and second of these integrals may be per­
formed explicitly (see Ref. 4), yielding 

(1.22) 

je = 27T(ae - atp). (1.23) 

The third depends on the form of V(r). If we solve 
(1.22) and (1.23) for atp and ae and substitute in 
(1.21), we find 

jr = f {2m[E - VCr)] - (je + jqY/47T2r2}i dr. 

(1.24) 

Finally, we introduce the new variables (j1,j2,ja) 
and their conjugates (Wl' W2' wa) via 

jl = jr + je + jtp' 

j2 = je + jtp' (1.25) 

and 

(1.26) 

Then (1.24) becomes 

j1 = f {2m[E - V(r)] - j~/47T2r2}i dr + j2' (1.27) 

From this equation we see that the total energy E, 
and hence the Hamiltonian, depends only onj1 andj2 
and is independent of ja and the Wi' It follows that 
the ji and Ws are constants of the motion, while WI 

and W2 depend on time through (1.18) with the 
frequencies ')Ii given by (1.17). 

Thus we have obtained a set of canonical variables 
whose dependence on time is particularly simple. It 
can be shown that each has a simple interpretation in 
terms of the motion of the original particle. Specifi­
cally, 27Tj2 is the magnitude of the total angular 
momentum, and 27Tja is its component along the polar 
axis. Apart from additive constants, 27TW2 is the angle 
of the perihelion (rmin) from the line of nodes, and 
27TWa is the angle from the line of nodes to the axis 
cp = O. Finally, 27Tjl is proportional to the area 
enclosed by the orbit in the (r, Pr) plane, and, apart 
from an additive constant, 27TWl is the angular mean 
anomaly of this orbit.4•5 

From these identifications, it is easy to see that the 
variables j; and Wi are independent and assume the 
following ranges of values: 

o ~jl < 00, 

o ~j2 < 00, 

-j2 ~js ~ +j2' 

(1.28) 

(1.29) 

Since the original position and momentum variables 
are periodic functions of the angle variables, however, 
it suffices to restrict the ranges of the W; to 

(1.30) 

It is now quite straightforward to verify that every 
point in the phase space admits a unique description 
in terms of the action and angle variables lying 
within the ranges (1.28) and (1.30). Moreover, the 
motion of this point in time is completely described 
by the equations of motion 

j; = rt.;, (1.31) 

Wi = ')lit + Pi' mod 1. (1.32) 

Here, the rt.i and Pi are the initial values of the j; and 
Wi' According to (1.27), the Hamiltonian H may be 
expressed in terms of jl and j2 alone. It follows from 
(1.17) that the same is true of the frequencies ')I;, with 
')Ia = o. 

• M. Born. The Mechanics of the Atom (Frederick Ungar Publ. 
Co., New York, 1960). 
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Finally, since the action and angle variables are 
canonically conjugate, the differential form dT = 
djl dj2 dja dWl dW2 dWa is invariant under the motion, 
and hence is related to the volume element dV by the 
formula 

dV= pdT, (1.33) 

where the weight function p is a constant of the 
motion. 

The form of p may be determined as follows. From 
(1.15) we see thatj, is simply the area enclosed by the 
orbit in the (r, p,) plane, and Wr is the fraction of this 
area mapped out in time I. It follows that the change 
in area induced by a change in j, and Wr is simply 
dA = dj, dw,., from which we conclude that 

dpr dr = dj,. dw,.. (1.34) 

A quite similar argument shows that the same relations 
hold for the (0, Po) plane. In the (q;, p",) plane, the 
orbit is periodic rather than closed, but the same 
argument applies. Combining these results, we find 
that 

dpr db db dr dO dq; = dj, djo dj", dw, dwo dw",. (1.35) 

Since the Jacobian of the transformation (1.25)­
(1.26) is identically unity, we see finally that the weight 
function p is identically unity, and 

dT = dV. (1.36) 

2. THE SPECTRUM OF THE MOTION 

We now turn to our analysis of the spectrum of the 
motion. 

If P is any point in the phase space, then the motion 
of the system in time may be completely described as 
a motion of P through the phase space. If P is given 
in terms of the action-angle coordinates, then its 
dependence on time may be expressed in terms of the 
transformation Tt : P - Pt , where 

TtP = Pt = P(j, vt + ~). (2.1) 

Now let Je denote the space of all complex-valued 
functions defined on the phase space and square­
integrable with respect to the volume element dV = 
dT. Then Je becomes a Hilbert space under the inner 
product 

(j, g) = f f f(j, w)g(j, w) dw dj. (2.2) 

The motion Tt of the phase space induces a motion 
Ut of the function space according to the formula 

(Utf)(P) = It(P) = I(P -t) = l(j, -vI + ~). (2.3) 

Since Tt preserves the volume element of the phase 
space, Ut preserves the inner product of Je. It follows 

that Ut is a unitary operator on Je which may be 
expressed in the form 

Ut = exp (-iXI), (2.4) 

where X is the self-adjoint generator with the property 

iXf= ~1. 
dt 

(2.5) 

To determine X, recall that the motion of It in time 
is given by 

~ = {H,f}, (2.6) 

where {, } is the Poisson bracket. In terms of the 
action-angle variables, (2.6) becomes 

df = ± (O~ of _ oH O~). (2.7) 
dt i=) Oh ow, OW,Oh 

Since H depends only on jl and j2' this expression 
reduces to 

df = oH of + oH Of 
dt Ojl OWl Oj2 OW2 

of of = '11)- + '112-, (2.8) 
OWl OW2 

Comparing (2.5) and (2.8), we find that X is given by 

X = ~('IIl ~ + '112 Of), (2.9) 
I OWl OW2 

for all differentiable functions I in Je. 
Now let Jem,n be the subspace of Je consisting of 

all functions of the particular form 

j(j, w) = j(j, wa) exp [27Ti(mwl + nw2)], (2.10) 

for fixed integers m and n and arbitrary functions 
j(j, wa). From (2.9) and (2.10) we find 

(2.11) 

On the subspace Jem,n' then, X acts like multiplication 
by the function 27T(m'll1 + nv2)· Since 'Ill and '112 depend 
only on jl and jz, it follows that X leaves this subspace 
invariant, and on this subspace the spectrum of X 
consists of all real numbers of the form 27T(mvl + n'll2)' 

A standard Fourier analysis now shows that these 
subspaces are pairwise orthogonal in Je, and together 
they span Je. We conclude that the spectrum of X 
consists of all real numbers of the form 27T(mvl + nv2), 

for arbitrary integers m and n and all admissible 
frequencies 'Ill and V2 • 

Now let f and g be any two functions in Je, and 
consider the inner product (U(t)j, g). The asymptotic 
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behavior of this inner product as t ---+ ± 00 is deter­
mined by the spectrum of X. In fact, we have 

(U(t)I, g) = "2 (U(t)lmn, gmn), (2.12) 
m.n 

where Imn and grnn are the components of I and gin 
.lem •n • But 

(U(t)lmn, gmn) 

= ffeXl' [-21Ti(mvl + nV2)tJ/mn(j, w)gmn(j, w) dw dj. 

(2.13) 

Hence the time dependence of (U(t)!, g) devolves 
upon the behavior of the exponent 21Ti(mvl + nv2)t. 

If mV1 + nV2 == 0, then X vanishes identically on 
.lem • n' and (2.13) is independent of t. In this case we 
have 

lim (U(t)lmn, gmn) = Umn' gmn). (2.14) 
t-+±oo 

If mVI + nV2 ¢. 0, then X does not vanish identi­
cally on .lem •n • In this case we introduce a change of 
variables in the (jl ,j2) plane: 

With this change of variables, (2.13) becomes 

(UCt) 1 mn' gmn) 

= ffe-2u;~Ymn(j, w)gmn(j, W);-l(j) dw d~ dj2 dja, 

(2.16) 
where J is the Jacobiari 

J(' .)- a(~,j2) =o~ (2.17) 
11,]2 -a(' .) o· 11,]2 '11 

In this form we see that U(t) acts on .lem •n like 
multiplication by e-2uigt, with a spectral measure of 
the form J-I(j) dw d~ dj2 dja. If the Jacobian J(h ,N 
is continuous and vanishes only on a set of Lebesgue 
measure zero in the (jl,j2) plane, then the spectral 
measure of U(t) is absolutely continuous with respect 
to Lebesgue measure. It now follows from the 
familiar Riemann-Lebesgue lemma that the right­
hand side of (2.16) vanishes asymptotically for large 
times. Thus we have 

lim (U(t)fmn, gmn) = O. (2.18) 
t--+±oo 

If the Jacobian JVl,j2) vanishes identically in the 
VI ,j2) plane, then we redefine the change of variables 
(2.15) so that the roles of jl and j2 are interchanged: 

With this change of variables, (2.16) and (2.17) are 
replaced by similar formulas with jl and j2 inter­
changed. In particular, 

J(' .) = aUI, ~) = o~ (2.20) 
11,12 a(" ) 0" 11,]2 '12 

If this Jacobian is continuous and vanishes only 
on a set of Lebesgue measure zero in the (j1,j2) 
plane, then the preceding analysis leads again to 
(2.18). 

If both Jacobians a~jaA and a~jaj2 vanish identi­
cally in the (j1,j2) plane, then ~ = mVi + nV2 is 
actually independent of jl and j2' Since Vi = OEjOji' 
it follows in this case that 

o2E a2E 
m-+n--=O 

aj~ aj1aj2 ' 

a2E a2E 
m-- + n- = O. (2.21) 

aj2aj1 aj~ 

In this case, then, E as a function of j1 and h must 
satisfy (2.21). If m, n :;6 0, this means that E = 
aj1 + bj2 + c for suitable constants a, b, and c. If 
m = 0, then E = Pl(jI) + bj2 + c, while if n = 0, 
E = ah + P2(h) + c, for suitable functions PI and 
P2' If m = n = 0, then ~ == 0, and X vanishes on 
.lem•n • 

We conclude from this analysis that if m :;6 ° and 
a~jajl = a~/aj2 = 0, then E depends linearly on 
jl' and VI is independent of jl' In particular, this 
remains true if we put j2 = 0. But if j2 = 0, then the 
angular momentum vanishes, and the motion reduces 
to that of a simple oscillator of constant frequency. 
It has been shown by Levin and Shatz6 that such an 
oscillator must be harmonic, i.e., that we must have 
VCr) = kr2. In this case it is well known that E = 
ajI' and VI = const, '112 = 0. 

If m = ° but n :;6 0, and a~/ajl = a~/aj2 = 0, then 
E depends linearly on j2' and '112 is independent of j2 . 
In particular, this remains true if we put j2 = 0. But 
ifj2 = 0, then the angular momentum again vanishes, 
and the motion again reduces to that of a simple 
oscillator. In this case there can be no precession, 
and we conclude that '112 == 0. Since m = 0, it follows 
that ~ == 0, and X vanishes identically on .lem•n • 

Summarizing briefly, we have shown that if either 
a~/aji or a~/aj2 vanishes only on a set of Lebesgue 
measure zero in the Vl,j2) plane, then (U(t)lmn, 
gmn) ---+ ° as t ---+ ± 00. If both a~/aji and a~/ah 
vanish identically in the Vl,j2) plane, then, with one 
exception, ~ == 0, and (U(t)!mn, gmn) ---+ (fmn' gmn) 
as t ---+ ± 00. The single exception is the case of simple 

• J. J. Levin and S. S. Shatz, J. Math. Anal. Appl. 7, 284 (1963). 
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harmonic oscillator, where VCr) = kr2, and VI = 
(27r/mk)!, V2 = O. In this case (U(t)!mn,gmn)-­
(j mn' g mn) as t -- ± 00 if m = 0, but behaves like 
exp (27rimvlt) if m -:;6 O. 

We have not yet exhausted all possibilities. It may 
happen that both O~/Ojl and O~/Oj2 vanish on a set 
whose Lebesgue measure differs from zero, but do 
not vanish identically. In this case we must divide 
the 01 ,j2) plane up into measurable subsets, such that 
on each subset the Jacobians o~/oh either vanish only 
on a subset of measure zero or else vanish identically. 
The preceding analysis can then be applied separately 
to each subset. In the general case we cannot put 
j2 = 0 in each subset, and the analysis becomes 
quite complicated. 

We notice, however, that if we assume that the 
potential V(r) is an analytic function of r, then it 
follows that E(jl' j2) is an analytic function of both 
jl and j2' In fact, the relation (1.27) defining jl in 
terms of E and h can then be rewritten as a contour 
integral in the complex r plane: 

jl = i {2m[E - VCr)] - ji/47r2r2}! dr, (2.22) 

where the closed contour r surrounds the interval 
on the positive r axis on which the integrand is real 
(see Ref. 4, p. 302). If the potential is analytic, then 
the integrand is analytic on this contour, and the 
integral defines jl as an analytic function of E and j2 . 
It follows that E may be expressed as a (locally) 
analytic function of jl and j2' (It is obvious from the 
physical interpretation of these variables that E can 
have no singularities in the quadrant jl ,j2 > 0.) 

If E is a (locally) analytic function of jl and j2' then 
so is ~,and hence so are O~/Ojl and O~/Oj2' It follows 
that O~/Ojl either vanishes on a set of measure zero, 
or else vanishes identically, and similarly for o~/ Oj2' 
Hence, if the potential VCr) is an analytic function of 
r, then our analysis is complete, and, except for the 
harmonic oscillator, either (2.14) or (2.18) holds. 
Combining (2.12), (2.14), and (2.18), we can now 
draw the following conclusion: 

Theorem: If VCr) is an analytic function of r with 
V'er) ~ ° and VIII(r) 1= 0, ° < r < 00, then 

lim (U(t)!, g) = (P!, g), (2.23) 
t-+±oo 

where P is the projection on the subspace of Je con­
sisting of constants of the motion. 

Finally, we note that if V2 ¢ 0, then the only con­
stants of the motion lie in the subspace Jeoo , and so 

Pf = foo· The components fmn of f are determined 
from the formula 

!mn(j, wa) 

= f1j(j, w) exp [-27ri(mwl + nw2)] dWl dw2. 

(2.24) 
In particular, we have 

P! = !oo = 111j (j, w) dWI dW2, (2.25) 

i.e., Pfis the average value off taken over one period 
of each of the angle variables WI and W 2 • If V2 == 0, 
however, then the constants of the motion all lie in 
the subspaces JeO,n' and Pf = ~nfon' In this case we 
have 

Pf = ~ fOn = [j(j, w) dw1 • 
n )0 

(2.26) 

From (2.20) it follows easily that every absolutely 
continuous initial probability distribution p on the 
system approaches a steady-state distribution as 
t -- ± 00, in the sense that 

lim f!pt dV =f!p dV, 
t-+±oo 

(2.27) 

for each bounded measurable function! on the phase 
space. Here p is given by 

(2.28) 

For details and discussion we refer to Ref. 2. 
In the special case of the Kepler problem, VCr) = 

k,-2 and E = - 27r2mk2U;. Hence, VI = 47r2mk2/R and 
V 2 == 0. It follows that the spectrum of the generator 
X consists of all real numbers, and the spectral 
measure is absolutely continuous with respect to 
Lebesgue measure, the weighting factor being a 
multiple of 

OVI = 127r2mk2 

Ojl jt 
In particular, the spectrum of the generator X does 
not approximate the spectrum of the generator of 
the associated quantum mechanical problem, which 
can be cast in the same form, but with a weighting 
factor which is a multiple of 

00 2 2 k2 

! 7r .~ (j(jl - nk). 
n=O 11 

For this reason, it appears unlikely that the classical 
generator X can be used to describe the motion of 
the quantum-mechanical problem. 



                                                                                                                                    

SPECTRAL ANALYSIS OF CLASSICAL CENTRAL FORCE MOTION 2239 

3. AN APPLICATION 

We shall now apply the results of the preceding 
section to obtain a statistical description of the 
behavior of a monatomic ideal gas enclosed in a 
spherical container (see Ref. 2). 

We shall take as our model the system consisting of 
n point particles all lying inside a spherical region of 
E3 centered at the origin. We take the spherical 
coordinates and their conjugate momenta of each 
particle as canonical coordinates, and for the 
Hamiltonian of the system we adopt the function 

H= T+ V, (3.1) 

with the kinetic energy T given by 

(3.2) 

where Ti is the kinetic energy (1.3) of the ith particle, 
and the potential energy V is given by 

n 

V = I Veri)' (3.3) 
i=l 

with r i the radial position of the ith particle. Here 
VCr) is a potential function describing the effects of 
the walls of the container. We shall take for VCr) 
any function which satisfies the conditions of Sec. 2 
and is small in the interior of the container but large 
near the walls. A possible example is 

(3.4) 

with 0 < c « 1. 
It follows from (3.3) that the only forces acting on 

the particles are those due to the presence of the walls 
of the container. Because of the special form of (3.3), 
it follows that the Hamiltonian may be expressed as 
the sum of terms of the form (1.2), and hence that 
the motion of the phase space E6n may be expressed as 
a product of the motions of the n single-particle phase 
spaces E6 , each of which has the form described in 
Sec.2. 

It follows that the motion induced on the function 
space Je = L2(E6n) may also be expressed as a product 

of the form 

(3.5) 

where each generator Xi has the form (2.11). The 
analysis of Sec. 2 leads again to the conclusion that 

lim (U(t)j, g) = (Pj, g). (3.6) 
t-+±oo 

It follows that if p is any probability distribution on 
E6n , then 

lim Igpt dV =Igp dV, (3.7) 
t-+±oo 

where g is any bounded measurable function on E6n , 

and p = Pp • 

The computation of p proceeds as follows: First we 
observe that the volume element in each single­
particle phase space may be expressed in terms of the 
energy and angular momentum variables: 

dV = dWl dW2 dWa dj1 dj2 dja 

= dw dw dw aj1 dE aj2 dL aja dL 
1 2 a aE aL aLa a 

= dp, dE dL dLa, 
where 

dp, = (1/4172')11) dw. 

Hence, in terms of these variables we have 

p(E1," " En, L1,"', Ln , LIs,"', Lns) 

(3.8) 

(3.9) 

= pITdp,;= pIT-
2
-dw;. (3.10) I n I n 1 

i=l i=1 417 ')I i1 

If the initial distribution depends on the momenta 
only through the total energy E, then the same is 
true of the steady-state distribution, and (3.10) 
reduces to 

peE) = r p d"2:. (3.11) 
Jr.(E) Igrad EI ' 

where "2:.(E) is the hypersurface of total energy E in 
the system phase space and d"2:. its area element. In 
this case, then, the time average of the initial distribu­
tion of the system is equal to its space average, even 
though the system is not ergodic (see Ref. 2). 
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The Feynman path-integral formulation of nonrelativistic quantum mechanics is applied to scattering 
theory. A particularly appealing result of Feynman's is a variational upper bound (VUB) on the ground­
state energy, with the bound expressed in terms of path integrals containing a trial functional S. When S 
is of the standard form - S {(KE) + V} dt/h, with KE the kinetic energy and Va trial potential, the bound 
reduces to the Rayleigh-Ritz result. Since S need not be of that form, Feynman's result has interesting new 
possibilities. For central potentials, we extend Feynman's analysis to the subspace Je(L) of states of a 
given angular momentum L, obtaining a VUB on the energy of the lowest-energy bound state within 
Je(L). By exploiting the analogy between the lowest-energy bound state and the zero-energy scattering state 
in the no-bound state case, we obtain a VUB on A L , the parameter which characterizes low-energy 
scattering in Je(L). The bound on AL is expressed in terms of modified path integrals containing a trial 
functional S L, and it reduces to the usual result if and only if S L is of the standard form - S {(KEh + 
V} dt/h, where (KEh is the kinetic energy corresponding to motion with fixed angular momentum 
{L(L + l)h2}t. The bound therefore contains new features. Finally, a similar but much simpler bound on 
AL is derived by using the regularization Tr (e-PH L - e-PH LO) of the divergent function Tr e-PH L, with Tr 
the trace, Hl the (reduced) free-particle Hamiltonian in Jew, and HL = Hl + V. 

1. INTRODUCTION 

The Feynman formulation of nonrelativistic quan­
tum mechanics is based on a representation of the 
propagator K as a path integral,! which involves the 
evaluation of the classical action 

A = J t dt, 

where t is the Lagrangian. Using the notation 
S d(paths) to symbolize integration over paths, we have 
for K the tepresentation 

K = J d(paths)eiA
/
Ii

• 

Since the phase of the contribution to K from a given 
path is proportional to the value of the action on that 
path, contributions from neighboring paths will 
cancel as Ii approaches zero, except in the vicinity of 
that path-there may be more than one-for which 
the action is stationary. In this limit, then, the only 
important path is the one which satisfies Hamilton's 
principle r'JA = 0 and which is therefore thl! classical 
path. 

• The work reported in this article was supported by the U.S. 
Office of Naval Research under Contract NOOOI4-67-A-0467-0007, 
and the U.S. Army Research Office under Contract DA-ARO-D-
31-124-G989. 

t A very preliminary version of this report appears in Abstracts 
of the Proceedings of the Fifth International Conference on the PhYSics 
of Electronic and Atomic Collisions, Leningrad, July 1967, I. P. Flaks, 
Ed. (Nauka. Leningrad, 1967), p. 31. 

t Submitted by D. Gelman in partial fulfillment of the require­
ments for the degree of Doctor of Philosophy at New York Uni­
versity. 

1 R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948). 

Although path integrals provide an exceedingly 
elegant formulation of quantum mechanics-which is 
equivalent to the more conventional formulations, but 
which exhibits most clearly the reduction of quantum 
to classical mechanics in the limit of vanishing Ii-and 
although Feynman's original investigations have 
stimulated much further work with path integrals ,2 

their possible application to scattering theory appears 
to have received little attention. It has been suggested 
that in problems such as the excitation of hydrogen by 
a high-energy proton, where a classical treatment of 
the motion of the protons provides a good approxi­
mation, path integrals should be useful in obtaining 
higher-order corrections.3 This will not be considered 
here, however. 

For reasons to be noted shortly, we propose, 
instead, to study path integrals in connection with the 
development of variational bounds in scattering 
theory. Since useful bounds are normally much more 
readily obtainable on real than on complex entities, 
particularly if the real entities are nonnegative, it is 
natural to work with the positive-definite density 
matrix p rather than with the complex propagator K. 
A bound on p is an intermediate step which enables us 
to bound quantities (such as scattering lengths) which 
can assume negative as well as positive values. The 
functions K and p are intimately related, involving a 
change from real to imaginary time.4 For a spinless 

2 See S. G. Brush, Rev. Mod. Phys. 33, 79 (1961) for many 
references. 

3 P. Pechukas and J. C. Light, J. Chern. Phys. 44, 3897 (1966). 
4 R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path 

Integrals (McGraw-Hill Book Co., New York, 1965), Chap. 10. 
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particle in a central potential VCr), p is given by 

p = p(r", r'; (J) = (r"l e-PH Ir'), (1.1) 

where the Hamiltonian H is 

H = HO + VCr), HO == (-1i2j2m)'\l2. (1.2) 

(K is the coordinate representation of the time 
evolution operator e-iTH/1i.) The superscript zero, 
when not in parentheses, is used throughout the paper 
to identify quantities associated with the free-particle 
system. The parameter (l will normally be taken to be 
TIIi, with T a time interval, as this interpretation is 
more appropriate in connection with the path­
integral representation of p than that involving the 
temperature. 

For p Feynman obtained the path-integral repre­
sentation4 

p(r", r'; Tjli) = l~"Dr(t)eS, (1.3) 

where f~: Dr(t) symbolizes integration over three­
dimensional paths ret) from the initial space-time 
point x' == (r', t') to the final space-time point 
x" == (r", t"), where S, the analog of the action in the 
path-integral representation of the propagator, is 
given by 

1 it" (d 2 } S = - - dt{m.-!) + VCr) 
Ii t' 2 dt 

(1.4) 

and where 

t" - t' == T = {lli. (1.5) 

By introducing a trial functional S, Feynman was able 
to obtain a variational lower bound (VLB) pF on p, 
which he then used to develop a very interesti~g varia­
tional upper bound (VUB) on the ground-state energy.5 
(The dot beneath a symbol always denotes a VLB on 
that symbol.) Thus, assuming that at least one bound 
state exists, it follows from the bilinear eigenfunction 
expansion of p that p is dominated by the ground­
state contribution when {l is very large, i.e., 

p(r", r'; (l) -+ 'lJ!o(r'}lpt(r')e-PEo, {l -+ 00, 

where 'lJ!0 and Eo ( < 0) denote, respectively, the wave­
function and energy of the ground state. Expressing 
Eo in terms of p, we have 

Eo = -limp-lin p == Eo(p), (1.6) 
P-+ 00 

Since Eo is evidently a monotonic decreasing function 

• R. P. Feynman, Phys. Rev. 97, 660 (1955). 

of p, we have 

p ;;::: ~F => Eo(p) S Eo(~F), 

i.e., Eo(pF) is obviously a VUB on Eo. [Clearly, if any 
quantity' Q is a monotonic decreasing (increasing) 
function of p, then Q(pF) is a VUB (VLB) on Q.] 
When the trial functiolllil S is of the (standard) form 

1 it" (d 2 } S = - - dt{!!:!....!) + V(r) , 
Ii t' 2 dt 

(1.7) 

with V(r) a trial potential having at least one bound 
state, Eo(pF) generates the usual Rayleigh-Ritz VUB, 
i.e., we obtain 

Eo sf dript(r)Hipo(r) , 

where ipo is the ground-state wavefunction of the trial 
Hamiltonian n = HO + V(r). However, S need not 
be of the standard form, and Feynman's result, there­
fore, contains some interesting new possibilities. That 
this additional freedom is of more than just academic 
interest can be inferred from the fact that the results 
achieved in the polaron problem,5 with S not of the 
standard form, were for a time superior to those 
obtained by more conventional methods. 

If the particle cannot be bound to the potential, 
the lowest available energy is at the bottom of the 
continuous spectrum, at zero energy. The zero-energy 
scattering state for the no-bound state case therefore 
plays a role very similar to that of the lowest-energy 
bound state when at least one bound state exists. This 
analogy has previously been exploited within the 
context of the conventional formulation of quantum 
mechanics to obtain a VUB on the scattering length 
Ao.6 It can also be exploited within the context of the 
Feynman formulation of quantum mechanics to 
obtain a VUB on Ao in terms of path integrals con­
taining a trial functional S. Since a VUB on Ao is the 
scattering theory analog of the Rayleigh-Ritz result, 
the development of this bound is a natural starting 
point for the present investigation. 

In the remainder of this section, we sketch the 
contents of this article. In the absence of bound 
states, the bilinear form of p in the limit of large {l is 
dominated by the contribution from the continuum 
states in the neighborhood of zero energy. Byexamin­
ing the form of this contribution at large distances, we 
obtain Ao as a monotonic decreasing function of p. 
Feynman's VLB on p then generates a VUB on Ao. 
When the trial functional S is of the standard form 
(1.7), this VUB on Ao reduces to the usual one; since 

• L. Spruch and L. Rosenberg, Phys. Rev. 116, 1034 (1959). 
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S is not required to be of the standard form, the 
bound has new features. (These new features are 
presumably of primarily academic interest when 
dealing with simple scattering, since the effort required 
to evaluate the necessary path integrals would un­
doubtedly be more profitably spent improving the 
trial function in the usual bound. The path-integral 
approach may nevertheless provide some new insights 
into scattering, and, as has already been noted, 
should be significant in the treatment of some com­
pound scattering problems.) 

The density matrix P is defined in the full space. 
The analog of P within the subspace Je(L) of states 
of angular momentum L is the function 

PL(r", r'; {J) = (r"l e-PHL Ir') 

where 

= 21Tr"r'L:d;PL(;)p(r", r'; {J), (1.8) 

I: _ A" A' c; = r . r, 

HL = H~ + VCr), 

(1.9) 

(1.10) 

(1.11) 

and where the second expression for PL follows from 
the angular-momentum decomposition 

For PL we obtain the (modified) path-integral repre­
sentation 

(1.13) 

where S~~ dr(t) symbolizes integration over one­
dimensional positive-valued paths ret) from y' == 
(r', t f

) to y" == (r", t") and where S L, as would be 
expected, is given by 

1 It" {m(dr)2 L(L + 1)/i
2 

} S L = - - dt - - + + VCr) . 
/i t' 2 dt 2mr 2 

(1.14) 

This representation has previously been given, for the 
case V = 0, by Edwards and Gulyaev.7 Introducing a 
trial functional S L and essentially duplicating Feyn­
man's derivation of f!F, we develop the VLB f!f on 
PL' If at least one bound state of angular momentum 
L exists, then, by arguments identical to those leading 

1 S. F. Edwards and Y. V. Gulyaev, Proc. Roy. Soc. (London) 
Al79, 229 (1964). 

to Eq. (1.6), we find that 

E~L) = -lim{J-lln PL = EO(PL), 
P-+ r:t) 

where EciL ) ( < 0) is the energy of the lowest-energy 
bound state of angular momentum L [and EJO) == Eo]. 
It immediately follows that Eo(Fi) is a VUB on EciL ). 

This represents a slight extension of Feynman's 
result.6 

By exploiting within Jew the analogy between the 
lowest-energy bound state when at least one bound 
state exists and the zero-energy scattering state in the 
no-bound state case, we obtain a VUB on AL in terms 
of (modified) path integrals containing a trial func­
tional S L' [The parameter A L characterizes very-Iow­
energy scattering in Jew, the threshold-energy 
dependence of the Lth-partial cross section (JL being 
given by 

O'L -- 41T(2L + l)Aik4L, k -- 0, 

where k is the wavenumber.] When SL is of the 
(standard) form 

SL = _1 t"dt{!?!(dr)2 + L(L + 1)/i
2 
+ VCr)} 

Ii Jt' 2 dt 2mr2 
' 

(1.15) 

with VCr) a trial potential which cannot support a 
bound state of angular momentum L, the VUB on 
AL reduces to the usual result6

; since SL need not be 
of the standard form, the bound has new features. It 
should be possible to relax the requirement that the 
trial potential be unable to support a bound state 
within Jew because the usual result does not impose 
this requirement, but this will not be considered here. 

The partition function 

Tr e-PH == f drp(r, r; {J) 

for a system in which all states are bound states is 
given by 

Tr e-PH = ~ e-PEn, 
n 

where Tr denotes the trace and where the sum extends 
over all states. Using an approach based on the 
partition function rather than on P, Feynman ob­
tained a slightly different VUB on the ground-state 
energy.s For scattering systems, however, the partition 
function is infinite, since the scattering wavefunctions 
are unnormalizable. For the same reason, this is also 
true for the quantity 

Tr e-PHL == LoodrPL(r, r; (J), (1.16) 

8 Ref. 4, Chap. 11, p. 303. 
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the analog of the partition function within Je(L). By 
first subtracting from PL its free-particle counterpart 
p1 and then integrating, however, one obtains the 
finite quantity 

ZL«(3) == Tr (e-PHL - e-PHL"). (1.17) 

Wi th an approach based on Z L rather than on P L, we 
obtain a slightly different, but very much simpler, 
VUB on A L . 

The analysis is confined to the establishment of 
formal variational (upper) bounds on AL for the 
system consisting of a nonrelativistic, spinless particle 
of mass m moving in a short-range, central potential 
V(r) which cannot support a bound state of angular 
momentum L. There is not the slightest pretense of 
mathematical rigor. The procedure is to develop 
VLB's on p, PL' and ZL' thereby reducing the problem 
to that of expressing AL as a monotonic (decreasing) 
function of these. We begin with this latter aspect, 
developing in Sec. 2 appropriate expressions for Ao in 
terms of p and for AL in terms of PL and ZL' In Sec. 3, 
after briefly reviewing the salient features of both the 
path-integral representation of P and the procedure 
whereby Feynman bounded p, we derive the analogous 
representation of, and bound on, PL' We also 
develop other VLB's ~(n) on P, n = 0, 1, ... , and 
their analogs in Je(L), the VLB's ~t) on PL' All of the 
VLB's on PL are then used to generate corresponding 
VLB's on Z L' The demonstration that the bounds on 
A L reduce to the usual results when the trial func­
tional is of the standard form is presented in Sec. 4. 

2. SCATTERING LENGTHS IN TERMS OF 
DENSITY MATRICES 

A. Ao in Terms of p 

The density matrix is the solution of the Bloch 
equation, 

(:(3 + HII)p(r ll
, rf; (3) = 0, (2.1) 

satisfying the boundary condition 

p(r", r'; 0) = b(3)(r" - rf), (2.2) 

where H" is given by (1.2),with r replaced by r", and 
where the right-hand side (rhs) of Eq. (2.2) is a three­
dimensional delta function. Since we are assuming 
that there are no bound states, the eigenfunction 
expansion of p is 

p(r", r'; (3) = f dkP(r", rf; k)e-PEk, (2.3) 

where Ek = (lik)2/2m and where 

P(r", rf; k) == (27T)-31p(k, r")1p*(k, rf). (2.4) 

The function 1p(k, r) is the solution of the time-inde­
pendent Schrodinger equation 

(Ek - H)1p(k, r) = 0, 

with the asymptotic form 

(2.5) 

1p(k, r) - eik.r + r-1eik'fk(f) , r _ 00. (2.6) 

The zero-energy limit is finite, nonvanishing, and has 
the asymptotic form 

1p(0, r) - 1 - Ao/r, r - 00. (2.7) 

To obtain a bound on Ao, we must express it as a 
monotonic function of p. To do so, we note that only 
states with energies less than or of the order of (3-1 
contribute appreciably to the integral in Eq. (2.3) 
because of the rapidly decaying exponential. In the 
limit of large (3, the whole contribution comes from 
the neighborhood of zero energy. We can then 
extract the smoothly varying wavefunctions at k = 0 
and integrate the exponential over k to obtain 

p(r",rf; (3)-(27Tm/(3n2)!P(r", rf;O), (3- 00. (2.8) 

It follows from (2.4), (2.7), and (2.8) that Ao is given by 

Ao = lim {r"rf/(r" + rf)} 
r" ,r' -+ 00 

x {I -lim (27Tn2(3m-l)! p(r", rf; (3)}. (2.9) 
p .... oo 

The additional freedom associated with the possibility 
of having r" and rf approach infinity independently 
may prove helpful in the analysis of more difficult 
problems. (One such problem is the determination of 
a VUB on Ao when the potential can support a bound 
state. This VUB has been obtained using the Schro­
dinger formalism, 9 but we have been unable to 
reproduce it using the path-integral formalism.) We 
will not utilize this additional freedom here, so we set 
rtf = rf and obtain 

Ao = lim trf{1 -lim (27Tn2(3m-l)t p(rf, rf; (3)} 
,'-+00 P-+oo 

== Ao(p), (2.10) 

Since Ao is a monotonic decreasing function of p, 
Ao(p) is a VUB on Ao, where p denotes any VLB on p. 
[We' note that this bound on Ao applies also when 
V = VCr), since the derivation of the bound did not 
utilize the assumption of spherical symmetry.] 

B. AL in Terms of PL 

The L = 0 case is somewhat unique in the analysis 
of scattering lengths, since only the L = 0 component 

• L. Rosenberg, L. Spruch, and T. F. O'Malley, Phys. Rev. 118, 
184 (1960). 
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of V'{k, r) survives as k approaches zero. To obtain 
bounds on AL for any L, including L = 0, we proceed 
as follows. 

The function P L is the solution of the equation 

(:p + HL )PL(r, r'; P) = 0, (2.11) 

satisfying the boundary condition 

PL{r", r'; 0) = b(1)(r" - r'), (2.12) 

where the (reduced) Hamiltonian HL is given by 
Eqs. (1.10) and (1.11). In view of our assumptions 
concerning the potential, the bilinear form of PL is 

where uL(k, r) is the (real) solution of the radial 
equation 

(Ek - HL)UL{k, r) = 0, (2.14) 

satisfying the boundary conditions 

(2.15) 

uL{k, r) ---+ kr cos 'YJL{h{kr) - tan 'YJLnL{kr)}, 

r ---+ 00; (2.16) 

'YJL = 'YJL{k) is the phase shift, andh{nL) denotes the 
usual spherical Bessel (Neumann) function. We note 
that the outgoing scattering solution V'(k, r) has the 
partial-wave expansion 

V'(k, r) = f iL{2L + I)P L{k . f) U L(k, r) eiQL, (2.17) 
L=O kr 

and that the threshold-energy dependence of the 
Lth-partial wave is 

U L{k, r) ---+ kL+lU L(r), k ---+ 0. (2.18) 

The function uL(r) is the (real) solution of the zero­
energy radial equation 

HLuL{r) = 0, (2.19) 

satisfying the boundary conditions 

UL{O) = 0, (2.20) 

UL{r)---+ {rL+l/{2L + 1)!!} - AL(2L - I)!! r-L, 

r ---+ 00, (2.21) 
where 

(-I)!! = 1, (2L + I)!! = (2L + 1){2L - I)!!, 

L = 0, 1,···. (2.22) 

In the limit oflarge p, the whole contribution to the 
integral in Eq. (2.13) comes from the neighborhood of 
k = 0, and we can therefore replace uL{k, r") x 
uL(k, r') by its threshold form k2Lt2uL(r")uL(r') and 

then integrate over k to obtain 

PL(r", r'; P) ---+ a(L)p-(Lt!)uL(r")uL(r'), P ---+ 00, 

(2.23) 
where 

a(L) = 7T-i 2-(Ltl)(2L + I)!! (2m/1i2)Lt!. (2.24) 

Using (2.21) and (2.23) and setting r" = r', the re­
sultant loss of generality being irrelevant for our 
present purposes, we find that 

A I· 2L + 1 
L= lm---

r'-+oo 2r' 

{ 
{r')2Lt2 . pLt! " } 

x {(2L + 1)!!}2 - :~~ a(L) PL(r, r ; P) 

== AL(p L)' (2.25) 

Since A ~ is a monotonic decreasing function of P L, it 
follows that A ~(~L) is a VUB on AL , where ~L is any 
VLB on PL' 

C. AL in Terms of ZL 

We consider now a different approach which again 
leads to a number of variational upper bounds on AL 
for any value of L. As shown in Appendix A, the 
quantity ZL{P) defined in Eq. (1.17) is given by 

Z L(P) = 1:. rr; dke-PEk d'YJL(k) . (2.26) 
7T Jo dk 

Since only the neighborhood of k = ° contributes to 
this integral in the limit of large p, it follows from the 
threshold-energy dependence 

'YJL(k) ---+ -ALk2L+l (mod 7T), k ---+ 0, (2.27) 
that 

zL(P) ---+ -(h2/2m)ALa(L)p-(L+i), P ---+ 00, (2.28) 

with a(L) given by Eq. (2.24), so that 

AL = (-2m/li2) lim {pL+izL{p)/a(L)} == AL(ZL)' 
P-+ co 

(2.29) 

Since A L is a monotonic decreasing function of Z L, it 
follows that AL(h) is a VUB on AL , where h is any 
VLB on zL' 

3. DENSITY MATRICES: PATH-INTEGRAL 
REPRESENTATIONS AND VARIATIONAL 

BOUNDS 
A. Path-Integral Representation of p 

The path-integral representation of the density 
matrix can be derived10 from the relation 

f drpV(r", r; e/Ii)p(r, r'; t/Ii) 

= p(r", r'; (t + e)/Ii) + O(e2
), (3.1) 

10 The derivation presented here is essentially equivalent to that 
given by R. Abe, Busseiron Kenkyu 79,101 (1954). This work is also 
described in Sec. 8 of Ref. 2. 
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where,u for any coordinates and any time, 

pV(r", r'; Tlli) = pO(r", r'; Tlli) exp {-TV(r")IIi}, 

(3.2) 

l(r", r'; Tjli) 

= (mI2'TTIiT)1 exp {~m(r" - r')2j2IiT}. (3.3) 

[Equation (3.1) is proved in Appendix B.] Iterating 
Eq. (3.1) N - 1 times, we obtain 

I drN_I .. J drlI drpV(r", rN-I; £11i)' .. pV(rl' r;'£IIi) 

x p(r, r'; tlli) 

kinematically possible trajectory for a particle going 
from r' at t' to r" at the later time t", and is represented 
mathematically by a single-valued continuous function 
r(t) satisfying the boundary conditions 

r(t') = r', r(t") = r". (3.11) 

Unless specifically stated otherwise, it will be under­
stood that all paths go from x' to x". 

The path integral is evaluated with the help of the 
particular path 

r(N)(rl , ... , rN-I; t) 

= r(N)(R; t) = {(t - tn_l)rn + (tn - t)rn_I}/£, 

= p(r", r'; (t + N£)IIi) + 0(N£2), (3.4) tn-I::;; t ::;; tn, n . .,.. 1,2, ... ,N, N = 2,3, ... , 

from which, by setting £ = TIN, taking the limit as 
N -+ 00, setting t = 0, and using Eq. (2.2), it follows 
that 

p(r", r'; Tlli) 

= lim Idrl " 'fdrN-I IT pV(rn' rn-I; TjNIi) 
N-+oo n=l 

= lim C(N)fdrl .. ·fdrN-1 exp {SIN)}, (3.5) 
N-+oo 

where 

ro=r', rN=r", (3.6) 

(3.7) 

Since the left-hand side (lhs) of Eq. (3.1) is given by 

( 1n)1 (£v(r"») - exp ---
2'TT1i£ Ii 

f ( m(rll r)2) 
X drexp - 21i~ p(r,r';tjli), (3.9) 

appreciable contributions to the integral arise only for 
m(r" - r)2j21i£ less than, or of the order of, unity. 
Similarly, the rhs of Eq. (3.5) is dominated from the 
regions defined by 

Irn - rn-ll $ O(£!) = O(N-i), n = 1,2, ... ,N. 

(3.10) 

We consider now the path integral on the rhs of 
Eq. (1.3). In connection with the remarks following 
that equation, we note that a path from x' to x" is a 

11 The functions pV(r", r'; £/If) and p(r", r'; £/If) are clearly positive 
definite; they differ by terms of order £2, as may be verified by setting 
t = 0 in Eq. (3.1) and using Eq. (2.2). 

(3.12) 
where 

tj = t' + j£, £ = TjN, j = 0, 1, ... ,N, (3.13) 

and where R denotes the ordered set of arbitrarily 
chosen vectors rl , ... , rN-l' Intuitively, it is clear that 

M(N) = f drl .. J drN_I exp {S[r(N)]}, (3.14) 

where S[r(N)] denotes the value of the functional S on 
the path r(N)(R; t), is proportional to the integral of 
eS over all paths expressible in the form of Eq. (3.12). 
(The square bracket is used exclusively for the purpose 
of denoting a functional throughout this article.) 
Substituting Eq. (3.12) into Eq. (1.4), we obtain 

S[r(N)] = SIN) +:. f{v(rn) - (ldSV(qiS»}, (3.15) 
Ii n=l Jo 

where the integration variable has been changed from 
t to s = (t - tn-I)/£ in the term involving the po­
tential, and where 

(3.16) 

Expanding qn(s) in a Taylor series in Irn - rn-ll, we 
find that 

from which it follows that 

Substituting into Eq. (3.15), and using (3.10) and 
E = TjN, we obtain 

N 
S[r(N)] - SIN) = £.! O(lrn - rn-ll) 

n=l 
= ENO(£t) 

= O(N-t). (3.19) 
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Equation (3.5) can therefore be rewritten as 

p(r", r'; Tjli) = lim C(N)M(N). (3.20) 
N-+oo 

The rhs of this equation represents the integral of 
eB over all paths available to a particle moving from 
x' to x" with Brownian motionl2 ; C(N) plays the role 
of a normalization constant, ensuring the existence 
of and nonzero value for the limit. Although the 
Brownian motion paths do not include every con­
ceivable path, enough are included to yield the 
equalityI2 

["'''Dr(t)eS = lim C(N)M(NI, (3.21) 
Jm' N-+oo 

which, together with Eq. (3.20), establishes the 
validity of Eq. (1.3). 

B. Path-Integral Representation of PL 

The procedure for developing a path-integral repre­
sentation of p L is analogous to that used in establishing 
Eq. (1.3). The relation analogous to Eq. (3.1) is 

1OOdrpi(r", r; ejIi)PL(r, r'; tjli) 

= PL(r", r'; (t + e)jli) + O(e2
), (3.22) 

whereI3 

-V(r" r" Tj ") = p-o (r" r" Tjli)e-TV(r"I/1i PL , , fI - L , , , (3.23) 

-0 (r" r" Tjli) PL , , 

== (~)\x {_ m(r" - r')2 _ L(L + 1)IiT}. 
217liT P 2liT 2mr"2 

(3.24) 

[See Appendix C for the proof of Eq. (3.22).] The 
function p1 is closely related to the free-particle 
function 

p1(r", r'; Tjli) = 217r"r' f/$PL($)pO(r", r'; Tjli), 

(3.25) 

this equation being the free-particle counterpart of 
Eq. (1.8). To obtain the relationship between r1 and 
p1, we note from Eq. (3.3) that the angular depend­
ence of pO is isolated in the factor exp (mr"r' $jIiT). 
Using Bauer's formula 

00 

exp(a$) = I(2L + l)PL(~)(-i)Lh(ia) (3.26) 
L~O 

12 Ref. 2, p. 80. 
lS The positive-definite functions p~(r", r'; £fIi) and PL(r", r'; 

£/f£) differ by 0(£2), as can be seen by setting t = 0 in Eq. (3.22) and 
using Eq. (2.12). 

to expand this factor, we obtain for po an angular­
momentum decomposition having the form of Eq. 
(1.12), with PL replaced by 

po (r" r" I) L , 'Ii 

= (~)!ex (_ m(r" - r')2) (mr"r') 
217liT p 2liT 'L liT ' (3.27) 

where 

From the relation 

h(iz) = tz-liLez{1 - tL(L + 1)Z-1 + O(Z-2)} 

it follows that 
+ O(z-Ie-Z

), (3.29) 

'L(Z) = 1 - tL(L + 1)Z-1 + O(Z-2) + O(e-2"), 

(3.30) 
whence 

p1(r", r'; Ejli)jp1(r", r'; e/Ii) 

= 1 + {eL(L + 1)Ii(r" - r')/2mr,,2r,} + O(e2
). 

(3.31) 

Iterating Eq. (3.22) N - I times, we obtain 

100 

drN_I •• ·100drl100 drpi(r", rN- I ; E/Ii)· .. 

X riCrl' r; e/Ii)PL(r, r'; t/Ii) 

= PL(r", r'; (t + Ne)/Ii) + O(Ne2
). (3.32) 

Setting e = TIN and taking the limit as N ---+ 00, and 
also setting t = 0 and using Eq. (2.12), we obtain the 
analogofEq. (3.5): 

PL(r", r'; T/Ii) 

= lim [oodrl '" [oodrN_l IT piCrn' r n- I ; T/NIi) 
N-+oo Jo Jo n~1 

= lim [oodr1 '" [oodrN_IC(N)t exp {stl }, (3.33) 
N-+oo Jo Jo 

where ro = r', rN = r" and where 

(3.34) 

StorerI4 has obtained a representation of PL having 
the form of Eq. (3.33), with pi replaced by 

pt(rn' rn_l;e/li)exp(-e{V(rn) + V(rn _ I )}/21i). 

14 R. G. Storer, J. Math. Phys. 9, 964 (1968). 
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With the lhs of Eq. (3.22) written in the explicit form 

(m/21Tlie)! exp {-eL(L + 1)1i/(2mr,,2)} 

x exp {-eV(r")/Ii} 

xL" dr exp {-m(r" - r)2/2Iie}PL(r, r'; t/Ii), (3.35) 

it is seen that significant contributions to the integral 
arise only when m(r" - r)2/2Iie is less than, or of the 
order of, unity. Similarly, the (multiple) integral in 
Eq. (3.33) is dominated by the contributions from the 
regions defined by 

Irn - rn-ll ~ O(e!), n = 1,2, .,. ,N. (3.36) 

In analogy to Eq. (3.12), we now introduce the path 

r(N)(rl' ... , rN- l ; t) 

== r(N)(R; t) = {(t - tn-l)rn + (tn - t)rn_l}/e, 

tn- l ~ t ~ tn, n = 1, 2, ... ,N, N = 2, 3, ... , 

(3.37) 

where the times Ii are defined in Eq. (3.13), and where 
R denotes the ordered set of arbitrarily chosen non­
negative numbers rl ,'" ,rN-l' Unless specifically 
stated otherwise, it will be understood that all one­
dimensional paths are positive-valued and go from 
y' to y". Substituting Eq. (3.37) into Eq. (1.14), we 
obtain the relation analogous to Eq. (3.15): 

where 

B = L(L + 1)1i
2 {! _ {Ids 1 } 

- 2m r; Jo {pnCsw 

L(L + 1)1i2(r n-l - r n) 

2mr;rn_l 
(3.39) 

(3.40) 

By procedures analogous to those used to obtain 
(3.19), we find that the rhs of Eq. (3.38) is of order 
N-!. It then follows from (3.36) that Eq. (3.33) can be 
written as 

PL(r", r'; Tlli) 

= lim {OOdrl'" roo drN_IC(N}! exp SL[r(N)] 
N ..... oo Jo Jo 

with the motivation for this definition being provided 
by Eq. (3.21). 

C. Variational Bounds on p 

Feynman developed a VLB on P by introducing a 
real-valued trial functional Sand writing5 

p(r", r'; Tlli) = U",~"Dr(t)eS} 

x 1 "'''Dr(t)eSes-s/l "," Dr(t)eS. 
:x' x' 

(3.43) 

In view of the fact that S is arbitrary, the expression 
in curly brackets is not necessarily a function of t ' and 
t" only through their difference t" - t'; we therefore 
use the notation 

f"'''Dr(t)l == p(x"; x'). 
",' 

(3.44) 

Since S is real-valued, eS is positive-valued, and 
consequently p is a positive-definite function. The 
quantity 

(F) == L~"Dr(t)eSF / L~"Dr(t)eS (3.45) 

represents a normalized, positive-weighted average of 
an arbitrary functional F, the dependence on x' and 
x" being understood. In this notation, Eq. (3.43) is 

p(r", r'; T/Ii) = p(x"; x')(eS - S). (3.46) 

Since the exponential is concave upwards, lensen's 
inequality yields the relation 

(eS- S ) ~ i s- s>, 

from which it follows that 

pF(X"; x') == p(x"; x')e<S-S> 

(3.47) 

(3.48) 

is a VLB on p(r", r'; T/Ii). Specializations ofFeynman's 
bound pF are obtained by using the inequality 

2n+l Zi 
eZ > ~ - n = ° 1 ... 1m Z = 0, (3.49) 

- ~ 0" '" 3=0 J. 

with Z = (S - S). 
Different bounds on p are obtained by writing 

(3.50) 

(3.42) and using the inequality (3.49) with Z = S - S. In 
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this way, it is seen that 

2n+l 1 
f?(n\x"; x') == p(x"; x') ~ -:-j «S - 8)'), 

,=0 J. 

n = 0, 1, .. " (3.51) 

are also VLB's on p. If the exact and trial functionals 
Sand 8 differ by order v, with 11'1 « I, then p - p(n) is 
positive and of order v2n+2. For future use, we 'note 
that the VLB's r:F and r:(0) (which is to be distinguished 
from the free-particle density matrix pO) are given by 

(3.52) 
and15 

p,(0) = P + i, (3.53) 

respectively, where 

l(x"; x') == r''''' Dr(t)eS(S - 8). 
Jre' 

(3.54) 

D. Variational Bounds on PL 

Because of the formal similarity between the path­
integral representations of p and PI.,' the procedures 
used to bound p can also be used to bound PL' Thus, 
we introduce the real-valued trial functional 8 L, which 
is defined on the one-dimensional paths ret), and 
we define, in analogy to Eqs. (3.44) and (3.45), the 
quantities 

(3.55) 

(3.56) 

where F is a functional of the paths ret) and where the 
dependence of <F)L on the endpoints y" and y' has been 
suppressed. It then follows that 

~I(y"; y') == h(y"; y') exp (SL - 8L)L (3.57) 
and 

2n+l 1 
f/l)(y"; y') == h(y"; y') ~ -=-i «SL - 8L)')L' 

,=0 J. 

n = 0, 1, .. " (3.58) 

are VLB's on PL' We omit the details. For future use, 
we note that the VLB's r:f and r:~) are siven by 

(0) - + 1 PL = PL L' 

(3.59) 

(3.60) 

16 Using the results of Sec. 4 and Appendix D, one can show that, 
for S of the form given by Eq. (1.7), the inequality P ~ P + 1 is the 
coordinate representation of the operator inequality 

e-fJH ~ e-fJii + Sg dTe-(f3-T)ii(ii - H)e- TH. 

where 

For the sake of completeness, we consider the 
quantity 

BL == 27Tr"rJ~ld~PL(~)~(X"; x'). 

Since Po(~) = I, it follows from Eq. (1.8) that Bo is a 
VLB on PO' For L ¢ 0, however, PL is an oscillatory 
function of ~, and B L is therefore not in general a 
VLB on PL' 

E. Variational Beands on ZL 

Every VLB r:L on PL generates a corresponding 
VLB ~L on ZL through the inequality 

PL(r", r'; (J) - p1(r", r'; (J) 

~ f!L(y"; y') - p~(r", r'; (J). (3.62) 

Setting r" = r' = r and integrating both sides of the 
inequality over all values of r, we see from Eqs. (1.16) 
and (1.17) that the lhs reduces to ZL({3). Since the order 
of the inequality is preserved, we conclude that 

~L(t"; t') == Loodr{p.L(r, t"; r, t') - p1(r,r;{J)} (3.63) 

is a VLB on ZL,({J), where, as noted previously, 
(31i = t" - t'. For future use, we note that p(t gener-
ates the VLB . 

~~J(t"; t') = L"dr{h(r, t"; r, t') - p1(r, r; (J) 

+ lL(r, t"; r, t')} (3.64) 

on Z L' (We note that all results in Sec. 3 are valid 
whether or not the potential can support a bound 
state.) 

4. SPECIALIZATION TO THE STANDARD 
RESULTS 

We now show that the standard results are obtained 
when the trial functionals Sand SL are of the forms 
given by Eqs. (l.7) and (1.15), respectively, where the 
trial potential V is short-range, central, and incapable 
of supporting a bound state. [In connection with this 
last requirement note the remark following Eq. (1.15).] 

Since the properties of Vare precisely those assumed 
for the exact potential V, it is clear that we can use all 
of the results in this article for the system associated 
with V by merely inserting a tilde (-) where appro­
priate. From Eq. (l.3), for example, it follows that the 
path integral p(x"; x') defined by Eq. (3.44) is identical 
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to the density matrix p(r", r'; fJ) for the system 
described by the Hamiltonian H = HO + VCr). Simi­
larly, Eq. (1.13) implies that the path integral 
hey" ; y') defined by Eq. (3.55) is identical to the 
function h(r", r'; fJ) obtained by solving Eqs. (2.11) 
and (2.12) with the (reduced) Hamiltonian HL = 
Hi + VCr). 

We consider first the VUB's Ao(p(O) on Ao and 
A~Cf~~) on AL . In view of the discussion in the 
preceding paragraph, it follows from Eqs. (2.10) and 
(3.53) that 

Ao(p(O) = 1'0 - lim !r'lim (21T1i 2fJm- l )! 1, (4.1) 
. r'-+co p-+co 

and it similarly follows from Eqs. (2.25) and (3.60) 
that 

A' «(0) A- l' 2L + 1 l' fJL+! 1 (4.2) LPL = L- 1m-- 1m - L' 
• r'->oo 2r' p-+oo a(L) 

If we define 

W(r) == V(r) - V(r) = H - H = H L - H L , 

(4.3) 

then, from Eqs. (1.4) and (1.7) and from Eqs. (1.14) 
and (1.15), we see that 

S - S = - dtW(r) = SL - SL' 1 it" 
Ii t' 

(4.4) 

from which it follows that the path integrals i and h 
defined by Eqs. (3.54) and (3.61), respectively, are 
given by 

l(x"; x') = - Dr(t)eS dtW(r), 1 f"'''' It" 
Ii ",' t' 

(4.5) 

l L(y"; y') = - dr(t)eSL dtW(r). 1 iY

" It" 
Ii y' t' 

(4.6) 

By analogy with Eq. (3.21), we have for 1 the 
explicit expression 

1 = ! lim fdrl' .. fdrN-1C(N) exp {S[r(N)]} 
Ii N->oo _ 

X t"dtW(lr(N)(R;t)I). (4.7) 
Jt' 

Interchanging orders of integration and changing the 
dummy variable in the time integral from t to s, we 
obtain 

1 = .! lim t" dsfdrl .. ·fdrN- 1 
Ii N->ooJt' 

X C(N) exp {S[r(N)]}W(lr(N)(R; s)J). (4.8) 

Taking the limit N -+ 00 inside the s integral, we see, 
again by analogy with Eq. (3.21), that 1 is given by 

1 = - dsJ(s) , lIt" 
Ii t' 

(4.9) 

(4.10) 

where the notation Wflr(s)1l indicates that the func­
tional W depends on the distance from the origin of 
the path only at the single instant s. Using the exactly 
analogous procedure, we obtain the relations 

h = - dsh(s) , lIt" 
Ii t' 

(4.11) 

(4.12) 

Path integrals containing a functional which depends 
on the position of the path at a single instant are 
considered in Appendix D, and it follows from the 
results therein that 

l(x"; x') = loP d7 f drp(r", r; fJ - 7) W(r)p(r, r'; 7) 

== J(r", r'; fJ), (4.13) 

= i (r" r" fJ) - L , , , (4.14) 

where 

7 == (s - t')/Ii. 

Substituting for each pin Eq. (4.13) the eigenfunc­
tion expansion given by Eq. (2.3) with P replaced by 
P, after interchanging orders of integration, we find 
that 

i =f drf dkf dk'P(r", r; k)W(r)P(r,r'; k')Y, (4.15) 

Y == e-PEkf: d7edEk-Ek') 

= (e-PEk' - e-PEk)(Ek - Eerl. (4.16) 

Since Y has a well-defined, finite value for Ek = Ek" 
the insertion of a principal value (denoted by ~) in the 
second line of (4.16) has no effect. The insertion is 
useful, however, for it makes it possible to split the 
rhs of Eq. (4.15) into two terms. Inserting the prin­
cipal value in Eq. (4.16) and substituting the resulting 
expression for Y into Eq. (4.15), we find after some 
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manipulating that 

1= -fdrfdke-PEkQ(r",r, r'; k), (4.17) 

Q(r", r, r'; k) == {O(r", r; k)W(r)P(r, r'; k)} 

+ {r" ~ r'}*, (4.18) 

where the asterisk denotes complex conjugation and 
where 

O(r", r'; k) = !rfdk' P(r", r'; k') . (4.19) 
Ek - Ek , 

Since (j satisfies the inhomogeneous time-independent 
Schrodinger equation with the full Hamiltonian D, 

(Ek - D)O(r, r'; k) = f dk' per, r'; k') = 0(3)(r - r'), 

(4.20) 

and since in Eq. (4.19) the principal value of the 
integral is taken at the singularity Ek , = Ek , G is the 
full Green's function appropriate to the boundary 
condition of standing waves at infinity. It has the 
angular-momentum decomposition 

G(r", r'; k) = I 2L + ~ PL(~)(h(r", r'; k), (4.21) 
L=O 417r"r" 

where 

(h(r", r'; k) = ~!r rcc
dk, uL(k', r")uL(k', r') 

17 Jo Ek - Ek, 

= (2m/1i2)ih(k, r <)vL(k, r»k-t, (4.22) 

r < and r> denoting the smaller and larger, respec­
tively, of r" and r'. The function vL(k, r) is the (real) 
irregular solution of the radial equation 

(Ek - DL)VL(k, r) = 0, (4.23) 

with the asymptotic form 

vL(k, r) -- kr cos ifL{nL(kr) + tan if Lh(kr)} , 

r -- 00. (4.24) 

It has the threshold-energy dependence 

vL(k, r) --->0- k-LvL(r), k -- 0, (4.25) 

where vL(r) is the (real) irregular solution of the zero­
energy radial equation 

(4.26) 

with the asymptotic form 

vL(r) -- -(2L - 1)!! r-L, r -- 00. (4.27) 

Using the procedure exactly analogous to that 
leading from Eq. (4.13) to Eq. (4.17), we find that 

Eq. (4.14) can be expressed in the form 

iL = -icc dr 1" dke-PEkQL(r", r, r'; k), (4.28) 

QL(r", r, r'; k) == {OL(r", r; k)W(r)(2/17) 

X uL(k, r)uL(k, r')} + {r" ~ r'}. (4.29) 

In the limit of large (3, only the neighborhood of 
zero energy contributes to the integral over k in Eq. 
(4.17). We can therefore extract the smoothly varying 
function Q at k = ° and perform the k integration to 
obtain 

l(r", r' ; (3) --->0- - (217m/ (31i2)! f drQ(r", r, r' ; 0), 

(3 --+ 00. (4.30) 

Substituting (4.30) into Eq. (4.1) and using Eqs. (4.18) 
and (2.4), we obtain 

Ao(p(O» = Ao + lim r'1ji(O, r') 
• r'-Jo 00 

X f drO(r', r; O)W(r)1ji(O, r), (4.31) 

where we have made use of the fact that the outgoing 
scattering solution is real at zero energy. Since both 
V and V are short-range, W(r) is negligible beyond a 
finite distance, and 0 in Eq. (4.31) can be replaced by 
its asymptotic form16 

O(r', r; 0) --->0- -(2m/1i2)(417r')-I1ji(0, r), r« r', 

r' --->0- 00. (4.32) 

Substituting (4.32) into Eq. (4.31) and using the rela­
tion 

W(r)1ji(O, r) = -H1ji(O, r), (4.33) 

this relation being a consequence of Eqs. (4.3) and 
(2.5), we arrive at the inequality 

Ao ~ Ao(/?(O» = 1'0 + (m/2171i2) f dl'lp(O, r)Hip(O, r). 

(4.34) 

Since "p(0, r) = "p(0, r) = uo(r)/r, we set 1ji(0, r) = 
uo(r)/r. The upper bound on Ao then becomes 

1'0 + (2m/1i2) L'" druo(r)Houo(r), 

the usual result. We note that Ao(pF) can also be 
shown to reduce to the rhs of the inequality (4.34). 

A similar procedure can be used to connect the 
VUB in Eq. (4.2) with the standard result. Setting 
r" = r' in Eq. (4.28) and using the usual arguments 

16 See, for example, A. Messiah, Quantum Mechanics (North­
Holland Publ. Co., Amsterdam, 1965), Vol. II, Chap. XIX. 
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concerning the k integration in the limit of large 
p, we replace QL by 

k2L+220L(r' , r; O)W(r)(2/1T)uL(r)ih(r/); 

after integrating over k, we find that 

1 (r' r'o {3) __ 2a(L) 
L , , pL+! 

x L <Xl drGL(r ~ r; O)W(r)zh(r)uL(r'), 

fJ - 00. (4.35) 

From (2.18) and (4.25), it follows that 

0L(r' , r; 0) = (2m/1i2)uL(r dVL(r»; (4.36) 

since W(r) is negligible beyond a finite range, we 
obtain for the integral in (4.35) the asymptotic form 

L<XldrOL(rl, r; O)W(r)uL(r) 

- (2m/1i2)vL(r')(ih, WUL), r' - 00, (4.37) 
where 

(UL' WUL) = L<Xl druL(r)W(r)uL(r). (4.38) 

Substituting (4.35) into Eq. (4.2) and using (4.37), 
(2.21), (4.27), and the relation 

W(r)uL(r) = -HLuL(r), (4.39) 

we obtain the inequality 

AL ~ Al:,(~~) = AL + (2m/h2)(uL' HLuL), (4.40) 

which is the usual result. 6 We note that for the given 
choice of SL' the VUB AL(~D on AL also reduces to 
the rhs of (4.40). 

We consider next the relation between the VUB 
A L(~~) and the standard result. From the discussion 
in the second paragraph of this section, it follows that 
Eq. (3.64) can be rewritten as 

2i~\t/l; t') 

= L<Xldr{h(r, r; {3) - pier, r; fJ) + lL(r, r; fJ)} 

= ZL({3) + Loo dr her, r; fJ) == ~ lO)(fJ). (4.41) 

Using Eq. (4.14) and the relation 

50 00 drh(r : r; T)h(r, r '; fJ - T) = h( : r '; fJ), 

(4.42) 

which is a special case of Eq. (014), we obtain 

100 

drlL(r, r; {J) = {J loodrh(r, r; {J)W(r). (4.43) 

Substituting Eq. (4.43) into Eq. (4.41) and using (2.28) 
and (2.23), we find that 

~~)({J) - -(1i2/2m)a(L){r(L+f) 

x {AL - (2m/1i2)(uL' WUL)}, {J - 00. (4.44) 

It then follows from Eqs. (2.29) and (4.39) that 

AL ~ AL(2i~) = AL + (2m/1i,2)(uL' HLuL), (4.45) 

which is the standard result. 

Note added in proof: A VUB on AL when bound 
states exist has been found and will be submitted for 
publication shortly. A path-integral representation of 
PL has recently been developed by D. Peak and A. 
Inomata, J. Math. Phys. 10, 1422 (1969). See also P. 
Pechukas, Phys. Rev. 181, 166 and 174 (1969). 
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APPENDIX A: PROOF OF EQUATION (2.26) 

The well-known relation given by Eq. (2.26) is 
usually provedl ? by introducing a large but finite 
radius R (which ultimately goes to infinity) and 
imposing the boundary conditions 

U L(k, R) = u1(kR) = 0, 

where ui(z) == zjL(Z) denotes the Riccatti-Bessel 
function. We present here a simple if heuristic proof 
which does not utilize this procedure. IS 

The function 

dUL(k, r) == ilL (AI) 
dk 

satisfies the inhomogeneous equation 

(Ek - HL)ilL = (-1i2j2m)2kuL' (A2) 

as may be verified by differentiating Eq. (2.14) with 
respect to k. Multiplying Eq. (A2) by UL' multiplying 
Eq. (2.14) by ilL, and then subtracting, we find that 

'ill' = 2kui, (A3) 

where the Wronskian 'ill is defined by 

'ill == uLilL - uLilL. (A4) 

and where the prime denotes differentiation with 
respect to r. In view of the boundary condition given 
in Eq. (2.15), 'ill vanishes at the origin, and the 
integral 

J == 5ooodke-PEkl
R 

drui(k, r) (AS) 

17 See, for example, K. Huang, Statistical Mechanics (John Wiley 
& Sons, Inc., New York, 1963), Chap. 14, pp. 307-311. 

18 For another such proof, see Appendix C in R. N. Hill, J. Math. 
Phys.9, 1534 (1968). 
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can therefore be written as 

J =loodke-PEk(2~ Wr=R). (A6) 

As seen from (2.1S), the integrand in Eq. (A5) is of 
order k2L+2 near k = 0. Consequently, the value of 
the integral remains unchanged if, roughly speaking, 
the point k = ° is excluded from the region of inte­
gration. With this point deleted, the form of J in the 
limit of large R can be determined by using for U L the 
asymptotic form 

uL(k, r) -- sin (kr - !L7T + 'fJL)' r -- 00, 

2kr» L(L + I). (A7) 

Substituting (A7) into Eq. (A4), we obtain 

W -- kr + kiJL - tsin 2(kr - tL7T + 'fJL)' r -- 00, 

2kr » L(L + 1), (AS) 
from which it follows that 

J -- t loo dkePEk 

x {R + ilL - 2
1
k sin 2(kR - tL7T + 'fJL)}, 

R -- 00. (A9) 

Repeating the entire procedure for the poten~ial 
V == 0, corresponding to which the phase ShIftS 
vanish and uL(k, r) reduces to ul(kr), we find that 

JO ==ioodke-PEkLRdr{uHkr)}2, CAlO) 

the free-particle counterpart of J, has the asymptotic 
form 

JO __ t LX> dke-PEk{R - 2
1
k sin 2(kR - !L7T)}, 

R -- 00. (All) 

Subtracting JO from J and interchanging the order of 
integration, we see from Eq. (2.13) that 

~ (J - JO) = (Rdr{PL(r, r; (J) - pt(r, r; (J)) 
7T Jo 

-- {; iood:.:e-PEkijL} + X + X', 

R -- 00, (A12) 
where 

Integrating by parts, we obtain 

X = (_I)L+1 (47Tkr)-1 e-PEk sin 2'fJL sin 2krl~ 

+Y, 

X' = (_I)L+1 (27TkR)-1 e-PEk sin2 'fJL cos 2kRI~ 

+Y', 

where Yand Y' each fall off at least as rapidly as R-2, 
as can be seen by a further integration by parts. In view 
of (2.27), X and X' vanish in the limit R __ 00, and 
it therefore follows from (AI2) and from Eqs. (1.16) 
and (1.17) that 

lim ?.(J - JO) = ZL(P) = 1:. roodke-PEkiJL' 
R->oo 7T 7TJO 

APPENDIX B: PROOF OF EQUATION (3.1) 

The proof of Eq. (3.1) is virtually identical to a 
proof which Feynman has given for an analogous 
relation involving the propagator.19 

To begin, we note that the lhs of Eq. (3.1) is given 
in more detail in (3.9). Changing the variable of inte­
gration from r to q == r - r", we can rewrite the lhs 
of (3.9) as 

exp {-€V(r")IIi}J[p], (BI) 

where 

J[F] == (~)tfdq exp (- m
q2)F(q). (B2) 

27T1i€ 21i€ 

Expanding p(r" + q, r'; tlli) in a Taylor series in qi' 
i = 1,2,3, about qi = 0 and substituting into Eq. 
(B2), we obtain 

J[p] = {J[l] + i~ J[qi] a~7 

+i !J[qiq;] a ~a2 II + .. . }p(r", r/; tlli); (B3) 
'.1=1 r i r; 

Performing the integrations, we find that 

J with an odd number of factors is equal to zero, and 
J with an even number (2n) of factors is of order €n; 

tJij is the Kronecker delta function. 
It is now easily seen that (BI) is given by 

(A13) {l - €V~") + O(€2)}{1 + ;: V",2 + O(€2)}p(r", r/; tlli) 

(A14) 
= {l - (€H"jli) + O(€2)}p(r",r'; tin). (BS) 

19 Ref. 1. pp. 375-376. 
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In view of the Bloch equation (2.1), we see that the 
rhs of Eq. (B5) differs from the function 

p(r", r/; (t + e)/Ii) 

by terms of order e2
• 

APPENDIX C: PROOF OF EQUATION (3.22) 

The proof of Eq. (3.22) is closely analogous to that 
of Eq. (3.1) given in Appendix B. To begin, we note 
that the lhs of Eq. (3.22) can be written as 

exp (_ ~{L(L + ?1i
2 

+ V(rll)})I[PL]' (Cl) 
Ii 2mr" 

where 

I[cfo] == - dr exp - - cfo(r). (C2) 

(4.13) to show that the path integral 

l(s) == i~"Dr(t)eSF[r(S)] 
and the quantity 

(01) 

l'(s) = I dip(r", i; (t" - s)IIi)F(i)p(i, r'; (s - t')IIi) 

(02) 

are equal for t' ::;; s ::;; til, where the notation for the 
functional Fin Eq. (0 I) indicates that F depends upon 
the position of the path only at the single instant s. 

We consider first the case in which 

t ' < s < t". (03) 
( 

m )tl<Xl {m(r" r)2} 
27Tne 0 2lie The time instant s then divides the fundamental inter­

Expanding PL(r, r'; tlli) in a Taylor series in r about val (t', t") into two subintervals (t', s) and (s, ttl) 

r = r" and then substituting into Eq. (C2), we obtain having lengths T' == s - t ' and T" == ttl - s, respec-
tively, with both T' and T" nonzero. Partitioning 

I[PL] = {I[l] + I[r _ r"] ~ (t', s) and (s, til) into N ' and N" subintervals of 
or" lengths e' == T' I N ' and e" == T" / Nil, respectively, we 

+ iI[(r - r")2] a~:2 + .. '}PL(r", r'; t/Ii). see from Eq. (3.5) thaIt I 

(C3) per, r'; T'/Ii) = lim dr1 ' .• drN'-l 
N'-+ 00 

To first order in e, we can replace the limits of inte­
gration 0 to 00 by the limits - 00 to 00, since the con­
tribution from - 00 to 0 approaches zero at least as 
rapidly as exp (-mr"2/2Iie). Integrating between the 
limits - 00 and 00, we find that 

I[(r - r")2n] = 7T-t f(n + !)(2Iie/m)n, 

I[(r - r")2n+l] = 0, 

N' 

X II pV(rj, r j _ 1 ; e'/Ii) (04) 
j~l 

and 

p(r", r; Til/ii) = lim Idq1 •• 'IdqN"-l 
N"-+oo 

N" 

X II pV(qn' qn-l; e"/Ii), (05) 
n~l 

n = 0,1,···. (C4) where 

We then find that (Cl) is given by 

(
1 _ ~{L(L + 1)1i

2 

+ V(r")}) 
Ii 2mr,,2 

X {l + lie ~2}PL(r'" r'; tlli) 
2m or" 

= (1 - eH'illi)PL(r", r'; tlli), (C5) 

with the neglect of terms of order e2• From Eq. (2.11), 
it follows that the rhs ofEq. (C5) and the function 

PL(r", r'; (t + e)/Ii) 

are the same to first order in e. 

(06) 

Substituting Eqs. (04) and (05) into Eq. (D2) and 
interchanging the order in which the limits are taken 
and the integrations are performed, we obtain 

l'(s) = lim Idr1 • • • JdrN'-lJdrJdq1 .. 'JdqN"-l 
N",N'-+r:L:; 

X {fi pV(rj, r j _ 1 ; e'/Ii)}F(r) . 

N" 

X {gpV(qn,qn_l;e"/Ii)}. (07) 

Using Eq. (Ll), we find that Eq. (02) can also be 
APPENDIX D: PROOF OF EQUATIONS (4.13) expressed in the form 

AND (4.14) 

In view of the discussion in the second paragraph J'(s) = (r"l exp {- (t" - s)H/Ii}Fop 

of Sec. 4, it is sufficient for the purpose of proving Eq. x exp { - (s - t')H/Ii} Ir/), (08) 
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where 

Fop == f dr Ir) F(r) (rl· (D9) 

If F(r) = 1 for all r, then Fop reduces to the identity 
operator, the rhs ofEq. (D8) reduces to p(r", r'; TIIi), 
and we therefore have the representation 

L~"Dr(t)eS 

= lim fdrl" ·fdrN'-lfdffdql .. 'fdqN"-l 
N".N' ...... oo 

x {fi pV(rj, rj-1; €'/Ii)}{fi pV(qn' qn-l; €"/Ii)}. 

(DlO) 

The integrand on the rhs of this equation can be 
shown to be, to a sufficiently good approximation, 
proportional to the value of the functional eS on the 
straight-line segment path r*(t) passing sequentially 
through the space-time points 

(r', t'), (rl, t' + €'), ... , (rN'-l, s - €'), (r, s), 
(ql, s + €"),' ", (qN"-l' t" - €"), (r;, t"); 

the demonstration is quite similar to that given in 
part A of Sec. 3 to justify Eq. (3.20), and we therefore 
omit the details. Since 

r*(s) = r, (Dll) 

it follows from the preceding sentence that the inte­
grand in Eq. (D7) is proportional to the value of the 
functional 

the rhs of Eq. (D7) is a representation of the path 
integral J(s). 

We have therefore shown that J(s) and J'(s) are 
equal for s satisfying the inequality (D3). If s = t', 
then it follows from Eq. (3.11) and Eq. (2.2) that 

J(t') = F(r') L~"Dr(t)eS 
and 

J'(t') = f drp(r", f; T/Ii)F(r)b<3)(r - r'), 

respectively. Obviously, J and J' are equal for s = t'. 
They are also equal for s = t", as can easily be verified 
by again using Eqs. (3.11) and (2.2), and we conclude 
that 

J(s) = J'(s), t':$ s :$ t". (DI2) 

Using an exactly analogous procedure, we can 
show that 

i~"dr(t)eSL 4>[r(s)] 

= LX) dfpL(r", f; (til - s)/Ii)4>(f)PL(f, r'; (s - t')/Ii), 

(DB) 

for t' :$ s :$ til; we omit the proof. In view of the 
discussion in the second paragraph of Sec. 4, the 
validity of Eq. (4.14) can be inferred from that of Eq. 
(D13). 

We note that if 4>(r) = 1 for all values of r, Eq. 
(D13) reduces to 

PL(r", r'; (3) = LX) drpL(r", r; (3 - T)PL(r, r'; T), 

(D14) 
on the path r*(t); since Eq. (Dil) is valid for all values where 
of N" and N', we have by analogy with Eq. (DI0) that T == (s - t')/Ii, {3 = (t" - t')/Ii. 
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The ge~eral theory ~f antiferroma~etic ~pin wa,:es is examined from a new viewpoint and the nature 
of the antJ.ferroma~etJc gro~nd stat~ IS clarified. It IS shown that the Anderson canonical transformation 
to free sp~n ~aves IS n.onumta~y With the m~gn,?n state vectors having large nonphysical projections, 
and. a ~roJectlon techmque whl.ch restores u~tanty at lo~ tem~r~tures is developed. The nonphysical 
projectIon of the state vectors IS shown to give a large kInematic Interaction even at zero temperature. 

1. INTRODUCTION 

A rigorous theory of spin-wave interactions in 
ferroI!lagnetic insulators was given by Dyson1•2 in 
1956, and since then numerous papers have been 
written on this subject; however, the anti ferromagnet 
has received comparatively little attention, and even 
the ground state is unknown. In the spin-wave 
approach to the theory of magnetism, the spin 
operators are mapped on to a subspace of a boson 
space, and the kinematic interaction, i.e., the restric­
tion on the number of spin deviations possible at any 
given spin site, is generally neglected by working in 
the full boson space. Dyson1.2 and Wortis3 have shown 
that the kinematic effects of nonphysical states cancel 
out at low temperatures for the ferromagnet, but 
so far, corresponding proofs for the antiferromagnet 
have not been found, and consequently, the spin­
wave picture of antiferromagnetism is suspect. 

In view of the difficulties surrounding the kinematic 
interaction, other representations for the spin opera­
tors have been introduced by various authors. 4- 8 The 
aim is to map spin operators into operators with 
c-number commutators, so that Wick's theorem and 
the powerful diagrammatic techniques of many-body 
theory can be applied, and also to avoid th~ difficulties 
of spin-wave theory by restricting calculations 
rigorously to the physical domain. Unfortunately, 
due to the mixing of kinematic and dynamic inter­
actions, the graphical structure of these theories 

~ Present address: Physics Department, University of Bristol, 
BrIstol, England. 

t Science Research Council Postdoctoral Fellow. 
; Based on a Ph.D. Thesis recently submitted to the University 

of London. 
1 F. J. Dyson, Phys. Rev. 102, 1230 (1956). 
2 F. J. Dyson, Phys. Rev. 102,1217 (1956). 
• M. Wortis, Phys. Rev. 138, A1126 (1964). 
, H. L. Davis, Phys. Rev. 120, 789 (1960). 
• Y. L. Wang, H. Callen, and S. Shtrikman, Phys. Rev 148 419 

(1966). . , 
• R. P. Kenan, J. Appl. Phys. 37, 1453 (1966). 
7 R. P. Kenan, Phys. Rev. 159, 430 (1967). 
8 R. L. Mills, R. P. Kenan, and J. Korringa Physica 26 204 

(1959). " 

becomes very complicated, and only limited progress 
has been made. 

It is also possible to work directly with the spin 
algebra and calculate the spin Green's functions by 
the equations-of-motion method. The equations of 
motion lead to an infinite chain of coupled Green's 
functi.ons, and as there is no standard decoupling 
techmque, the usual procedure is to choose the 
decoupling approximation to give results which 
agree with spin-wave theory at low temperatures. 
This is clearly unsatisfactory, as spin-wave results are 
not rigorous for the antiferromagnetic case. 

In this paper the spin-wave approach is pursued 
as it clearly separates the kinematic and dynamic 
effects, which can then be studied independently. 
T.ao Yu~n9 and Kenan' have recently found a large 
kmematIc effect, even at zero temperature, which, in 
view of the fact that the boson Hamiltonian is not 
positive, casts doubt on the validity of the spin-wave 
picture of antiferromagnetism. Szaniecki,lo.ll how­
~ver, claims that the kinematic interaction is exponent­
Ially small at low temperatures, though Dembinski12 

has severely criticised his conclusions. In this work it 
is shown that there are two distinct kinematic effects 
to be considered, so that it is still possible for the 
nonphysical eigenvalues to have a negligible effect at 
low temperature. 

2. THE BOSON MAPPING 

For simplicity, a two-sublattice model is con­
sidered, in which near neighbors of spins on one 
~ublatti~e all.li~ on the other, and only near-neighbor 
InteractIOn IS Included. The spin Hamiltonian for 
such a system can be written in the form 

H = J ! S~ . S:+d - A [! Sf" - ! S~"J, 
___ i6 i; 

9 Tao Yuin, Chinese J. Phys. 22, 357 (1966). 
10 J. Szaniecki, Acta Phys. Polon. 31, 969 (1967). 
11 J. Szaneicki, Acta Phys. Polon. 32, 271 (1967). 
11 S. T. Dembinski, Physica 35, 119 (1967). 

(1) 
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where J is the positive exchange parameter and A 
represents a positive, effective anisotropy field; a 
and b label sublattice spins with positive and negative 
z-components, respectively; and subscripts i, j, and 
i + (j denote the crystal sites of spin operators, with 
i + (j denoting a near-neighbor spin. 

The spin Hamiltonian is defined in a Hilbert space 
which is a product of all the orthogonal localized 
spin spaces, and it is convenient to map these com­
ponent spaces isometrically into boson spaces. There 
are two main reasons for doing this, the most important 
being that the noninteracting spin-wave theories of 
Andersonp Kubo,14 Ziman,15.l6 and others seem 
to be a good first approximation at low temperatures, 
indicating that the low-lying spectrum may be well 
described by bosons. The other reason is that the 
boson operators have c-number commutators, so that 
Wick's theorem is applicable. 

The mathematical technique for mapping Fock 
spaces has been developed in the context of quantum 
field theories with indefinite metric; here the discussion 
given by Nagyl? is used. Consider a single spin opera­
tor having the usual commutation relations, which 
may conveniently be written in the form 

[S~, st] = bjkSt, [S;, S;;] = -OJ,kS;, 

cst, S;;] = 2(1jkS~, (2) 
where 

sf = S; ± iS~. 
The ground state 10j) is defined by 

Si 10j) = 0, S~ 10j) = -S 10j), (3) 

and the excited states can be represented by 

lUi) = [(2s) U1u j !rt(SjY' 10j)' (4) 

where the state lUi) has u spin deviations from the 
ground state. These vectors are orthogonal but not 
normalized: 

(U i I Vi) = bijbu"Fu, 

Fu =1.(1-;s)"·(1- U ;:1). (5) 

The following set of orthonormal boson state-vectors 
is also defined: 

IUj) = (uj!)-t(a~)UI 10j), 

(U i I Vj) = (luv(lij' 
t 

[aj' arJ = b j ; .. 

,. P. W. Anderson, Phys. Rev., 86, 694 (1952). 
14 R. Kubo, Phys. Rev. 87, 568 (1952). 
" J. M. Ziman, Proc. Phys. Soc. London A6S, 540 (1952). 
18 J. M. Ziman, Proc. Phys. Soc. London A6S, 548 (1952). 
17 K. L. Nagy, Nuovo Cimento Suppl. 17, 92 (1960). 

(6) 

A linear one-to-one correspondence of the states 
IUj) and IUj) is now defined such that 

rx.lu j ) + (J Ivi ) --+ rx.lui ) + (J Ivi ), (7) 

where rx. and {J are scalars. The metric structure of a 
Hilbert space is given in terms of the inner product, 
so that the inner product of vectors in spin space can 
be used to define a metric operator in the boson 
space by the relationship 

(ui I Vi) = (uil 'fJ, Iv,). (8) 

Having established a metric, the operators in spin 
space can be mapped into the boson space by requiring 
that all corresponding matrix elements are equal, so 
that the boson operator 0 i corresponding to the spin 
operator 0i is given by 

(uil 0i Iv i ) = (uil 'fJiOi Ivi). (9) 

The adjoint of an operator has the same effect on the 
bra vector as the operator has on the ket when the 
natural imbedding is used to relate bra and ket vectors, 
and in elementary quantum mechanics, where the 
Hilbert space of state vectors has the identity operator 
for metric, or the metric is trivially reducible to the 
identity by normalizing state vectors, the adjoint and 
Hermitian conjugate coincide. However, the boson 
space considered here contains vectors having no 
correspondents in the physical spin space, and 
consequently these vectors have zero norm. Hence, 
the metric operator cannot be reduced to the identity, 
and, in general, operators will not commute with 
the metric, so that it is necessary to consider the 
relationship between adjoints and Hermitian con­
jugates. If the Hermitian conjugate is denoted by 
the symbol "t" and the adjoint by "* ," then in the 
boson space Hermitian conjugates are defined in the 
usual way, by putting the metric operator equal to 
the identity 

{(uiIOi IVi)}* = (viIO! lUi), (10) 

where { ... }* denotes complex conjugation. Since 
(ui lUi) = (Uil 'fJi lUi) is real, it follows that the metric 
operator is Hermitian: 

t 
'fJi = 'fJi' (11) 

The adjoint operator 0: is defined by considering a 
matrix element in the physical spin space and mapping: 

(uil ot Ivi) = {(vii 0i Iui)}* = {(Vi I 'fJiOi lUi)} * 

= (uiIO!'fJiIVi) = (uil'fJi'fJ;10;'fJilvi)' (12) 

Since lUi) and Ivi ) are arbitrary, it follows that 

0 * -lot 
i = 'fJi i'fJi' (13) 
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It is important to notice that, rigorously, rl;l is 
singular, since 'YJi is a projection operator having 
eigenvalues of zero. However, if it is considered to 
operate only in the subspace of boson state vectors 
which have physical correspondents, then 'YJi cannot 
have eigenvalues of zero and the inverse can be 
defined. For the case of operators defined in spin 
space, this procedure is valid, though great care is 
needed when making transformations on such 
operators in the boson space, as it can easily happen 
that the resulting operators are nonphysical, in the 
sense that they are only defined on the full boson Hil­
bert space. It turns out that the canonical transforma­
tion to free spin waves is of this type, and the usual 
noninteracting spin-wave theory arises from a trans­
formation which is nonunitaryin the physical subspace. 

An observable in spin space is represented by a 
self-adjoint operator which has real expectation values, 
and, consequently, the boson equivalent is self-adjoint 
but not necessarily Hermitian, as can be seen from the 
following argument: 

(uil 01 lUi) = (uil 0i lUi) = (uil 'YJi6 i lUi) 

= (ui I6i
t'YJi lUi); 

therefore 
(14) 

so that the boson operator is self-adjoint with respect 
to the metric operator and has real expectation values. 
However, the boson operator 6; does not commute 
with the metric operator in general, so that 

. 61'YJi ¥= 'YJi6 1 (15) 

and, consequently, 67 is not Hermitian: 

61¥=6i • (16) 

So far, all that has been done is to give a new 
formulation of the mapping process implicitly used 
by Dyson. Maleev18 gave the corresponding boson 
transformations for individual spin operators: 

t 
st - (2s)laJ, S; _ (2s)l( 1 _ a;:i)a j , 

S: - - S + ai
t 
ai • (17) 

In a rather different approach, Dembinskj19 has 
used an explicit representation for the metric operator 
to derive the Dyson, conjugate Dyson, and Holstein­
Primakoff boson mappings. These results can also 
be obtained with the 'YJ-formalism in a slightly different 

1B S. V. Maleev, Zh. Eksp. Teor. Fiz. 33,1010 (1957) [SOY. Phys.­
JETP 6, 776 (1958)]. 

19 S. T. Dembinski, Physica 30,1217 (1964). 

and more illuminating form as follows: 

<ujl OJ Ivi) = (uil 'YJi6 i Ivi). (9) 

If the metric operator 'YJi is commutated to the right, 
the conjugate Dyson mapping 6~·D. is obtained: 

(uil 'YJi6j I Vi) = (uil ('YJi6i'YJ~1)'YJi Ivj). (18) 

This is related to the Dyson transformation by 

(19) 

Similarly, the square root of the metric operator can 
be defined by 'YJY'YJl = 'YJj, and the Holstein-Primakoff 
mapping obtained: 

6 l l6 -l l (uil'YJi i I Vi) = (uil'YJi('YJi i'YJi mi Ivi)· (20) 

The metric is Hermitian ('YJJ = 'YJi), so that the 
square-root operator is also Hermitian ('YJl t = 'YJl) 
and, if the operator 0 is Hermitian, it follows that 
'YJ16i'YJil is also Hermitian. The Holstein-Primakoff 
boson transformation is related to the Dyson trans­
formation by 

(21) 

A difficulty now arises in the interpretation of the 
Holstein-Primakoffboson operators, as the spin Hamil­
tonian is mapped into a Hermitian boson counterpart, 
but the boson state-vectors are defined by 'YJl lUi)' By 
commuting the operator 'YJt through to operate on 
the ground state, this can be written in the form 

'YJt lUi) = (Uj!)-l(cx;)'" 10j), (22) 
where 

(23) 

[This follows from the definition of the states lUi) and 
the relation 'YJi 10i) = 10;).] It is clear that boson 
operators of the type a; do not create particles 
described by the state vectors 'YJl lUi)' as the latter 
contain a cutoff which is characteristic of spin opera­
tors. This means that the operators at and aj cannot 
be treated as bosons except as an approximation, so 
that, in a rigorous treatment, the Holstein-Primakoff 
formalism does not seem any simpler to use than the 
spin operators themselves. It has also been noted by 
Dyson that the Holstein-Primakoff boson transforma­
tion is highly nonlinear, due to the presence of square 
roots which have to be expanded. 

The Dyson-Maleev transformation does give a 
simplification, as the metric operator acts to the 
left of the Hamiltonian and the latter can operate on 
the full boson Hilbert space. 
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3. THE ANTIFERROMAGNETIC GROUND STATE 

For the simple antiferromagnet described by the 
Hamiltonian in (1), the z components of spin on the 
two sublattices are oppositely directed, and it is 
convenient to define the ground state of spins differ­
ently, depending on the particular sublattice: 

8';+ 10i) = 0, S~ 10;) = 0, 

S:"IOi) = +S, S:"IO;) = -So (24) 

This corresponds to a rotation of every local system 
of coordinates on lattice a through 1800 about the 
x axis, i.e., 

Application of this rotation to the Dyson-Maleev 
transformation leads to the following results: 

S:+-(2S)*(1 - a;;i) ai' 
S~ - (2s)*bj, 

S:- - (2s)*a;, 

S~_(2s)t(1- b;:;)b;, 

S:" - S - aiai' 

S~' - -S + bjb;. 

(26) 

If these transformations are substituted in the spin 
Hamiltonian and terms higher than bilinear rejected, 
the usual free spin-wave Hamiltonian results: 

Ho = Eo + E{t: aiai + t btb;) 

+ E2 I (aib"tt-6 + aibiH), (27) 
i6 

where 

Eo = -JS2NZ - 2NAS, E1 = JSZ + A, 

E2 = JS. (28) 

z is the number of near-neighbor sites and N is the 
number of spins on one sublattice. 

The boson operators can be Fourier-transformed 
in the usual way: 

N -! '" -ik·R, ai = ~ e ak , 
k 

b - N-! '" -ik.R1b i - ~e k' (29) 
k 

and after substitution of these definitions, the free 
spin-wave Hamiltonian can be written in the following 
form: 

Ho = Eo + El I (atak + btbk) 
k 

+ E2 I Yk(atb~k + akb_k), (30) 
k 

where 

(31) 

If the crystal has inversion symmetry, the structure 
factor is real: 

Yk = Y-k = y:. (32) 

The bilinear Hamiltonian can be diagonalized with a 
canonical transformation, leading to the result 

Ho = Eo + I AilXtlXk + rr,;Pk)' 
k 

where magnon operators are defined by 

IXk = ukak - vkb~k' 
Pk = ukbk - vka:::k, 

and the canonical constraints are 

[lXk' IX:'] = [Pk' P:'] = <5kk" 

(33) 

(34) 

[lXk' P-k] = [Pk' lX_k] = 0. (35) 

These lead to the canonical condition 

(36) 

The solutions for the parameters are 

Ak = (E~ - E~y:)!, Eo = Eo - NEI + I Ak, (37) 
k 

where 

where 

Ek = Ak/El = [1 - (E~/EDY~]!. (38) 

It is interesting to note that the ground-state energy 
Eo contains the zero-point energy of the magnon 
oscillators and, in fact, the corresponding zero-point 
motion causes the ground state to have a very 
complicated structure, making rigorous treatments 
extremely difficult. 

It is useful to construct an exponential representa­
tion for the canonical transformation to free spin 
waves. This transformation, which maps spin­
deviation operators, e.g., ak , into magnon operators, 
e.g., IXk' has the following properties:' 

UakU-1 = IXk' UbkU-1 = Pk' (39) 

U-1
IXkU = UklXk + VkP:k' 

U-1PkU = UkPk + VklX:::k' (40) 

The expressions for spin-wave operators (34) can be 
inverted to give 

ak = UklXk + VkP-k' bk = Uk{3k + VklX~k' 
a/= UklXk+ + Vk{3-k' bk+= Uk{3k+ + VklX_k , (41) 
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and it can be seen that (40) follows directly from the 
definitions (34) and (39). The transformation operator 
can be written in the form 

(42) 
where 

(43) 

and the solution for the generator is obtained from 
the expansion 

·2 

e-iSakeiS = ak + i[ak, S] + ~ [[ak , S], S] + ... 
2! 

(44) 
as follows: 

S = i .2 Oiatb~k - akb_k), (45) 
k 

where Ok is related to the canonical coefficients by 

Uk = cosh Ok' Vk = sinh Ok' (46) 

It can easily be shown that 

(f.tP-k - (f.k{3-k = atb~k - akb_k, (47) 

so that the generator S can be conveniently expressed 
in terms of magnon operators. It should be noted that 
the canonical transformation to free spin waves is 
closely related to the Bogoliubov transformation in 
the theory of superfluid bosons, and the exponential 
representation of the latter transformation is well 
known. 20.21 

The ground state of the magnon oscillators can now 
be related to the Neel state. The magnon ground state 
is defined by 

(48) 

and the Neel state by 

(49) 

If the explicit transformation operator is inserted, 
the magnon ground state can be written in the form 

10) = U 10) = exp [t Oiatb!k - akb_k)] 10) (50) 

and, when this expression is expanded in powers of 
the operators at and b~k' it is clear that it has a 
projection onto the nonphysical Hilbert space, since 
terms like (at)n(b!k)n 10) exist and n can tend to 
infinity. Thus the canonical transformation leads to 
operators whose state vectors have nonphysical 
projections and this, in fact, causes a large kinematic 
interaction, even at zero temperature. 

10 M. Girardeau and R. Arnowitt. Phys. Rev. 113, 755 (1959). 
11 E. P. Gross, Ann. Phys. (N.Y.) 9, 292 (1960). 

By construction, the mapping procedure described 
earlier produces operators in the boson space which 
do not have matrix elements from the nonphysical 
subspace into the physical subspace, and a selection 
rule can be written in the general form 

p() = p()p, (51) 

where P denotes a projection operator with eigen­
values of zero on the nonphysical subspace. This 
selection rule has the very important consequence 
that the full Hamiltonian can never mix in the non­
physical with the physical state-vectors. Dyson2 
showed that if an eigenstate of () has a physical 
projection, then its eigenvalue is physical and 
corresponds to the projection onto the physical 
subspace mapped back into spin space. Hence, it is 
clear that if an eigenstate is found in the full boson 
space, then its projection onto the physical subspace 
is the part which has a correspondent in spin space, 
and the vector should be projected before estimates 
of physical quantities are made. 

The magnon ground state is an eigenstate of the 
free spin-wave Hamiltonian, but it is not an eigenstate 
of the full boson Hamiltonian, as the latter has 
source terms in the interactions which create magnons 
when operating on the magnon ground state. In 
addition, the bilinear Hamiltonian does not obey the 
selection rule (51). However, it is reasonable to take 
the magnon ground state as a first approximation to 
the antiferromagnetic ground state, and use perturba­
tion theory to switch the magnon ground state into 
the ground state of the full boson Hamiltonian. 

Due to the nonphysical projection, the magnon 
ground state overestimates the number of physical 
spin deviations, and it should therefore be projected 
before the reduction in sublattice magnetization from 
the Neel state is calculated. This reduction is given by 
the expression 

where 

(01 (s - Sf") 10) 
(0 I 0) 

(01 'fJatai 10) 
(01'fJ 10) 

(52) 

(53) 

For simplicity, it is convenient to restrict considera­
tions to spin t when the metric operator reduces to a 
theta function: 

where 
1]i = O(2s - at ai ), for s = t, (54) 

O(x) = 1, x ~ 0, 

= 0, x < 0. (55) 
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Tao Yuin9 has given an operator representatjon for 
the theta function as follows: 

00 

O(2s - aiai) = L, BI(ai)/(a;Y, 
z=o 

00 

ataiO(2s - ata;) = L, C!(a:)z(a;Y, (56) 

where 
Z=1 

Bz = 1, I = 0, Cz = 1, I = 1, 

Bz = 0, I::;; 2s, Cz = 0, I::;; 2s, 

(_lY-28(2s + 1)(2s + 2) ... (l - 1) 
Bz = , I> 2s, 

I! (I - 2s - 1)! 

C
z 

= (-1)1-2
8
2s(2s + 1)· .. (1- 2), I> 2s. (57) 

(I - 1)! (I - 2s - 1)! 

To estimate the expression for the average number 
operator (52), it is only necessary to project onto a 
single site i: 

(01 s - Sf' 10) -"- (01 17iaia; 10) 

(010) - (0117; 10) 
(58) 

For the purpose of evaluating projected averages, it is 
convenient to introduce some new notation. From 
(56), 

00 

17i = L, Bz(at)!(ai)Z, 
1=0 

so that it is necessary to consider the expression 

(01 (at)/(a;)! 10) and, since all the complications of the 
magnon ground state are contained in the unitary 
operator U, this can be written as 

(01 (a:)/(a;)IIO) = (01 U+(aii(ai)IU 10). (59) 

From (39) it follows that 

U+atU = ukat + vkb_k, (60) 

and using the definition of Fourier transformation, 
the following operator can be defined: 

U+ +U + N-i ~ -ik.R,( + + b ) ai = f-li = k e ukdk Vk -k . 
k 

Hence 

(01 (a7Y(a;Y 10) = (01 (f-ltYCfliY 10), 

and, using (60), this becomes 

(01 (fltY(f-liY 10) = (01 [N-! t e-ik.R'Vkb_kJ 

X [N-! f e;k.R'Vkb~k}O). 

(61) 

(62) 

(63) 

Wick's theorem can be used to evaluate this expression 
with the following result: 

(01 (at)Z(aiY 10) = I! vZ, (64) 

where 

(65) 

The ground-state expectation value can now be written 
in the form 

(66) 

where 

(67) 

and for spin ! the summations are easily evaluated: 
00 

L, CzI! Vi = v(l + V)-2, 
Z=1 

00 

Bo + L, Bzl! vl = (1 + 2v)(1 + V)-2. (68) 
Z=2 

Hence, the reduction in sublattice magnetization due 
to the zero-point motion of the magnon oscillators is 
given by 

(01 0iaiai 10) _ _ v_ 

(01 0i 10) 
(69) 

1 + 2v 

Anderson13 was the first to estimate the reduction 
in sublattice magnetization from the Neel state, but 
his method is equivalent to using the unprojected 
magnon ground state: 

(01 aiai 10) = (01 f-lifli 10) = v. (70) 

Anderson calculated v = 0.078, and if this value is 
substituted into the expression obtained here, using 
the projected ground state, a correction to his value 
results: 

vJ(1 + 2v) = 0.0675. (71) 

It is interesting to compare this result with other 
work which is not based on spin-wave theory, and 
the calculation of Davis4 will be taken as representa­
tive. Davis used Schwinger's coupled boson repre­
sentation of the spin operators to keep the theory 
rigorously in the physical domain, and applied 
perturbation theory to switch the Neel state into the 
antiferromagnetic ground state. Comparison of these 
results (Table I) seems to show that the spin-wave 

TABLE I. Values for (atai) in the antiferromagnetic 
ground state for spin t and zero anisotropy. 

unprojected magnon ground state 
(Anderson) 

projected magnon ground state 
perturbation theory (Davis) 

(atai ) = 0.078 
(atai) = 0.0675 
(atai) = 0.0637 
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picture of the ground state may be better than 
Anderson's results indicate. The magnon ground 
state has been projected for s = t, but it is possible 
to expand the metric operator for general spin in 
terms of theta functions to obtain more general 
results. 22 

4. KINEMATIC INTERACTION AT FINITE 
TEMPERATURE 

At finite temperatures it is necessary to consider 
the magnon state vectors. These can be defined in 
the usual way as follows: 

I tiP) = II (nk!)-l(otttk(nk, !ri(Pt)nk' 10). (72) 
kk' 

Using the properties of the U operator, this becomes 

ItiP) = U lab), (73) 
where 

lab) = IT (nk!)-l(attk(nk,!)-l(bttk'i 0), (74) 
kk' 

and it can be seen that the anti ferromagnetic spin­
wave state vectors are obtained by a unitary trans­
formation on ferromagnetic-type spin-wave states. 

When a transformation is made in a normed linear 
space, in general, the metric has to be transformed 
in order to preserve norms. 23 A unitary transforma­
tion 0 satisfies the relation 

oto = 1, 

and the correspondents in the physical subspace of 
the boson space satisfy 

'f}-16t 'f}6 = 1. (76) 

If the transformation operator does not commute 
with the metric operator, then 

(77) 

and the transformation operator is no longer unitary. 
In this work a unitary transformation U has been 
defined on the full boson space, but it is not unitary 
in the physical subspace, i.e., 

'f}-lUt 'f}U ¥- I, (78) 

so that the transformation to free spin-wave operators 
corresponds to a nonunitary transformation in the 
physical spin space. The nonunitary nature of the 
Anderson canonical transformation can also be seen 
from the fact that magnon state vectors are normalized 
on the full boson Hilbert space and so cannot be 
simultaneously normalized on the physical subspace. 

•• D. C. Herbert, Ph.D. thesis, University of London, 1968. 
.3 R. L. Mills and R. P. Kenan, Ann. Phys. (N.Y.) 37, 104 (1966). 

It is precisely this nonphysical projection which leads 
to the large kinematic interaction at low temperatures 
found by recent authors. 7•9 It is interesting to note 
that the process of Fourier transformation is also 
nonunitary on the physical subspace, and this causes 
ferromagnetic spin-wave state vectors to have a non­
physical projection. However, in this case, the non­
physical projection is small and vanishes in the ground 
state. 

In order to allow for the kinematic interaction at 
finite temperature, it is necessary to evaluate expres­
sions of the type 

(tiP I ata;fJ(2s - ata;) I tip) 
(iiPI O(2s - a;a i ) liiP) 

(79) 

The operator representation for the theta function 
(56) can be used, and it is convenient to consider the 
expression 

To evaluate this, the operators ak , bk used in the 
definition of (abl can be commuted to the right, when 
the expression (abl (p,t)!(fti)! lab) can be written as a 
power series in the magnon occupation numbers. For 
simplicity, terms higher than linear in the number 
operators are neglected here, and the following 
expression is obtained: 

= v(l + V)-2 + f C!vH l· I! 1. 
1=1 N 

X L (n~u~ + n{v~) + .. '. (81) 
k 

In the perturbation approach, the free-magnon 
Hamiltonian is taken to describe an unperturbed 
system, and the remainder of the boson Hamiltonian 
is regarded as interaction and is used to renormalize 
the energy. If this procedure is adopted, then the 
magnon states are regarded as the best eigenstates of 
the full Hamiltonian, so that for calculating thermal 
averages of spin deviations the following expression 
should be used: 

The summation is over all magnon state vectors 
corresponding to eigenstates having a nonzero physical 
projection and hence a physical correspondent in spin 
space, and AIZ(J is the renormalized magnon energy 
corresponding to the state lotP). When terms depending 
on the square of the magnon number-operators are 
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neglected, the magnon state vectors can be projected 
as follows: 

(~PI1Jatai I&P) 
(~fJl 1] l~fJ) 

00 00 1 
! Civil! + ! Clvl-ll' I! - ! (n;u: + n~v:) 

~ 1=1 1=1 N k 

00 00 1 
! BlVl/! + ! BlVl-l/' I! -! (n;u: + n~v;) 
1=0 1=1 N k 

The summations are easily performed: 

00 

00 

! Civil! = v(l + V)-2, 
!=1 

! Clvl-l/· I! = (1 - v)(l + V)-3, 
!=1 

00 

Bo + ! BlVI/! = (1 + 2v)(1 + vr2, 
1=1 

00 

I B!vl-l/' l! = -2v(1 + vr3. 
1=1 

(83) 

(84) 

The term (liN) Ik (n;u~ + n:v:) is just the correction 
to the ground-state occupation number obtained from 
the unprojected state vector, and it is convenient to 
introduce the definitions 

(85) 

(a+aYp = (~PI natai I~P) . 
• • (aPI n liXP) 

(86) 

The projected expectation value can then be written as 

(aiai>«P ~ v(l + V)-2 + (1 - v)(l + v)-3(;;r;;;f/l . 

(1 + 2v)(1 + V)-2 - 2v(1 + vr3(atai>rt/l 

(87) 

This expression can be expanded into a power series in 

(atai>«(J: 

(atai>«/l ~ v(l + 2vr1 + (1 + 2v)-2(atai>«(J + ... , 
(88) 

and the result for the thermal average becomes 

aiai = v(l + 2vr1 + (1 + 2v)-2(aia;> + .. " (89) 

where <atai> is a correction to the ground-state values 
obtained using unprojected state vectors in the thermal 
trace, but still retaining a cutoff, i.e., nonphysical 
states having zero physical projection are excluded 
from the thermal trace. 

It is interesting to compare this result with that of 
Tao Yuin, who gives the expression 

where bjb, is the spin deviation number operator 
for lattice site ''I'' and < ... >0 denotes a thermal 
average over the full boson space using the non­
interacting spin-wave Hamiltonian and no cutoff on 
the trace. If ( ... >0 is expanded into a series of 
temperature-dependent terms, 

(bjb,>o = v + aCT) + ... , (91) 

then 

This is very similar to the expansion obtained in this 
work, but aCT) is obtained from a trace without cutoff, 
whereas (atai > is obtained from a trace with cutoff. 
Tao Yuin claims that his method is rigorous, but it is 
not clear that this is so, as he does not normalize the 
state vectors on the physical subspace. However, at 
zero temperature the thermal trace reduces to a 
ground-state average and normalizations cancel. In 
this case, Tao Yuin's result reduces to the expression 
obtained in this work. 

It must be emphasized that the nonphysical pro­
jection of the state vectors is only a part of the total 
kinematic interaction; the other part comes from the 
effect of nonphysical states, i.e., states with zero 
physical projection. The results of this work show 
that the kinematic interaction at low temperature 
obtained by Tao Yuin and Kenan can be explained in 
terms of a nonphysical projection of the magnon 
state vectors. The states with zero physical projection 
introduce a cutoff on the thermal trace (82), and also 
affect the renormaIized energies A«(J . 

5. CONCLUSION 

The 1]-formalism of quantum field theory has been 
used to clarify the mathematical nature of the various 
boson mappings used in the theory of magnetism, 
and it is shown that the Holstein-Primakoff trans­
formation has some formal disadvantages which make 
it unsuitable for mathematical investigation. By 
constructing an exponential representation for the 
Anderson canonical transformation to magnon opera­
tors, it was possible to relate the magnon ground state 
to the Neel state, and it was shown that the magnon 
ground state has a large nonphysical projection. 
After projecting the magnon ground state on to the 
physical subspace, close agreement with the results of 
perturbation theories for the reduction in sublattice 
magnetization from the Neel state was obtained, 
indicating that spin-wave theory is better than might 
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be expected from Anderson's work.13 It is possible to 
improve spin-wave theory still further, and investiga­
tions are in progress in which the coefficients in the 
canonical transformation are chosen to minimize the 
number of magnons in the true ground state. The main 
conclusion of this paper is that the large kinematic 
interaction found by recent authors at low tempera­
tures can be understood as a nonphysical projection 
of the state vectors. This effect can be allowed for, 
and is relatively innocuous, as the eigenvalues of 

states with nonzero physical projection are physical. 
It is, therefore, still possible that the nonphysical 
eigenvalues may cancel out in the antiferromagnet, 
as they do in the ferromagnet at low temperature. 
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A recurrence formula is established to evaluate the statistical average (S(kl)S(ka) ••• S(kn» in the 
limit of N --+ co, where S(k) = ~f:,1 elUl, Xl, XI> ••. , XN, denotes the position of atoms in a disordered 
lattice, under the condition that interatomic distances are statistically independent and have the same 
probability distribution s(r). 

1. INTRODUCTION 

If we consider the one-electron levels in a disordered 
array of atoms, the electronic energy levels depend on 
the position of atoms as parameters. The perturbation 
expansion of energy in certain approximations would 
involve the product of phase sums1 and hence the 
formulas derived here are useful in evaluating the 
terms and may be of use in other connections also. 
Let Xl , X2' ••• , X N denote the positions of atoms from 
one end and '1' '2' ... , 'N the interatomic distances. 
We define 

N 
S(k) = ~eik"'l 

;=1 

= e ik1'1 + eik(rl+rz) + ... + eilr(rl+ra+'" +rN). (1) 

For any n, 

S(k1)S(k2) ••• S(kn) 

~ exp [i(Klr! + ... + Knr n}], (2) 
KltK",···,Kn 

where 
(3) 

and K2 , ••• , Kn are sums of any subset of kl' k2' ... , 
k n including the full set and empty set in such a way 

I P. Sah, Ph.D. thesis, University of London, 1959. 

that the terms in Kv+1 are subset of terms in Kv (v = 
1,2, ... , N - 1). This restriction in forming the 
sum appearing in Eq. (2) will be called condition I. 
Denoting the left-hand side of (2) by E(N), we have 

E(N) = S(k1)S(k2) ... S(kn). (4) 

The problem is to determine 

(E) = lim (E(N»). 
N .... oo 

We shall first derive (E(N»), where N can be any 
number greater than n, and finally proceed to the limit 
as N ~ 00. This result is established under the 
assumption that none of kl' k2' ... ,kn or their 
partial sums are zero. If any partial sum vanishes, the 
procedure has to be modified and will be considered 
later. These are needed in the complete ,discussion of 
perturbation terms. 

In all terms of the right-hand side of Eq. (1) Kl is 
fixed and given by Eq. (3), but K2 , ••• , Kn vary subject 
to condition I. Let us write 

SeN) = SW(N) + S(2)(N) + ... + sn(N), (5) 

so that, in every term of SO)(N), Kv is either equal to 
Kl or O. In E(2)(N), at least one ofthe Kv = Kil ) , where 
o C Kill C Kl • In SU)(N), Kv assumes j distinct values 
K l , Ki l

), ••. , K~-l). Every term in the rhs of Eq. (5) 
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be expected from Anderson's work.13 It is possible to 
improve spin-wave theory still further, and investiga­
tions are in progress in which the coefficients in the 
canonical transformation are chosen to minimize the 
number of magnons in the true ground state. The main 
conclusion of this paper is that the large kinematic 
interaction found by recent authors at low tempera­
tures can be understood as a nonphysical projection 
of the state vectors. This effect can be allowed for, 
and is relatively innocuous, as the eigenvalues of 

states with nonzero physical projection are physical. 
It is, therefore, still possible that the nonphysical 
eigenvalues may cancel out in the antiferromagnet, 
as they do in the ferromagnet at low temperature. 

ACKNOWLEDGMENTS 

The author wishes to thank Dr. S. Doniach for 
supervising this work. He is also indebted to the 
Science Research Council for the award of a research 
studentship. 

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 10, NUMBER 12 DECEMBER 1969 

Statistical Average of Product of Phase Sums Arising in the Study of 
Disordered Lattices. I 

I'RIYAMVADA SAH 

Department of Physics, Banaras Hindu University, Varanasi, India 

(Received 27 January 1969) 

A recurrence formula is established to evaluate the statistical average (S(kl)S(ka) ••• S(kn» in the 
limit of N --+ co, where S(k) = ~f:,1 elUl, Xl, XI> ••. , XN, denotes the position of atoms in a disordered 
lattice, under the condition that interatomic distances are statistically independent and have the same 
probability distribution s(r). 

1. INTRODUCTION 

If we consider the one-electron levels in a disordered 
array of atoms, the electronic energy levels depend on 
the position of atoms as parameters. The perturbation 
expansion of energy in certain approximations would 
involve the product of phase sums1 and hence the 
formulas derived here are useful in evaluating the 
terms and may be of use in other connections also. 
Let Xl , X2' ••• , X N denote the positions of atoms from 
one end and '1' '2' ... , 'N the interatomic distances. 
We define 

N 
S(k) = ~eik"'l 

;=1 

= e ik1'1 + eik(rl+rz) + ... + eilr(rl+ra+'" +rN). (1) 

For any n, 

S(k1)S(k2) ••• S(kn) 

~ exp [i(Klr! + ... + Knr n}], (2) 
KltK",···,Kn 

where 
(3) 

and K2 , ••• , Kn are sums of any subset of kl' k2' ... , 
k n including the full set and empty set in such a way 

I P. Sah, Ph.D. thesis, University of London, 1959. 

that the terms in Kv+1 are subset of terms in Kv (v = 
1,2, ... , N - 1). This restriction in forming the 
sum appearing in Eq. (2) will be called condition I. 
Denoting the left-hand side of (2) by E(N), we have 

E(N) = S(k1)S(k2) ... S(kn). (4) 

The problem is to determine 

(E) = lim (E(N»). 
N .... oo 

We shall first derive (E(N»), where N can be any 
number greater than n, and finally proceed to the limit 
as N ~ 00. This result is established under the 
assumption that none of kl' k2' ... ,kn or their 
partial sums are zero. If any partial sum vanishes, the 
procedure has to be modified and will be considered 
later. These are needed in the complete ,discussion of 
perturbation terms. 

In all terms of the right-hand side of Eq. (1) Kl is 
fixed and given by Eq. (3), but K2 , ••• , Kn vary subject 
to condition I. Let us write 

SeN) = SW(N) + S(2)(N) + ... + sn(N), (5) 

so that, in every term of SO)(N), Kv is either equal to 
Kl or O. In E(2)(N), at least one ofthe Kv = Kil ) , where 
o C Kill C Kl • In SU)(N), Kv assumes j distinct values 
K l , Ki l

), ••. , K~-l). Every term in the rhs of Eq. (5) 
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is further subdivided: 

EIil(N) = E~j)(N) + ... + E,V~i+l(N), 
j = 1,2, ... ,n, (6) 

where the subscript i in E~j)(N) gives the number of K's 
which are equal to K1 • The highest possible subscript 
is N - j + 1 because, if the term has j distinct K's in 
it, the number of K's equal to Kl cannot exceed 
N-j+1. 

2. DETERMINATION OF (E<i)(N» 

(EU)(N») is now determined by induction. We assert 
that, for any N ;;;:: j, 

(EIil(N») = PlKl , Kio, ... , Kij
-

H ) 

+ QlKl , Kil
), ... , KiH ), N), (7) 

where P j and Qi are defined as follows: 

Pi = L f(K l ) 

K1.K1(ll.· ... K/-1 1 - f(K l ) 

X f(Kil
» f(KiHl ) 

1 - f(Kio ) 1 _ f(KiH»' (8) 

where Kl is given by Eq. (3) and K?l, ... , K?-ll are 
all distinct. Kiil, i = 1, ... , (j - 1), are partial sums 
of kl' k 2 , ••• , k n in such a way that the terms of 
Kiil C Kii-ll, i = 2, 3, ... ,j - 1. This will be re­
ferred to as condition II.f(Kl ) is the Fourier transform 
of the probability distribution s(r), i.e., 

f(Kl ) = f e iK1rs(r) dr. (9) 

s(r) is normalized and, therefore, If(Kl ) I < l. The 
functions 

Q .(K K(l)... K U- ll N) 
3 1, l' '1 , 

= "" CifN(K) + Cu>tN(K(ll) 
. £., (j-1) 0 III 

K1.···.K1 
+ ... + C~i}"dN(K~Hl), (10) 

where C?l, i = (O,j - 1), are some functions of 
f(Kl),f(Ki1l), ... ,f(KiH », but do not depend on N. 
In writing (EU)(N») as Pi + Qi' we have separated the 
parts which are dependent and independent of N. 

To establish the basis for induction we show that the 
assertion is true for j = 1 and any N;;;:: 1. By defini­
tion, 

E(1)(N) = eiK1r1 + e iK1(r1+r.) 

+ ... + eiK1(r1+r2+"·+rN). (11) 

The terms on the right are Eill, E~ll, ... , 8W(N), 
respectively. 

Since r1 , r2 , ••• , 'N are statistically independent, on 
averaging both sides of Eq. (11) we have, therefore, 

(8W (N») = f(Kl) + f2(Kl) + ... + PV(Kl) 

f(Kl) f(Kl ) 'fN(K) 
1 - f(Kl ) 1 - f(Kl ) 1 

= P1(Kl ) + Ql(Kl , N). 

PI and Ql have the postulated forms. We now show 
that the Eqs. (7), (8), and (10), which have been 
assumed for j, also hold for j + l. 

3. CORRESPONDENCE BETWEEN E(i)(N - /1) 
AND EV+ll(N) 

The nature of this correspondence can be brought 
out as follows. The terms of 8(jl(N) can be considered 
to arise from different arrangement of N objects 
, , ... , in)' cells K KW ... K(i-ll whl'ch are 
l' 2' ,N l' l' '1 

the values of K1 , K2, ... , KN appearing in Eq. (2). 
The cells are numbered from 1 to j and placed as 
shown in diagrams 1 and 2. 

Objects I '1,'.,"', r;'l 

Cell K1 

_';'_1_+1_' _. '_'_' _';'_2 _I ::: 1_';'_;-_1_+1_' -' '-'-' -';.-; 
K~ll Kf-') 

Diagram 1. 

If Ai < N, then ';'j+1 - 'N are undistributed. 
The above diagram is replaced by a simpler diagram. 

Object 11"", A, I A, + 1, ... , .1.2 I ... I Aj _, + 1, ... , A; I 
Cell 1 2 . . . j 

Diagram 2. 

If Aj < N, then Aj + 1, ... ,N are undistributed. 
This diagram corresponds to a term 

exp [iKl(rl + r2 + ... + r;'l) 
+ Kil)(r;,,+! + ... + r;..) 

+ ... + Kii-l)(r;,;_,+! + ... + r;.;)] 

in Eq. (2). There is at least one object in each cell, 
hence their number is ~ N - (j - 1) in any cell. 
Some may be left undistributed. All the terms of 
8(jl(N) are obtained by assigning to AI, A2 , ••• , Ai 
all values compatible with the above conditions and 
Kill, Ki 2

), ••• , K~i-l) taking all values in accordance 



                                                                                                                                    

STUDY OF DISORDERED LATTICES. I 2265 

with condition II. In order to obtain arrangements 
which give rise to the terms of EUH)(N), the cells are 
renumbered from 2 to j + I and a new cell I is added 
in the front. The objects are rearranged in the new 
set of cells. This rearrangement is shown in diagram 3. 
'1 always has the coefficient K1 so it must be placed in 
cell I, therefore it is taken from cell 2 and placed in 
cell 1. 

The number of objects in cells 2 to j + I is restored by 
shifting them from cell p to p - 1, P = 3, ... ,j and 
in cell j + 1 by drawing on undistributed objects as 
shown in diagram 3. Thus, to every arrangement in 
3(i)(N) except those in which all objects are distrib­
uted, there corresponds one arrangement in E~H)(N). 
It is clear that there is one-to-one correspondence 
between the terms in 3(i)(N - 1) and 3~H1)(N). 

Objects /1,"" Al 

Cells 1 2 1 

A2 + 1, ... , A3 1 ... 1 A;_l + 1, ... , A; 1 
: '2J(N) 

3 ... } 

A; + 1, ... , N undistributed 

Objects 

Cells I I 

2,···, Al + 1 Al + 2, ... , A2 + 1 I A2 + 2, ... , A3 + 1 1"'1 A;_l + 2, ... , A; + 1 I 
------II---~--- 1-------- : StH11(N) 

2 3 4 .. · }+1 
A; + 2, ... , N undistributed. 

Diagram 3. 

Similarly, a one-to-one-correspondence exists between 
the terms of EW(N - ft) and E~+l)(N). 

4. EVALUATION OF (E(H1)(N» 

Replacingj by j + I in Eq. (6) gives 

(E(Hll(N» = (3iiH )(N» + ... + (3N::Y(N», 

and (3~H)(N» can be obtained from (3 U)(N - 1) 
by replacing K1, Kill, ... ,KiHll by Ki1), ... , KU) 
(equivalent to relabeling) and multiplying the entire 
expression by f(K1), which is equivalent to putting 
object I in the newly added cell I in (3~H)(N». 
Therefore, by (7), we have 

(EiHll(N» = f(K1){P,(Ki1), Ki2), ... , Kiil 

+ Q,(KiJ
), Ki2

),"', Kiil , N - I)}. (12) 
Similarly, 

<E~Hl)(N» = j2(Kl){P;CKill, ... , Kii» 

+ Q;CKill, ... , Kiil , N - 2)} (13) 
and, finally, 

(3lJ:::~)(N» = f N- i(K1){P,(Ki1), Ki2), ... , Kiil) 

+ Qi(Kio, Ki2
), ••• , Kii),j)}. (14) 

It follows that the minimum value of N in (3UH )(N» 
isj + 1. 

Using Eqs. (6), (12), (13), and (14), we have 

(3(Hl)(N» 

= p;(Ki1), Ki2), ... , Kiil) 

x {j(K1) + f2(Kl) + ... + fN-i(K1)} 

+ f(K1)Q;(Kill , Ki2), ... , Kin, N - 1) 

+ f 2(K1)Qi(Ki1), Ki2), ... , Kiil , N - 2) 

+ ... + f N- i(K1)Qi(Kill , Kl2)," " Kin,}). (15) 

One term C~i~r(Ki1» of Q; in Eq. (10) will give the 
sum 

eii) {j(K1)fN- 1(Ki1» + f2(K1)fN-2(Kill ) 

+ ... + fN-i(K1)fi(Ki1»} 

= edN(Kill) + edN(K1), 

where e1 and e2 do not depend on N. Hence the sum in 
Eq. (10) will give terms which can be put in the form 

, {C'(i+l),N(K ) 
III £.., UI 0 J 1 

K1 ,···.K1 

+ eiiH1 N(Ki1» + ... + e~i+11N(Kiil,j)}, (16) 

where e~(Hl), eii +1), •.• , eji+l) are independent of N. 
Their explicit form is not needed for the present 
purpose because in the limit of large N this sum will 
vanish: 

(3(i+1 )(N» 

= p;(Kio, Ki2), ... , Kiil) 

Therefore, 

x [f(K1) - jN-iH(K1)]/[1 - f(K1)] 

+ L l{e~i+11N(Kl) 
K1.· ... K1J) 

+ ei i+11N(Kill) + ... + e~iH1N(Kii»}. 

PiH(K1, Kill, ... , Kin) 

= p;(Kio, Ki2
), ••• , Kli »f(K1)/[l - f(K1)] 

L fCK1) fCKi1» f(Kii» 

K"K l
l1l ,''',KIJ) 1 - f(K1) 1 - f(Kill ) 1 - fCKi il ) 

(17) 
and Qi+l(N) --+ 0 as N --+ 00. 
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5. CALCULATION OF (E(N» 

(3(N» = {PI(KI) + QI(KI , N)} 

+ {P2(KI , K~1l) + Q2(KI , Kill, N)} 

+ .,. + {Pn(KI , K~l', ... , K~n-1l) 
+ QiKI' K~1l,···, K~n-l', N)}. (18) 

In the limit N - 00, 

lim (3(N» 
N .... ." 

= (3) = (S(kl )S(k2) ••• S(kn» 
_ ~ f(K1) + ~ f(K1) f(Ki1l) 
-~ ~ w 

K11 - f(KI) K1oK1(1) 1 - f(K1) 1 - f(KI ) 
f(KI) f(K~n-1l) 

+ ... + ~ ("-1) 1 -f(K )' .. 1 -f(K(n-I')' 
K1'· ·.K1 1 I 

(19) 

This formula gives the average (S(kl)S(k2) ••• S(kn» 
in the limit N - 00 in terms of the Fourier trans­
form of the probability distribution of interatomic 
distances. 

We will now express Eq. (19) as a recurrence formula. 
This is also more suitable for the actual computation of 
(S(k1)S(k2) ••• S(kn» as a function of kl' k2' ... , 
k n • Since KI is fixed, 

(S(k1)S(k2) ••• S(kn» 

= f(K I ) (1 + ~ f(K?'~ I 

1 - f(KI) K1(1) 1 - f(K/ ) 

+ ~ f(Ki1' ) f(Ki
21

) 

K1(U.K1(1) 1 - f(Kil') 1 - f(Ki 21
) 

f(Ki1l ) + ... + ~ 
K1(1) •.••• K1("-1) 1 - f(K~1l) 

f(Ki 21
) f(Kl n

-
II») 

x 1 _ f(Ki2» ••• 1 _ f(Kin- ll)' (20) 

From condition II, Kil ) in the first sum can be the 
sum of 1, 2, ... , n - 1 elements among kl' k2' ... , 

k n • Those K?) which are equal to one element occur 
only in this term since only those Kill which have 
nonnull subsets can appear in higher sums. From 
Eq. (20), their sum is ~;=l (S(k;». Those Kill which 
are a sum of two terms appear in this sum and the 
second sum. These terms can be combined giving 

f(Kil') 1 f(Ki
21

) ) 

~ 1 - f(Kill) ( + K~ld - f(Ki21 ) , 

where ~ means that Kill is the sum of any two k's 
from kl' k2' ... , k n and ~K 1 (I) means that sum over 
Ki 2) subject to condition II, i.e., it is different from 
Kill and 0, and it is a sum of subset of terms of K?'. 
These give rise to ~;.~=l (S(k;)S(ki»' Those Kil ) which 
are sum of (n - 1) k's occur in the second, third, ... , 
nth terms and the collection of all these is 

~' (S(k;)S(ki)" • S(k l»· 
i,j," ',l 

We thus obtain the recurrence formula 

n 

+ ~' (S(ki)S(ki» 
i.I=1 

+ ... + i,i. ~:1=1(S(k;)S(ki) ... S(kl»} (21) 

There are n terms within the bracket which involve the 
mean value of S and its twofold, threefold,"', 
(n - I)-fold products. The mean value of S can be 
found by putting n = 1. This result is then used to 
obtain the mean of twofold products which is given in 
terms of mean of S. To calculate the mean of the n­
fold product of S, the mean of S, and its twofold, 
threefold, ... , (n - I)-fold products will have to be 
calculated successively by using Eq. (21). An extension 
of this result when k's are such that some partial sums 
vanish will be given in a later publication. 
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We present a continuous representation theory based on the affine group. This theory is applicable 
to a mechanical system which has one or more of its classical canonical coordinates restricted to a smaller 
range than - (X) to (x). Such systems are especially tro~blesome in the .u~ual <j.uantization approach since, 
as is well known from von Neumann's work, the relatIon [P, QJ = - tllmphes that P and Q must have a 
spectrum from - (X) to (X) if they are to be self-.adjoint. Co~~uently, if the spectrum of either P or g is 
restricted, at least one of the operators, say Q, IS not self-adjOint and does not have a spectral resolutIOn. 
Thus Q cannot generate a coordinate representation. This leads us to consider a different pair of operators, 
P and B, both of which are self-adjoint and which obey [P, BJ = - iP. The Lie group corresponding to 
this latter algebra is the affine group, which has two unitarily inequivalent, irreducible representations, 
one in which the spectrum of P is positive. Using the affine group as our kinematical group, we have 
developed continuous representations analogous to those ~auder and McKenna deyeloped for t~e 
canonical group, and have shown that the former representatIOns have almost all the desirable propertIes 
of the latter. 

1. INTRODUCTION 

The general concepts and properties of continuous 
representation theory (CRT) have been developed by 
Klauder1 ; for convenience we briefly recall them here: 
Let Je denote abstract Hilbert space and let Uri] be a 
family of unitary operators on Je. If we now choose 
an arbitrary but fixed unit vector ct>o E Je, called the 
fidUcial vector, then we can generate a subset of Je by 
operating on ct>o with Uri]. Denote this subset by 6; 
then 

where t is some label· space. With any vector 'I" E Je 
we can now associate the complex, bounded, con­
tinuous function 

",0) = (U[I]ci>o, '1"), 

and the set <r == {",(l):'¥ E Je} is called a continuous 
representation of Je. 

For the further development it is convenient to let 
the U[/] be the elements of a kinematical group, and to 
interpret the labels I as the classical canonical coordi­
nates p and q for a system with one degree of freedom, 
as we shall be considering here. Without going into 
any details at this point, we just mention that use of 
the classical canonical coordinates as the labels leads 
to a particularly simple physical interpretation of the 

• This paper is based on a thesis submitted by E. W. Aslaksen to 
Lehigh University in partial fulfillment of the requirement for the 
Ph.D. degree. 

t Part of this work was done while the author was at Syracuse 
University, with National Science Foundation support. 

11. R. Klauder, J. Math. Phys. 4,1055 (1963); 5,177 (1964). 

theory.2 For the common case, which we shall refer to 
as the canonical case, when the classical Cartesian 
coordinates p and q can take on any value on the 
real line, the CRT has been developed in detail by 
Klauder and McKenna.s In this development, the 
unitary operators of interest are the Weyl operators 
Ufp, q] = exp [i(PQ - qP)], where Q and P are the 
familiar self-adjoint operators satisfying [Q, PJ = iI. 

In this paper we develop a CRT appropriate to a 
different group and suitable for different dynamical 
systems. Suppose, for example, that the range of the 
classical variable p is restricted to be positive, p > O. 
Such restricted coordinates are not unknown; in 
particular, we were motivated to undertake the 
present investigation by the case of the gravitational 
field. There the metric has to satisfy certain positivity 
requirements,' which lead to restrictions on the range 
of the components g/lv' Such restrictions must be 
reflected in the quantum theory; in our example this 
requires that the spectrum of the operator P be positive, 
i.e., P > O. According to a theorem of von Neumann, I) 
such a restriction is not compatible with having Q and 
P both be self-adjoint, and thus the appropriate 
unitary operators cannot be the familiar Weyl oper­
ators of the usual canonical theory. 

Elsewhere6 we have argued that the affine group is 

2 J. R. Klauder, Talk given at Seminar on Unified Theories of 
Elementary Particles, Munich, 1965 (unpublished); J. R. Klauder, J. 
Math. Phys. 8, 2392 (1967). 

3 J. R. Klauder and 1. McKenna, J. Math. Phys. 5, 878 (1964); 6, 
68 (1965). 

'C. Moller, The Theory of Relativity (Oxford University Press, 
London, 1962), p. 235~ 

, J. von Neumann, Math. Ann. 104, 570 (1931). 
8 I. M. Gel'fand and M. A. Naimark, Dokl. Akad. Nauk SSSR, 

55,570 (1947); E. W. Aslaksen and J. R. Klauder, J. Math. Phys. 9, 
206 (1968). 
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pertinent for this problem. This group is abstractly 
defined as the group of linear transformations without 
reflections on the real line: x --+ (Po/p)x - q. With this 
parameterization the unitary group elements may be 
given as 

U[p, q] = e-iqPeiln(p/po)B, (1.1) 

where Po > 0, and where P and B are self-adjoint 
generators which fulfill 

[B, P] = iP. (1.2) 

Although this group is formally "close" to the canoni­
cal group, as demonstrated by multiplying both sides 
of the canonical commutation relation 

[Q,P] = iI 
by P and making the identification 

B = HPQ + QP), 

the actual unitary representations of the affine group 
are sufficiently different from those in the canonical 
case to necessitate a reexamination of the associated 
continuous representations. It is the purpose of this 
paper to carry out that reexamination for a finite 
number of degrees of freedom. 

2. THE OVERCOMPLETE FAMILY OF STATES 

The unitary representations of the affine group have 
been studied,6 and it is known that there exist two and 
only two unitarily inequivalent, irreducible representa­
tions, one for which P is positive and one for which it 
is negative. In particular, if we take our representation 
space :R to be VCR) and denote by R+ and R- the 
positive and negative half of the real line, respectively, 
then :R can be written as the direct sum of two sub­
spaces which are invariant under U[p, q]: 

where 

:R+ == {rp(k):rp E VCR), rp(k) = 0 if k < O}, 

:R_ == {rp(k):rp E L2(R), rp(k) = ° if k > O}. 

If rp(k) E:R and we choose the particular representa­
tion where P is just multiplication by k, then 

We can evidently treat both inequivalent representa­
tions in V(R+) by writing 

U[p, q]rp(k) = (~)!e+iqkrp(~O k), (2.2) 

where rp(k) E V(R+), and the minus sign corresponds 
to the representation where P has positive spectrum, 
the plus sign to the representation where P has negative 
spectrum. Of course, since we have chosen P > 0, we 
shall always use the corresponding irreducible repre­
sentation. 

From the commutation relation (1.2) we can imme­
diately deduce the following relations, which are 
frequently used in this paper: 

U[p, q]U[p', q'] = U[pp'/PO' q + (PO/p)q'], 
(2.3) 

Ut[p, q] = U[p~/p, -qp/po], (2.4) 

PU[p, q] = .E. U[p, q]P, (2.5) 
Po 

BU[p, q] = U[p, q]( B + ~: p), (2.6) 

QU[p, q] = U[p, q](; Q + qI). (2.7) 

In order for the set 6 to be suitable for constructing 
a continuous representation, we shall demand that it 
have the following three properties: 

(1) For each <11 E 6 and every () > 0, there exists 
a vector <11' E 6, <11' =;6 <11, such that 11<11 - <11'11 < (). 

(2) The mapping 1--+ <11 [/] is a many-one con tinuous 
map of a separated topological space L onto 6. By 
continuity in 6, we mean the usual weak continuity 
in X. Thus, if In --+ I, then (<1I[/n], 'Y) --+ (<11[/], 'Y) for 
all 'Y EX. 

(3) The span of 6 is dense in X. 

Such a subset 6 is called a:1 overcomplete family of 
states (OFS). Following Klauder and McKenna,3 we 
show that the subset 6 generated by an irreducible 
representation of the U[p, q] in Eq. (1.1) is indeed an 
OFS. 

Lemma 2.1: The function V[q], defined by V[q] == 
e-iqp

, is a strongly continuous function of q, i.e., 
qa. --+ q implies that II (V[qa.] - V[q))'Y1l --+ ° for each 
'Y E X. The same is true for W[p] = exp [i In (P/Po)B]. 

Proof: Let E > ° be given, and () = Iqa - ql > 0. 
Then 

II (V[qa] - V[q])'Y1l = IIe-iqP(e±i~P - I)'YII 

S lI(e±i~P - /)'YII. 

By assumption e±i~P is weakly continuous, hence 
strongly continuous, so there exists a ()o such that 
() < ()o implies that the last expression is less than E. 
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Lemma 2.2: The mapping, R+ X R -+ 6, defined 
by <I>[p, q], is continuous when R+ x R has the prod­
uct topology and Je the strong topology. 

Proof: Let (Po, qo) and E > 0 be given. Then 

11<1> [Po , qo] - <I>[p, q]1I 
= 1!V[qo]W[Po]<I>o - V[q]W[p]<I>oll 

::s; 1!V[qo] W[Po]<I>o - V[p] W[Po]<I>oll 

+ 1!V[q] W[Po]<I>o - V[q] W[p]<I>oll 

= II V[qo] W[po]<I>o - V[q] W[Po]<I>oll 

+ II W[po]<I>o - W[p]<I>oll == A + D. 

Because of Lemma 2.1 , there exists a <5 > 0 such that 
Ipo - pi < <5, Iqo - ql < <5 implies. that A < E/2, 
D < E/2. 

Consider the functions "P(P, q) == (<I>[p, q], 'Y), 
'Y E Je. Since <I>[p, q] is strongly continuous, it is 
certainly weakly continuous; thus "P(P, q) is a con­
tinuous function. Schwartz's inequality, I('Y, <1»1 ::s; 
II'YII . 11<1>11, gives I"P(P, q)1 ::s; II'YII. Furthermore, "P(p, q) 
is square integrable. To show this, denote the unitary 
map from Je to :R± by T±, and let rf>o(k) E:R and 
"P(k) E :R be the functions corresponding to <1>0 and 'Y, 
respectively, under T±. Then 

T±<I>[p, q] = (;le+iqkrf>o(~O k) 

and 

"P(p, q) = (<I>[p, q], 'Y) 

= (T±<I>[p, q], T±'Y) 

= I e±iqk(;)! rf>ri(; k ) "P(k) dk 

= (27Tr!Ie±iqk[C;0)trf>ri(:0 k)"P(k)] dk 

= (27T)-t I e±iqkh(p, k) dk, 

where 

h(p, k) = C;o)! rf>ri(; k)1p(k). 

The functions rf>o(k) and 1p(k) are measurable on 
R+, the positive half of the real line. Since p > 0, p-l 
is a measurable function; therefore cf>o(Po/pk) is also 
measurable7 as a function of p, so h(P, k) is measurable 
on R+ X R. However, 

7 P. R. Halmos, Measure Theory (D. Van Nostrand Co., Princeton, 
N.J., 1950), p. 81. 

withPoJpk = a, dp = -p2JPok da, and 

The last integral is not finite for all rf>o E:R, so let :Ro 
be the subset of:R for which the integral is finite, and 
let the value of the integral be M. Then 

and 

By the theorem ofTonelli,8Ih(p, k)12 is integrable over 
R+ X R+, and then Fubini's theorem8 shows that the 
integration can be performed in any order; in partic­
ular, S Ih(P, k)12 dk exists for all p except possibly for 
a set of measure zero. 

Further, h(P, k) is integrable in k since it is the 
product of two functions which are both square 
integrable in k. So, for almost all fixed p, 1p(p, q) is the 
Fourier transform of a function which is both integ­
rable and square integrable on R+ and, as a function 
of q, square integrable for almost all p. By Parseval's 
theorem, 

and since we have shown that the right-hand side is an 
integrable function of p, Tonelli's theorem finally gives 
that 1p(p, q) E V(R+ x R). 

If we set ).(p, q) = (<I>[p, q], A), then the same 
arguments give 

II1p*(p, q»).(p, q) dp dq = 27TM(o/, A). 

In the foregoing we chose the measure with respect 
to which the integrals over 6 exists as simply dp dq 
times an arbitrary constant. Klauderl has shown that, 
so far as the result of the integration being propor­
tional to the inner product goes, there is no loss ofgener­
ality in taking the measure to be the left-invariant 
group measure. For the affine group the left-invari­
ant group measure is (in the usual notation for Lie 
groups9) 

8 E. J. McShane, Integration (princeton University Press, Prince­
ton, N.J., 1944), pp. 137, 145. 

• P. M. Cohn, Lie Groups (Cambridge University Press, London, 
1965). 
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with a = (p', q'), t = (p, q), and e = (Po, 0). Then 

f-ll = Po , 

[

l!... 0] 
o Po 

P 

and I f-le I = ~l = 1. Thus, the measure is just a con­
stant times dp dq and, in view of the previous calcu­
lations, we choose 

df-l(p, q) == (21TM)-l dp dq. 

We mention that the right-invariant group measure 
is not equal to the left-invariant group measure; we 
find 

and ~r = p; thus the right-invariant measure is 
proportional to p-l dp dq. 

Having obtained these results, we can simply refer 
to the arguments of Klauder and McKenna3-in 
particular, those arguments leading to their Theorem 
3.2 and Lemmas 3.3 and 3.4, from which our first 
theorem immediately follows: 

Theorem 2.1: 
(a) Let'Y E Je; then 

'Y = ff(<1>[p, q], 'Y)<1>[p, q] df-l(p, q). 

(b) The span of 6 is dense in Je. 
(c) The identity operator may be written as 

1= ff<1>[p, q]<1>t[p, q] df-l(p, q). 

Consequently, 6 is an overcomplete family of states. 

3. THE CONTINUOUS REPRESENTATION 

Let the map C:Je ---+ <r be defined by C'Y = 
tp(p, q) == (cI>[p, q], '1") for each 'I" E.le. Thus <r == 
{tp(p, q)}. Since <1> [p, q] = U[p, q]<1>o, it is clear that 
<r will depend on <1>0; this dependence will be discussed 
later. Also, depending upon which of the two irre­
ducible representations of the affine group we use, we 
get two spaces, <r+ and <r_. To see what these spaces 
consist of, consider 

Let q = q' + iq"; then the space <r+ arising from :R+ 

will consist of those functions which are the limit as 
q" ---+ 0 of functions analytic in the lower half of the 
complex q plane, whereas <r_ will consist of those 
functions which are the limit as q" ---+ 0 of functions 
analytic in the upper half plane. The two spaces have, 
except for the function which is identically zero, no 
elements in common, i.e., <r+ 11 <r_ = {O}. By <r 
we mean either <r+ or <r_. 

We define the inner product in <r by 

(tp', "1') = f f tp'*(p, q)tp(p, q) df-l(p, q). (3.1) 

Using the results ofthe previous section, we can show 
that the following theorem is true: 

Theorem 3.1: The set <r, given by tp(p, q) = 
(<1> [p, q], 'Y) for all 'Y E Je, is a family of bounded, 
continuous, and square-integrable functions. When 
supplied with the inner product displayed in Eq. (3.1), 
the set <r is a Hilbert space which is unitarily equiv­
alent to the original space Je under the unitary 
mapping 

C'Y = (<1>[p, q], 'Y) = tp(p, q), 

C-1tp(p, q) = f f tp(p, q)<1>[p, q] df-l(p, q) = 'Y. 

The set <r is called a continuous representation of Je. 
We now investigate the existence of the derivatives 

of tp(p, q). Let j)p and j)B be the domains of P and B 
on Je. We want to see if U[p, q]j)p c j)p and 
U[p, q]j)B c j)B' Let <1> E j)p. Using Stone's theo­
rem,s we write P as 

lim..!:. (V[q'] - 1). 
a' .. oq' 

Then 

i 
- (V[q'] - 1)U[p, q]<1> 
q' 

= :,(exp (-;q'(1 - ;)p) 
X U[p, q]V[q'] - U[p, q])<1> 

= ;, exp ( -iq'( 1 - ~o)) U[p, q](V[q'] - 1)<1> 

+ ;, U[p, q](exp (-iq'(:o - 1 )p) -1)<1>, 

and in the limit q' ---+ 0, PUlp, q]<1> = U[p, q](P/Po)P<1>; 
thus U[p,q]j)p c j)p. 



                                                                                                                                    

CONTINUOUS REPRESENTATION THEORY 2271 

Let q> E ~B' Then 

In (;'/po) (W[p'] - I)U[p, q]q> 

= i (exp (iq(1 _ po)p) 
In (p'/Po) p 

X U[p, q]W[P'] - U[p, q])q> 

= i exp (iq(1 - Po)p) U[p, q](W[p'] - I)q> 
In (pi/PO) p 

+ i U[p, q](exp (iqp(1 _ po)p) - I)q>, 
In (pi/PO) P 

and in the limit pi/PO ---+- 1, 

BU[p, q]q> = U[p, q](B + pqpolp)q>. 

So U[p, q]q> E ~B if and only if q> E ~B n ~p, or 
U[p, q]~B n ~p c ~B n ~p. We define ~B and ~p 
by T:~B---+-~B' T:~p---+-~p, where T:Je---+-~. 

Assume 1>0 E ~B n ~ p n ~o, and let In (P/Po) == IX; 
then 

O'IjJ = lim 'IjJ(1X + ~IX, q) - 'IjJ(IX, q) 
OIX A~-+O ~IX 

= lim (U[IX, q]{W[~IX] - I}q>o, '1"). 
A~-+O ~IX 

From Stone's theorem 

I, W[~IX] - I 'B 
1m = Z • 

A~-+O ~IX ' 
thus 

O'IjJ , 
OIX = -Z(U[IX, q]Bq>o, 'Y). 

Further, dlX/dp = p-l, so O'IjJ/OIX = PO'IjJ/op, and 

~; = -ip-l(U[p, q]Bq>o, '1"), 

I ~; I ::; p-l II Bq>oll . 11'1"11· 

Similarly, 

~: = !~~o({V[~1~ - I}U[p, q]q>o, '1") 

= i(PU[p, q]q>o, '1") 
= ipPOl(U[P, q]P<I>o, '1"). 

Thus, 

I ~: I ::; pPol Ilpq>oll . 11'1"11· 

The continuity of the derivatives follows directly 
from the strong continuity of the family of operators 
U[p, q]. 

4. DIAGONAL EXPECTATION VALUES 

As we have seen, p and q cannot be the eigenvalues 
of P and Q. But we can introduce a connection between 
the operator formalism and c numbers by requiring 
that p and q be the expectation values of P and Q, 
respectively, and also that the expectation value of 
B be pq, with respect to the states q>[p, q]. We have 

(q>[p, q], pq>[p, q]) = (U[p, q]q>o, PU[p, q]q>o) 

= (q>o, Ut[p, q]PU[p, q]q>o) 

= pPol(q>O' pq>o) == p. 

Thus, the fiducial vector q>o must correspond to a 
state of the system in which the expectation value of 
P is Po. In the representation space ~, this means 

I1>t(k)k1>o(k) dk = Po. (4.1) 

In addition, we always have the normalization 

This shows the reason for introducing the constant 
Po; its value is determined by Eq. (4.1). 

The expectation value of B is 

(q>[p, q], Bq>[p, q]) 

= (q>o, Ut[P,q]U[P,q](B + ;: p)q>o) 

= (q>o, (B + ;: P )q>o) = (q>o, Bq>o) + qp. 

We can secure that the expectation value of B equals 
pq by demanding that (q>o, Bq>o) vanish, for which it 
is sufficient that q>o be real. 

so 

The expectation value of Q is determined as follows: 

QU = Q exp [-iqP] exp [iln (:JBJ 
= exp [-iqP](Q + qI) exp [iln (:JBJ 
= exp [-iqP] exp [i In (:JB ] (~o Q + qI) 

= U(~Q + qI), 

UtQU = utu(~oQ + qI) = ~oQ + qI. 

Then 
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We restrict <1>0 to satisfy Then 

(<1>0' Q<I>o) = 0; (4.2) (X, P-1<l»(A, 'Y) 

this is always satisfied if 1>o(k) is real; thus (<I>[p, q], 
Q<I> [p, q]) = q. 

In summary, we list the requirements on the 
fiducial vector <1>0: 

(a) The unit vector <1>0 lies in the domain of P, 
P-I, Q, and B. 

(b) The expectation values of these operators are 
respectively chosen as 

(<1>0' P<I>o) = flc/>o(k)1 2 k dk == Po, 

(<1>0' p-1<l>o) = fl1>0(k)12 k-1 dk == M, 

(<1>0' Q<I>o) = (<1>0' B<I>o) = O. 

These restrictions are not severe and there is a large 
class of allowed vectors <1>0' For example, it suffices 
that 1>o(k) be real, several times differentiable, and 
vanish sufficiently fast at 0 and 00. 

5. A WEYL-LIKE REPRESENTATION OF 
GENERAL OPERATORS 

Throughout CRT we make use of the operators 
V[q] and W[p]. Analogous operators were introduced 
in the canonical case by WeyPO as a means of going 
from classical to quantum mechanics; in particular, 
he asserted that the quantum operator corresponding 
to the classical quantity 

f(p, q) = ffei("'1J+Tq)~(a, 1') da dT 

should be 

F(P, Q) = ffei("'P+TQ)~(a, 1') da dT. 

We now investigate the use of the analog of these 
operators in the affine case, and spell out more 
clearly under what conditions Weyl's representation 
holds. We are always assuming an irreducible repre­
sentation of U[p, q] and that the spectrum of P is 
positive, such that p-l exists and pi is uniquely 
defined. 

First of all, consider the following calculation. We 
know from the development in Sec. 2, particularly 
Theorem 2.1, that 

(<1>0' p-1<l>o)(A, 'Y) 

If dp dq 
= (A, <I>[p, q])(<I>[p, q], 'Y) ~ . 

10 H. Weyl, The Theory of Groups and Quantum Mechanics 
(Dover Publications, Inc., New York, 1931). 

= ff(A, U[p, q]<I»(U[p, q]X, 'Y) d~:q, (5.1) 

so that 

I'Y) (XI p-1 = f f(X, Ut[p, q]'Y)U[p, q] d~:q 
and 

I'Y)(XI = ff(X, PUt[p, q]'Y)U[p, q] d~:q . 

The latter equation can be generalized to 

A = ff Tr {APUt[p, q]}U[p, q] d~:q, (5.2) 

and we define the kernel of A to be 

ii(p, q) == Tr {APUt[p, q]}. 

In the canonical case the kernel does not contain the 
operator P, and it is straightforward to show that the 
appearance of this P is connected with the fact that 
the right- and left-invariant measures are not the same 
for the affine group. In Eq. (5.1), the left-hand side 
remains invariant if we operate on both A and'Y with 
U[r, s], the right-hand side must be invariant under 
left multiplication, i.e., we must use the left-invariant 
measure. However, we can rewrite the equation by 
letting <I> = P0; using the relation 

U[p, q]P = por1PU[p, q], 
we obtain 

(X, 0)(A, 'Y) 

=Jf(A, PU[p, q]0)(U[p, q]X, 'Y) Po dp dq , 
P 21T 

and if we now operate on X and 0 with U[r, s], the 
left-hand side remains invariant. But this corresponds 
to multiplication on the right under the integral, so 
that we must now have the right-invariant measure, 
which indeed we do. If we commute P through 
O[p, q], the measure becomes left invariant again, 
and we are back to the first case. If the P were not 
present, the right- and left-invariant measures would 
have to be identical. 

Leaving aside the question of the relation between 
the type of operator and type of kernel for the 
moment, we first show that the closure of the set 
U[p, q] (in the weak topology) equals the set of all 
linear operators on Je. Since the representation of the 
Weyl-like operators is irreducible, Schur's lemma 
says that if [B, U[p, q]] = 0 for all p, q, then B,...", [. 
Let a prime on an operator algebra denote the set of 
all bounded operators which commute with all the 
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operators in the algebra. Then we have 

{U[p, q]}' = {I}. 
But further we clearly have 

{U[p, q]}" = {I}' = $(Je), 

where $(Je) is the set of all bounded operators on 
Hilbert space. 

We need the following theorem, due to von Neu­
mann: 

Theorem 5.1: Let A be a *-algebra of operators on 
Je such that I E A. Then A" is the weak closure of A. 
A proof of this theorem can be found in Ref. 11, p. 44. 

Applied to our case, this theorem says that any 
bounded operator B is given by the limit of sequence 
like 

N 

BN = ~:CnU[Pn' qn]· 
n=l 

But such a limit is given by the expression in Eq. (5.2) 
if we interpret the kernel as a "distribution." In 
particular, a matrix element has the form 

(AI B I<l» = IIh(p, q) (AI U[p, q] I<l» d~:q . 

Here (AI U[p, q] I<l» is the "test function" on which 
the "distribution" h(p, q) operates. Since the set of all 
bounded linear operators is dense (in the weak topol­
ogy) in the set of all linear operators, we have 
arrived at the desired result. 

If we now try to find more general relationships 
between an operator and its kernel, e.g., ii E V if A is 
bounded, we immediately run into difficulties due to 
the appearance of the operator P in the definition of 
the kernel, and it has not been possible to find any 
such general relationships for the expansion displayed 
in Eq. (5.2). But if we study the effect of P in the 
expansion, it becomes evident that we can define a 
slightly different expansion which has some nice 
properties. Going back to Eq. (5.1), we let the p-l on 
the left-hand side operate on X instead of <l>, 

(P-1X, <l»(A, 'Y) 

= II(A, U[p, q]P«l»(U[p, q]P-1X, 'Y) d~:q , 

so that Eq. (5.2) now reads 

A = II Tr {AUt[p, q]}U[p, q]P d~:q . 
---

11 J. Dixmier, Les /algebres d'operateurs dans l'espace hilbertien 
(Gauthier-Villars, Paris, 1957). 

By writing (X, P-1<l» = (P-!X, p-!<l», we find that 

A = II Tr {AP!Ut[p, q]}U[p, q]p! d~:q. (5.3) 

It then follows immediately that 

Tr(BtA) = IITr {BP!Ut[p, q]}* 

x Tr {AP!Ut[p, q]} dp dq 
271' 

== II b*(p, q)a(p, q) d~:q . (5.4) 

Since Hilbert-Schmidt operators are those for which 
Tr (AtA) < 00, we evidently have the following result: 

Theorem 5.2: Every Hilbert-Schmidt operator A 
can be written in the form 

If !dpdq 
A = a(p, q)U[p, q]P h' 

with 

a(p, q) == Tr {AP!Ut[p, q]} E V(R+ X R). 

To proceed further, we introduce a space of test 
functions similar to the space S consisting of infinitely 
differentiable functions of fast decrease, introduced by 
Schwartz.12 We define 8 to be the linear space of all 
real-valued functions of two variables, a(p, q), which 
are infinitely differentiable in p and q, fall offfaster than 
any power of q for q ---+ ± 00, and faster than any 
power of p for p ---+ 0 and p ---+ 00. It would be straight­
forward to introduce a topology which would make 
8 a locally convex Frechet space, but since we shall not 
go into questions of continuity or any others which 
require a knowledge of the topology, we content our­
selves with letting 8 be a linear space. 

We now want to show that a(p, q) E 8 implies that 
A is trace class, and to this end we represent the oper­
ator A by a sequence, in the following manner: 

I 

! dp dq 
A = a(p, q) 1Im)(ml U[p, q]P In)(nl h 

= .l Amn 1m) (nl, (5.5) 
m,n 

with 

I t dp dq 
Amn = a(p, q) (ml U[p, q]P In) h' (5.6) 

and where {In), n = 0, I,"'} is a complete ortho­
normal sequence of vectors. 

12 L. Schwartz, Th~orie des distributions (Hermann & Cie., Paris, 
1957), Vol. 2. 
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For an arbitrary vector IV') E.le, we certainly have 

<V'I At A IV') = I <V' I n)<q IV') I A:mAnm 
'R.a m 

~ I I [(V'I n)(n IV') 
n,q 

+ (V'I q)(q IV')] I A:mAnm. 
m 

Since AtA is symmetric and positive, we have 

(V'I AtA IV') ~ II [(V'I n)(n IV') + (V'I q)(q IV')} 
n,q 

= (V'I I En In) (n IV') 
n 

where 

q,m 

The operator A is trace class if and only if Tr (AtA)t 
is finite, but we just showed that (AtA)t ~ Et, so A 
is trace class if 

t 
~ {~IA:mAnml} < 00. (5.7) 

It is not difficult to show that the inequality in Eq. 
(5.7) wIll be satisfied if there exist a constant C, two 
positive integers no and mo, and an E > 0 such that, 
for m > mo and n > no, 

IAmnl ~ C[m + n]-4-E. (5.8) 

The sequence {Amn} is related to the kernel a(p, q) 
by Eq. (5.6), and let us in particular assume that the 
sequence {In)} is generated by an operator H, 

H In) = n In). 

From Eq. (5.6) we then obtain 

nllmltAmn =Ja(p, q) (ml HltU[p, q]plHllln) dp dq . 
27T 

But the operator Hto the left of U[p, q] can be written 
in terms of a differential operator which operates on 
U[p, q], say 

R[ 0 0 -IJ p, q, op , oq , p , 

i.e., 
RU[p, q] = HU[p, q]. 

Similarly, the operator H to the right of pi can also be 
written in terms of a differential operator on U[p, q], 
say 

s[ a 0 -1J p, q, up , oq , p , 

i.e., 
SU[p, q]pt = U[p, q]ptH. (5.9) 

We thus find 

nllmlZAmn =Ja(p, q) <ml SPRIZU[p, q]pt In) dp dq . 
27T 

(5.10) 

Let us now further assume that H is a polynomial in 
P and B. It follows that R is a polynomial in p, q, 
a/ap, o/aq, and p-1. Also, commuting H through 
U[p, q]pi in Eq. (5.9) will yield a polynomial in P, Q, 
p, q, and rl [see Eqs. (2.5)-(2.7)], so that S is also 
a polynomial in p, q, a/ap, a/aq, and rl. The operator 
SfJ RIt is still a polynomial in p, q, %p, a/aq, and rl, 
and we can then, by repeated integrations by parts on 
each individual term in the polynomial, bring the 
operator over to operate on a(p, q) in Eq. (5.10). 
The resulting operator, say E ltfJ , must also be a poly­
nomial in p, q, a/ap, a/aq, and p-t, and we finally 
obtain 

nfJmltAmn ~ {JIEltpa(p, q)12 d~:qt (5.11) 

by use of Schwarz's inequality. 
Since a(p, q) E e, the right-hand side ofEq. (5.11) is 

finite, and so by choosing IX> 4, {3 > 4, we have 
shown that a(p, q) E e implies that A is trace class. 

Let A be a trace class operator such that its kernel 
a(p, q) is an element of e, and let B be an arbitrary 
bounded operator with kernel h(p, q). Then 

Tr (AB) =Ja(p, q)b(p, q) dp dq < 00, 
27T 

since AB is also a trace class operator. This relation 
defines a valid linear functional on the space e and 
leads to our next theorem. 

Theorem 5.3: Every bounded operator B can be 
written in the form 

with 

B = Jfb(P,q)U[p,q]ptd~:q, 

b(p, q) = Tr {BPtUt[p, q]} E 8'. 

The space 8', which is the dual of 8, is the analog of the 
tempered distributions in this case where p > O. In the 
canonical case it is known that the Weyl kernel of an 
arbitrary bounded operator is a tempered distribu­
tionP 

We conclude this section by remarking that in the 
expansion 

A = ffa(p, q)U[p, q]pnd~:q, (5.12) 

13 G. Loupias, Compt. Rend .• Ser. A 262, 799 (1966); S. 
Miracle-Sole, ibid., 1478 (1966). 



                                                                                                                                    

CONTINUOUS REPRESENTATION THEORY 2275 

with 
a(p, q) = Tr {Apt-nUt[p, q]}, 

any value of n is admissible so far as forming a 
legitimate expansion is concerned. It is only necessary 
to treat the kernel a(p, q) as a "distribution," which 
can always be found by the following limiting opera­
tion: 

M 
a(p, q) = lim ~ (ml Apt-nUt[p, q] 1m), 

Mn=t 

where {1m), m = 1,2, ... } is a complete sequence of 
orthonormal vectors. However, the properties of the 
expansion, i.e., the particular relationships between 
classes of operators and their corresponding classes of 
kernels, do depend on the value of n in Eq. (5.12), and 
we have seen that the choice n = 0, which is the closest 
analog to an expansion in Weyl operators, is not the 
best choice from this viewpoint. 

6. UNIQUENESS OF THE DIAGONAL MATRIX 
ELEMENTS 

To what extent do the diagonal matrix elements 
(cf>[p, q] Acf>[p, q]) of an operator A determine the 
complete matrix (cf>[p,q], Acf>[p',q'])? Assume that 
two operators At and A2 lead to the same diagonal 
elements, and let D = At - A2 • Then 

(cf>[p, q], Dcf>[p, q]) = 0 (6.1) 

for all p and q. If, in the fashion of (5.2), we write D as 

If d 'd ' 
D = d(p', q')U[p', q'] P217 q , 

then Eq. (6.1) becomes 

JJ(cf>o, Ut[p, q]U[p', q']U[p, q]cf>o) 

d ' d ' x d(p', q') L-!L = O. 
217 

Now, 

Ut[p, q]U[p', q']U[p, q] = u[p', E (q' - q) + P, q], 
Po p 

so Eq. (6.1) finally can be written 

JJJt(Po, 0; p', ~(q, - q) + ;, q) 

d ' d ' x d(p', q') P217 q = 0, (6.2) 

where 
Jt(p, q;p', q') == (cf>[p, q], <P[p', q']). (6.3) 

The function Jt(p, q; p', q') is, of course, dependent on 
our choice of the fiducial vector cf>o. For each choice 

of <Po there will be a class of operators which are 
uniquely determined by their diagonal matrix ele­
ments; for some choices of cf>o it may even be that all 
operators are uniquely defined by their diagonal 
matrix elements. A complete analysis of this unique­
ness problem has not been carried out, but we demon­
strate that operators of the general form 

M N 

A = ~ ~amnpmBn, 
m=-M n=O 

(6.4) 

i.e., polynomials in P, p-l, and B, are uniquely deter­
mined by their diagonal matrix elements. Let 

m,n 

then, if b == pq/po, we have 

J(p, pob) = ~amn(E)m(<Po, pm(B + bPt<Po)' (6.5) 
p m,n Po 

Fix n at its maximum value, n = N, and choose b 
large enough so that we only have to consider the 
leading term (bP)N in (B + bP)N. Then, if the left­
hand side of Eq. (6.5) is identically zero, we have 

I amN(E)m bN(<Po, pm+N<po) = o. 
m=-M Po 

But pm+N is a positive operator, so this implies that 
amN = 0 for all m. Then we set n = N - 1 and go 
through the same argument, and so by induction we 
see that amn = 0 for all m and n. Since the operators 
ofthe form displayed in Eq. (6.4) form a linear space 
and the mapping A---+- (cf>[p, q], A<P[p, q]) is linear, 
we have proved the following theorem: 

Theorem 6.1,' Any polynomial inP, P-t, and B of the 
form 

M N 

A = ~ ~ amnpmBn 
m=-M n=O 

is uniquely determined by its diagonal matrix elements 
in any affine phase-space continuous representation. 

Although we have treated only one degree of free­
dom in this paper, the extension to finitely many 
degrees of freedom is relatively straightforward and 
consists mainly of introducing a sufficient number of 
indices and a convenient notation for handling these. 
We shall omit going into this matter here, but in a 
forthcoming paper where we extend the present results 
to field theories, the necessary notation will be dis­
played. 
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The quantum-mechanical formalism developed in a previous article and based on the use of a rigged 
Hilbert'space II> c .re c 11>' is here enlarged by taking into account the symmetry properties of the system. 
First, the compatibility of a particular symmetry with this structure is obtained by requiring II> to be in­
variant under the corresponding representation U of the symmetry group in .re. The symmetry is then 
realized by the restriction of U to II> and its contragradient representation (; in 11>'. This double manifesta­
tion of the symmetry is related to the so-called active and passive points of view commonly used for inter­
preting symmetry operations. Next, a general procedure is given for constructing a suitable space II> out 
of the labeled observables of the system and the representation U describing its symmetry properties. 
This general method is then applied to the case where U is a semidirect product G = T ~ Ll, with T 
Abelian. Finally, the examples of the Euclidean, the Galilei, and the Poincare groups are briefly studied. 

I. INTRODUCTION 

In a previous article! (denoted by Part I in the 
following), a formalism for quantum mechanics was 
developed which reproduces the basic features of the 
standard Dirac bra and ket formalism. Now we turn 
to the problem of symmetries in that context. For the 
sake of completeness, however, we first recall the 
main points of the formalism. 

(i) The system is defined by a particular family of 
observables, called labeled observables (1.0.) by 
Roberts. 2 They have both a direct physical definition 
(i.e., in experimental terms) and a mathematical 
expression as self-adjoint operators in a Hilbert space 
Je. All 1.0. must have a common, invariant, dense 
domain D c Je. 

(ii) This domain D is endowed with a new topology, 
finer than that induced by the scalar product of Je, 
and such as to make all 1.0. continuous. There exists a 
coarsest topology satisfying these requirements, which 
is the canonical solution of Roberts.2 Moreover, we 
require that this topology be nuclear.3-5 Thus, we 
obtain a complete nuclear topological vector space, 
which we denote by <1>: <I> c Je. <I> is dense in Je and the 
embedding <I> --+ Je is continuous (thus nuclear). 

• This work is based partly on a doctoral dissertation submitted 
by the author to the University of Louvain, 1966. 

t On leave of absence from University of Louvain, Belgium. 
Present address: Department of Physics, University of Pittsburgh, 
Pittsburgh, Pa. 15213. 

1 J.-P. Antoine, J. Math. Phys., 10, 53 (1969). 
2 J. E. Roberts, J. Math. Phys. 7, 1097 (1966); Commun. Math. 

Phys. 3, 98 (1966). 
3 F. Treves, Topological Vector Spaces, Distributions and Kernels 

(Academic Press Inc., New York, 1967); A. Pietsch, Nukleare 
lokalkonvexe Raume (Akademie-Verlag, Berlin, 1965). 

• I. M. Gel'fand and N. Y. Wilenkin, Verallgemeinerte Funktionen 
(Distributionen), (VEB Deutsche Verlag der Wissenschaften, Berlin, 
[965), Bd. IV [English transl.: Generalized Functions (Academic 
Press Inc., New York, 1964), Vol. 4]. 

• This rather strong requirement might be relaxed, but it makes 
the theory easier. 

(iii) If <1>' denotes the strong dual of <1>, we obtain 
finally a rigged Hilbert space2•4 (RHS) 

<I> c Je c <1>'. (1) 

(iv) With respect to <1>', a general spectral theorem 
holds; any 1.0. has in <1>' a complete orthonormal (in 
the sense of Parseval's relation) system of eigen­
functionals. 

(v) The following physical interpretation was 
proposed: 
(l) The vectors of <1>, the ket vectors, denoted I' >, 
represent the truly realizable states of the system 
(preparable states); 
(2) the vectors of <1>', the bra vectors, denoted ('1, 
represent potential experiments or "elementary instru­
ments" that can be applied to the prepared system; 
(3) the bracket (·1·), the bilinear form expressing 
duality between <I> and <1>', generalizes the usual scalar 
product in .Je with the same interpretation as a 
probability amplitude. 

So far, we have not touched upon the symmetry 
properties of the system. These, however, may play 
an important role in the theory. For one thing, some 
of them express fundamental properties of nature 
(such as relativity, either Galilean or Lorentzian), 
with which conservation laws are associated. No 
complete physical theory can ignore those symmetries 
and, clearly, the corresponding conserved physical 
quantities must be included among the 1.0. On the 
other hand, the use of symmetries facilitates and 
clarifies greatly the investigation of a problem. There­
fore, it is desirable to include explicitly into the theory 
the symmetry properties of the system,from the start. 

The problem is thus: How can one describe the 
invariance of the system under some group G in the 
framework of an RHS? In conventional Hilbert­
space quantum mechanics, this question was answered 

2276 
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long ago by Wigner6 and Bargmann.? The symmetry is 
simply realized by a unitary representation g -+ U(g) 
of G in Je. Thus, the problem becomes: How can one 
extend such a representation to an RHS? We note 
first that group representations in RHS have already 
been considered in the literature,S but from a very 
different point of view. One starts usually with a 
continuous representation V in some topological 
vector space E, and seeks a suitable, continuous 
scalar product on E such that the representation V has 
a unitary extension into the resulting Hilbert space. 
Here, however, the problem is just the inverse: The 
probabilistic axioms give both Je and a unitary repre­
sentation V of Gin Je; now the space <1> is the element 
to be built suitably. 

More precisely, the system is defined by its 1.0., the 
representation V, and the transformation properties 
of the 1.0. under U. With these elements, we have to 
construct a suitable space <1>. It is important to notice 
that some 1.0. are u"ually derived from the symmetry 
itself (e.g., infinitesimal generators of the symmetry 
operations obtained through Stone's theorem), but 
not all of them. We must therefore keep track simul­
taneously of both the 1.0. and the representation U. 
This raises the question of compatibility between the 
symmetry, i.e., the representation V, and a particular 
RHS used for describing the system. This problem is 
examined and solved in Sec. II by requiring that <1> 
be invariant under U. As a consequence, we have to 
consider two new representations: the restriction of 
U to <1>, and its contr~gredient representation U in <1>'. 
This double manifestation of the symmetry is then seen 
to coincide with the distinction between the so-called 
active and passive points of view commonly used for 
interpreting the symmetry operations. 

Section III is devoted to the construction problem: 
Given Je and U, build a suitable RHS. We treat first 
the representation alone, thus considering only those 
1.0. which are derived from the symmetry [elements of 
the Lie algebra (G is supposed to be a Lie group) and 
of the universal enveloping algebra of G]. Since these 
elements can be identified with particular distributions 
on G with support consisting of the neutral element 
only, we extend the :>roblem to the whole algebra of 
distributions on G with compact support. Then we 
construct a space <1> in which all these distributions, 
including the relevant 1.0., are correctly represented. 

• E. P. Wigner, Gruppentheorie (Frederick Vieweg und Sohn, 
Braunschweig, Germany, 1931) [English trans I. : Group Theory 
(Academic Press Inc., New York, 1959)]; Ann. Math. 40, 149 (1939). 

7 V. Bargmann, J. Math. Phys. 5, 862 (1964); Ann. Math. 59, I 
(1954). 

8 M. Mayer, in Proceedings of Seminar on Unified Theories of 
Elementary Particles, H. Rechenberg, Ed. (Univ. of Mtinchen, 
Mtinchen, 1965). 

Finally, the solution is extended to take care of those 
1.0. which are not derived from the symmetry, but 
have simple transformation properties under U. 

In Sec. IV, the general solution is applied to the case 
where V is an induced representation in the sense of 
Mackey9 and Bruhat.lO Particular attention is given to 
the physically important case of a semi direct product 
G = T [8'J Ll, with T an invariant Abelian subgroup. 
Examples of such a situation are studied in Sec. V; 
they include the Euclidean, the Galilei, and the 
Poincare groups. Finally, Appendix A illustrates the 

duality V ~ U in the case of a parity-violating process, 
while Appendix B summarizes relevant notions from 
the theory of distributions over Lie groups. 

II. COMPATIBILITY BETWEEN SYMMETRY 
AND RHS DESCRIPTION 

Let us consider an irreducible system, i.e., a system 
without superselection rules,ll and suppose that it 
possesses a group of symmetry G. We will assume that 
G is a connected and simply connected Lie group 
(more general situations can be treated in a similar 
way). In the conventional Hilbert-space formalism, 
a complete analysis of such a symmetry has been 
given in the fundamental works of Wigner6 and 
Bargmann,7 namely: 

(i) The symmetry of the system under G is repre­
sented by a strongly continuous unitary projective repre­
sentation V w of G in Je, the Hilbert space of the state 
vectors of the system [i.e., a projective representation, 
or representation up to a factor, continuous in the 
strong (norm) topology of Je]: 

Uw(gl)Uw(g2) = W(gl,g2)Uw(glg2), IW(gl,g2)1 = 1. 

(ii) The projective representation V w can be ob­
tained from a true (i.e., vector) unitary representation 
of a group Gw which is an extension of G by the 
I-dimensional Abelian group of the reals. 

Henceforth, we shall suppose that this extension 
has been accomplished; thus, the symmetry is realized 
by a true continuous unitary representation g -+ U(g) 
of G in Je. This representation may then, as usual, 
operate either on the state vectors of the system or on 
its observables. 

On the other hand, we may also associate to the 
system a RHS <P c Je c <P' built with help of its 1.0., 

• G. W. Mackey, The Theory of Group Representations (The 
University of Chicago Press, 1955); Ann. Math. 55, 101 (1952); 56, 
193 (1953). 

10 F. Bruhat, Bull. Soc. Math. France 84, 97 (1956). 
11 It is well known [A. S. Wightman, SUIlPI. Nuovo Cim., 14, 81 

(1959)] that symmetry operations can at most induce a permutation 
of superselection sectors; therefore, there is no loss of generality in 
considering only a single coherent subspace or, equivalently, an 
irreducible system. 
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according to Part I. The question then arises whether or 
not this description is compatible with the symmetry. 
What does this mean? The argument is the same one al­
ready used in connection with the temporal evolution: 
We want to space <I> to be as well adapted to the system 
as possible. Therefore, if <I> is not stable under V, 
we call it incompatible with the symmetry, in the sense 
that the choice of <I> distinguishes a particular element, 
or a class of elements, of G; this contradicts the very 
notion of symmetry.6 We must therefore impose the 
following condition: 

Postulate of compatibility: The space <I> is stable 
under the representation V: 

U(g)<I> = <1>, for all g E G. (2) 

[The equality sign follows from the group property: 
VCg-l ) = V-leg) must leave <I> invariant as well as 
V(g).] 

Clearly, this postulate imposes a new restriction to 
the topology of <1>. We already had a lower bound for 
it, namely, the coarsest topology (Roberts' canonical 
topology2) which makes all 1.0. continuous. But we 
have now also an upper bound. Indeed, from the 
postulate it follows that G is represented by operators 
U(g) mapping <I> into itself. Of course, U(g) is con­
tinuous when its range, i.e., <1>, is endowed with the 
topology induced by X, but this is not true a priori 
when <I> has its own, finer topology. The same difficulty 
appears with the function g ---... U(g)q/ (for any fixed 
q/ E <1», which maps G into <1>. In other words, the 
representation U is not necessarily continuous in <1>, 
in the sense of BruhatlO and Mayer. s Thus, the upper 
bound referred to is the finest topology such that the 
representation g ---... U(g) is continuous in <1>. With 
any topology finer than this one, one may expect some 
catastrophe: The representation of G will not be 
continuous, the corresponding representation of the 
Lie algebra will not be integrable, etc. 

We shall show in Sec. III that it is always possible to 
construct a space <1> such that g ---+ U(g) is a continuous 
representation of G in <1>. From this and the results of 
Bruhat,lO it follows that U can be extended by trans-

position to a continuous representation g ---... U(g) of 
G in <1>', called the contragredient representation; the 
latter is defined by anyone of the equivalent relations: 

(fJ(g)cp'l cp) = (q/' I U(g-l)cp), cp E <1>, cp' E <1>', g E G, 

(3a) 
or 

(iJ(g)cp'l V(g)cp) = (cp' I cp). (3b) 

A sufficient condition for the continuity of U is that 
<I> be a semireflexive space, i.e., (<1>')' = <I> as a vector 
space, without considering the topology. With the 
physical interpretation we have adopted in Part I, 
this condition is obviously an essential consistency 
requirement of the formalism. Indeed, a physical 
experiment requires only two kinds of entities: the 
system, with all its accessible states associated with the 
vectors of <1>, and the apparatus, i.e., the collection of 
instruments which determine these states and are 
represented by the vectors of <1>'. The physical relation 
between these two classes of entities is mathematically 
described by the duality betv:een <I> and <1>', and there 
is no room for a third class associated with (<1>')'.12 
The physical interpretation thus leads us to require 
<I> to be semi reflexive. We could as well ask <I> to be 
reflexive, i.e., (<1>')' = <I> both algebraically and topo­
logically. The latter requirement is simpler, and 
practically equivalent for the present theory, since 
we did not give a physical meaning to the topology 
of <I> itself. Semireflexivity follows, also, from the 
nuclearity of <1>, but it is, of course, a much weaker 
condition: Even if <I> would not be nuclear (e.g., if 
only the embedding operator <I> ---... X were nuclear), 
we must ask that <I> be semireflexive. Moreover, in the 
canonical construction of Roberts, 2 <I> is always 
semi reflexive , and reflexive if the set of 1.0. is count­
able, i.e., for a system with a finite number of degrees 
of freedom. 

So we have now a double manifestation of the sym-

metry: U in <1>, and U in <1>'. This double manifestation 
corresponds exactly to the two dual points of view of 
interpreting the symmetry operations: the active and 
the passive interpretationsP Let us go through the 
details: 

(1) In the active point of view, the symmetry opera­
tions act on the states of the system; since we admit 
the physically accessible states to be represented by 
vectors of <1>, clearly the symmetry must be described 
by the representation U; particularly, the transforma­
tion 

(cp'l q/) ---... (cp' I U(g)¢) 

means that the state cp and the transformed state 
U(g)cp are compared in the same frame of reference 
(i.e., apparatus) cp', as requested in the active inter­
pretation. 

(2) On the other hand, in the passive point of view 
the same state is observed in two different frames; but 

12 Note, however, that due to the construction, one always would 
have 

II> !: (11)')' C JC C 11>', 
but this manifestly complicates the mathematical situation! 

13 A. S. Wightman, Ref. II. 
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in any experiment the only relevant external frame for 
the system under observation is the one provided by 
the apparatus (we consider only the ideal situation 
where the pair system-and-apparatus is truly isolated 
from the rest of the world; this can be justified by. 
invoking the classical properties of the apparatusI4). In 
other words, a frame here is an observing device or 
apparatus, identified in our language with a vector of 
<1>'. Therefore, in the passive interpretation, the sym-
metry must be described by the representation U in 
<1>'. Indeed, the transformation 

<9/ I ((1) ~ dJ(g)q/ I ((1) 

means that the state ((1 is observed by the two different 
apparatus ((1' and U(g) ((1'. 

(3) The relations (3) express the equivalence of the 
two points of view. This fundamental equivalence, in 
fact, reflects the invariance of space-time under the 
group G, as contrasted to the invariance of a particu­
lar process (the latter notion has a meaning only when 
the space-time background is itself invariant; other­
wise it would be impossible to define what is meant by 
an invariant process). Relations (3) therefore hold for 
any particular process, whether invariant or not under 
G. This point is illustrated in Appendix A for the case 
of a parity-violating decay. 

Remark: If G is not connected, the postulate (2) 
must be extended to all operators, unitary or anti­
unitary, which represent the "reflections" leading 
from the component of the identity to the other com­
ponents. The whole discussion goes through without 
any modification. 

ill. CONSTRUCTION OF A RHS COMPATIBLE 
WITH THE SYMMETRY 

A. Representation of the Observables Derived from 
the Symmetry 

Let G be a connected Lie group (see the remark at 
the end of Sec. II). The Lie algebra of G, which we 
denote by g, and its universal enveloping algebralS 

%(g) are naturally associated with some observables 
of the system. Indeed, let 7 ~ a(7) be a I-parameter 
subgroup of G; it follows that 7 ~ U(a(7» is a con­
tinuous I-parameter group of unitary operators. 
According to Stone's theorem, 16 this group is generated 

U G. Ludwig, Die Grundlagen der Quantenmechanik (Springer­
Verlag, Berlin, 1954); A. Daneri, A. Loinger, and G. M. Prosperi, 
Nuc!. Phys. 33, 297 (1962). 

15 N. Jacobson, Lie Algebras (Interscience Publishers Inc., New 
York, 1962). 

18 F. Riesz and B. Sz-Nagy, Lerons d'analyse fonctionnelle (Acad. 
Sci. Hongrie, Budapest, 1955), 2nd ed. 

by a self-adjoint operator, the map of an element of 
g. In general, this uperator is unbounded and can be 
identified with an 1.0. of the system. In the case of 
rotational invariance, for instance, G = SO(3), the 
infinitesimal generators L 1 , L 2 , La (E g) of the group 
and its Casimir operator £2[E '\.L(g)] are identi­
fied with the components and the norm of the total 
angular momentum of the system, respectively. Thus, 
the problem is to know which elements of '\.L(g) , 
besides those of g, can be considered as observables, 
and to find then a common, invariant, dense domain 
D for alll.o. obtained in this way. With such a domain 
at hand, it remains to endow it with a suitable topol­
ogy: We will then have constructed a space <I> 
associated with the symmetry alone. A second step 
will be to take into account those 1.0. which are not 
given by the symmetry. 

A preliminary solution of the problem is given by the 
Garding domain JeG of the representation UY (Some 
useful results from the theory of distributions over 
Lie groups are collected in Appendix B.) Let ~(G) be 
the set of all infinitely differentiable functions on G 
with compact support. To each f E j)( G), one asso­
ciates the operator O(f), defined by the following 
relation: 

O(f)h = fG U(g)hf(g) dg, for all hE Je, (4) 

where dg is the (left-invariant) Haar measure on G. 
JeG is then defined as the set of all finite linear 
combinations of vectors of the form O(f)h,J E j)(g), 
h E Je. It is easy to verify that this domain JeG is dense 
in Je, stable under U(g), vg E G, contained in the 
domain of the infinitesimal generators of aliI-param­
eter subgroups 7 ~ U(a(7», and stable under all of 
them. It follows that the enveloping algebra %(g) is 
(homomorphically) represented by operators in JeG; 
the element T of '\.L(g) is represented in JeG by the 
operator OCT) defined by the following relation (which 
is extended to the whole JeG by linearity): 

O(T)(O(f)h) = O(Tf)h, fE j)(G), hE Je. 

[elements of '\.L(g) act on j)(G) as differential oper­
ators; see Appendix B.] Clearly, JeG is stable under all 
the operators OCT): The Garding domain is thus a 
natural domain for representing %(g). 

Furthermore, because of theorems due to Segal and 
Nelson and Stinespring,18 the following elements of 

17 L. Garding, Proc. Nat!. Acad. Sci. U.S.A., 33, 331 (1947). 
18 I. E. Segal, Duke Math. J. 18, 221 (1951); Proc. Am. Math. 

Soc. 3,13 (1952); E. Nelson and W. F. Stinespring, Am. J. Math. 81, 
547 (1959). 
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%(9) are represented on 3eP by essentially self-adjoint 
operators and may thus define physical observables19 : 

(i) the elements of 9; 
(ii) the symmetric central elements of %(9) (i.e., the 

Casimir operators and the symmetric operators con­
structed from them); 

(iii) the symmetric elliptic20 elements of %(9) and 
those elements M of %(9) for which there exists an 
element L E %(9), symmetric and elliptic, such that 
U(M+M) commutes with U(L). 

Moreover, all these properties still hold on the 
Giirding domain of a representation of a group G1 
that contains G as a subgroup. These results are broad 
enough to cover all the physically interesting cases. 
Therefore, JeG is a natural candidate for the domain 
D mentioned above. It is indeed a simple matter to 
endow the elements of JeG with a nuclear topology 
leading to a suitable space <P. Example of such topol­
ogies have been given by Maurin.21 

However, the space <P constructed in this way would 
only be sufficient for describing the system completely 
if all 1.0. were elements of 9 or %(g). But the only 
system where this is true is the "rigid rotator." In 
other cases, this space is inadequate, for nothing 
proves that the other l.o.-let alone the position 
operators I-are continuous on <P and leave it in­
variant. We need thus a more general solution. 

Remarks: 
(1) The same is true (a priori) for any space <P built 

solely from the representation U; such are, for instance, 
spaces associated with the Giirding domain of a 
representation of a larger group G1, or the set of all 
regular vectors, or the set of all analytic vectors 
[h E Je is called regular (analytic) if the function 
g -- U(g)h is infinitely differentiable (analytic) on G]. 

(2) In the construction of the Giirding domain, U 
must be a true (vector) representation. In the case of a 
projective representation UCJ)' JeG is stable under 
UCJ)(g) if and only if the function g -- W(gl' gllg) is 
infinitely differentiable, which is not always true. 
Moreover, such a lepresentation has no natural 
extension to %(g). For this reason, we deal only with 
true representations, supposing that the extension 
G -- GCJ) has been accomplished (see the beginning of 
Sec. II). 

19 J.-C. Guillot, Helv. Phys. Acta 41, 5 (1968). 
20 An abstract element of '\1(9) is called elliptic if it acts on ~(G) 

as an elliptic partial differential operator (Appendix B); such is, for 
instance, the second-order Casimir operator of the maXImal compact 
subgroup of G. . , . 

21 K. Maurin Bull. Acad. Polon. SCI .. Ser. SCI. Math., Astron., 
Phys. 7,471 (1959); 11, 525 (1963); K. Maurin and L. Maurin, ibid. 
13, 199 (1965). 

B. Extension of the Problem 

In Sec. lIlA, we extended the representation U to 
the elements of 9 and %(g). We shall now reformulate 
this extension in somewhat different terms, essentially 
following Maurin. 22 

The first step consists in identifying the Lie algebra 
with the set of all right-invariant23 first-order differ­
ential operators on G (see Appendix B). Similatly, 
according to results of Harish-Chandra,24 the en­
enveloping algebra %(g) is isomorphic to the algebra 
of all right-invariant differential operators on G. 

As a second step, we may identify invariant10,25 

differential operators on G with distributions on G 
with support {e} (e is the unit element of G). Let us 
denote by E; the set of all distributions on G with 
support {e}. Then, given any TEE;, the convolution 
mappingf -- T * f [fE E(G)], 

[T * f](g) = fG!(gllg) dT(gl), 

is indeed a right-invariant differential operator on G. 
Conversely, any such operator can be obtained in that 
way.lO To summarize, we have the canonical iso­
morphism 

(5) 

This suggests that we consider the whole algebra 
E' (G) of distributions on G with compact support 
(it is an algebra with respect to convolution), of which 
E~ is a subalgebra. Thus, we will extend to E'(G) the 
representation U in three successive steps. 

(1) With respect to convolution and the involution 
defined by the relation 

f+(g) = f(g-l) , 

~(G) is a *-algebra. Then the mapping f -- U(f) 
defined by Eq. (4) is a *-representation of ~(G) by 
bounded operators in JeG: 

U(h)U(f2) = U(h * f2), 

U(f+) = [U(f)]+, 

for allh,f2 E ~(G), 

for all! E ~(G). 

(2) Since the function (with values in Je) g -- U(g)h 
is only continuous, the above definition can be 
extended (by duality) only to the space of measures 
with compact support on G, .At, ( G): 

U(p,)h = fa U(g)h dfl(g), fl E .At,(G). 

---
.2 K. Maurin, Math. Ann. 165, 204 (1966). 
23 We could as well use the right-invariant Haar measure on G and 

identify 9 with left-invariant operators on G. 
2. See, for instance, S. Helgason, Differential Geometry and 

Symmetric Spaces (Academic Press Inc., New York, 1962). 
25 R. Godement, Trans. Am. Math. Soc. 73, 496 (1952). 
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(3) For going over to &'(G), the function g - U(g)h 
must be infinitely differentiable, i.e., h must be a 
regular vector of U. Let JeID denote the (dense) mani­
fold of all the regular vectors of U, (.1eP c JeID). For 
any T E &'(G), a E JeID, one defines 

(J(T)a = Sa U(g)a dT(g) (6a) 

or, equivalentIy,26 for any h E Je, 

(h, (J(T)a) = ia(h, U(g)a) dT(g). (6b) 

Then, the properties of the operators (J(T) can be 
summarized in the following proposition: 

Proposition 1 (Maurin): 
(i) The mapping T - (J(T) is a *-representation of 

the algebra &'(G) by operators in JeID: 

(J(T)(J(S) = (J(T * S), 

(J(T+) ~ [(J(T)]+, for all T, S E &'(G), (7) 

where T+ is defined by the relation 

(T+,j) = (T,f+), for allfE &(G). 

(ii) If T = r+, (J(T) is a Hermitian operator. 
(iii) If T E &; satisfies any of the conditions of 

Segal-Nelson-Stinespring stated above in Sec. IlIA, 
(J(T) is essentially self-adjoint. 

(iv) If this is the case, the self-adjoint operators 

OCT}) and O(T2) commute strongly (i.e., their spectral 
projections commute) if and only if T} * T2 = T2 * T1 • 

(v) This representation is an extension of the repre­
sentation U of G in Je, for 

(J(bg ) = U(g), for all g E G. (8) 

The proof of most of these assertions is immediateY 

C. General Solution 

The solution given above with the Girding 
domain of U was unsatisfactory because nothing 
could be said about those observables which do not 
belong to %(9) [or &' (G)]. A better construction can be 
obtained as follows. 22 

Let 'Y be a dense subset of Je on which a topology 
is imposed such as to make it a complete nuclear 
topological vector space continuously embedded into 
Je. The space <I> will then be defined as the set of finite 
linear combinations of vectors of the form (J(j)tp, 

28 L. Schwartz, J. Anal. Math. (Jerusalem) 4, 88 (1954-55). 
27 We note that Jew has a natural topology (see Ref. 10) under 

which it is a Frechet space with all the required invariance properties; 
unfortunately, this topology is not nuclear, so that we discard it. 

with f E ~(G), tp E 'Y. More precisely, we consider the 
projective tensor product3 ~(G) 0

11 
'Y and the map­

ping u: ~(G) (8)" 'Y - Je defined by 

u(f ® tp) = (J(j)tp. 

Let N be the kernel of u, i.e., the linear span of 

No = {f® tp: (J(j)tp = O}. 

Since u is continuous, N is a closed subspace of 
~(G) 0" 'Y. Let 0 be the range of u, provided with the 
topology of the space ~(G) 0" 'YIN; we have thus a 
topological isomorphism [u]: 

[u]:~(G) 0" 'YIN - 0 c Je. (9) 

The space <I> is then defined as the completion of e in 
this topology. The operators (J(T), TE &'(G) are 
defined on 0 as before and extended to $ by con­
tinuity. Their properties are summarized in the 
following propositions: 

Proposition 2: 
(i) <I> is a complete nulcear topological vector space, 

dense in Je and continuously embedded into Je; 
<I> c Je c <1>' is thus a rigged Hilbert space. 

(ii) For any T E &'(G), (J(T) is a continuous map­
ping of <I> into itself; T - (J(T) is thus a *-representa­
tion of &'(G) by continuous operators, satisfying 
assertions (i), (ii), and (v) of Proposition 1. 

(iii) In particular, for any g E G, U(g) is a con­
tinuous mapping from <I> into itself, and g - U(g) is a 
continuous representation of G in <1>. 

Proof: 
(i) ~(G) and 'Y being nuclear, so are their tensor 

product ~(G) 0" 'Y and its quotient by the closed 
subspace N. With the topology defined by the iso­
morphism [u], 0 is thus a nuclear space, and the same 
holds for its completion <1>. Since, by construction, 
o is a dense subset of Je ID, it is dense in Je and, thus, 
so is <1>. Since the embedding 'Y - Je is continuous, u 
and [u] are continuous, and, therefore, so is the 
embedding <I> - Je. 

(ii) Let fI! = ~i ai(J(/;)tpi with /; E ~(G), "Pi E 'Y. 
Then 

(J(T)fI! = ~ ai (J(T) (J(/i)tpi 
i 

= I ai (J(T * /i)tpi . 
i 

Since the convolution (T,/;) - T * /; is a bilinear 
separately continuous mapping from &'(G) x Tl(G) 
into Tl(G),28 (J(T) is a continuous mapping from e 
into itself and thus, by continuity, from <I> into itself. 
The other properties follow immediately. 

28 L. Schwartz, Theorie des distributions (Hermann & Cie., Paris, 
1957-1959), Vols. I and II. 
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(iii) Since U(g) = (J(6g) , U(g) is a continuous 
mapping from cI> into itself, and the function g-+ 
U(g)l{J is continuous from G into cI> for any l{J E cI>. 
Indeed, by construction, this reduces to the continuity 
of the mapping g -+ tJg * l{J for all l{J E cI>, which 
follows as above from the separate continuity of the 
convolution. 

Remark: As stated in Proposition 1 (iii), the oper­
ator (J(T), where T E 8; satisfies any of the conditions 
of Segal-Nelson-Stinespring, 18 is essentially self­
adjoint on Jeoo. But the restriction of (J(T) to cI> will 
not necessarily be essentially self-adjoint on cI>. 
Maurin's proof for Jeoo breaks down in the ptesent 
case because ofthe arbitrariness of'F' (Jeoo is canonical, 
cI> is not!). However, we do not need (J(T) to be essen­
tially self-adjoint on cI>: In order to apply the general­
ized spectral theorem for an operator A, all we need 
is A to be self-adjoint in Je (so that a unique spectral 
decomposition exists) and that its restriction to cI> 
maps cI> continuously into itself; this is true fot (J(T) 
on cI>. 

Proposition 3: Let U = EBi Ui be a decomposition of 
U in a direct sum of irreducible representations, 
Je = EBi Jei the corresponding decomposition of Je 
into closed invariant subspaces. Let cI>i = cI> n Je i • 

Then, for each i, cI>; is a dense subset of Je;, stable 
under Ui and closed in cI>; with the topology induced 
by cI>, cI> i is nuclear. 

Proof: cI>i = cI> n Jei is a vector subspace of cI>, 
invariant under U; and closed in the topology induced 
by Je on cI>, thus afortiori closed in the (finer) topology 
of cI>. For any f E ~(G) and any V' E 'F' n Jei , (J(f)v.' 
belongs to <Pi' since Jei is invariant under U, thus 
under (J(f); cI> i is therefore a dense subset of Jei • 

Finally, since cI>i is a closed subspace of the nuclear 
space cI>, it is nuclear in the induced topology. 

Remark: Bruhat10 proved that the restriction of U 
to Je'" (with the topOlogy mentioned in Ref. 27) is 
topologically irreducible29 if and only if U is. Proposi­
tion 3 says that the "only if" part of this theorem is 
true also for the restriction of U to cI>. But here, the 
converse is not necessarily true: Topological irreduci­
bility of U does not imply topological irreducibility of 
U I cI>, without supplementary information on the 
space 'Y. This again stems from the fact that cI> is not 
canonical. 

U A representation of G in a space E is called topologically irre­
ducible if there is no closed invariant subspace in E. 

Proposition 4: Let {Ai> i = 1,2, ... , N} be afinite 
set of observables, such that 

(i) the operators Ai transform irreducibly under U: 

N 

U+(g)AP(g) = !dH(g)A j , i = 1,2,' . " N; (10) 
j=1 

(ii) each Ai maps 'F' continuously into itself. 
Then, each of the Ai also maps cI> continuously into 

itself. 

Proof: Let us note first that (10) is to be understood 
as a relation between operators in Je, U(g) being 
bounded and Ai self-adjoint. This means that there 
exists in Je a dense domain D such that (i) each Ai' 
i = 1, ... , N, is essentially self-adjoint on D; (ii) D 
is invariant under U(g):U(g)D c D, Vg E G (clearly 
'F' S D). We need only consider the elements of cI> of 
the form l{J = O(f)V',fE ~(G), V' E 'Y. It follows then 
from (10) that l{J is in the domain of each Ai: 

Ail{J = Ai O(f)V' 

= f/gf(g)AiU(g)V' 

= ~1 fa dgf(g) dij(g)U(g)A;V'. 

We have interchanged Ai and the integral sign in the 
second equality; this is permissible since Ai is a closed 
operator.so Now the observables Ai transform under a 
finite N-dimensional representation of G (thus non­
unitary if G is noncompact, unless N = 1); the 
mapping g -+ II dii(g) II is a continuous homomorphism 
of the analytic group G into the analytic group 
GL(N, C) of complex regular N x N matrices; this 
homomorphism is therefore analytic,31 i.e., the 
functions dii are analytic on G. Thus, we may write 

N 

Ail{J = ! O(dijf)AjV', 
;=1 

which proves the proposition, because multiplication 
by dij E 8(G) is continuous on ~(G), and Ai is con­
tinuous from'Y into 'Y. 

Corollary: The theorem is also true for those 
observables which undergo an inhomogeneous trans­
formation under U: 

N 
U+(g)AiU(g) = ~A;(g)A; + c;(g), i = 1,2, ... ,N. 

;=1 

30 N. Dunford and J. T. Schwartz, Linear Operators (Interscience 
Publishers, Inc., New York, 1958), Vol. I, p. 153. 

31 C. Chevalley, Theory of Lie Groups (Princeton Univ. Press, 
Princeton, N.J., 1946). 
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This occurs, for instance, with the position variables 
under both the Lorentz and Poincare groups (the 
variables which define the action of G as a transforma­
tion group). 

Remark: The key word in Proposition 4 is "finite." 
The result may not be true for observables which have 
more general transformation properties, e.g., 

f
EB 

U+(g)AU(g) = x R(g, x)A(x) dft(x), 

where 

f
EB 

A = x A(x) dft{x) 

is a decomposition of A into a direct integral over 
some measure space (X, dl'). Such are, for example, 
the spin and helicity operators for the Poincare 
group.19 

With the preceding results, it now becomes fairly 
easy to build an appropriate space <P for a system 
defined by its 1.0. and its symmetry properties. First 
we build the space 'f" with those 1.0. which do not 
belong to '11(g), but transform under G according to 
(10). In general, there are only few of these observables, 
and in many cases the position operators will be the 
only ones.32 All that remains then is to build <P 
according to Proposition 2. Once this is done, the 
whole analysis of Part I can be applied and Je can be 
decomposed in a direct integral with respect to any 
complete system of commuting 1.0. 

Of particular physical significance are, of course, 
those decompositions of Je in which U is decomposed 
into irreducible subrepresentations.9.33 But, obviously, 
the physical situation requires that this decompositon 
be unique up to equivalence, i.e., that G be a type 
I group. This class contains compact groups, Abelian 
groups, connected semisimple Lie groups, and also 
the universal covering groups of both the Poincare 
and Galilei groups. (This is not trivial since it is not 
true, in general, that the universal covering group of 
a type I group is also of type I.) 

Such a decomposition may be obtained in the stand­
ard way. One considers the von Neumann algebra 
'l1 generated by U:'l1 = {U(g), g E G}" and its com­
mutant 'U,'. 34 Choosing any maximal Abelian sub-

32 Clearly, the present method is not applicable if there exist 1.0. 

which neither belong to 'lL(g) nor satisfy (10). The work of Guillot 
(see Ref. 19) shows, however, that the difficulty can be circumvented 
in the case of induced representations. This is developed in Sec. IV. 

33 G. A. Pozzi, Suppl. Nuovo Cimento 4, 37 (1966). 
3< J. Dixmier, Les /algebres d'operateurs dans l'espace Ihilbertien 

(Algebres de von Neumann) (Gauthier-Villars, Paris, 1957). See also 
Part I. 

algebra 'U) of '11', one decomposes Je with respect to 
'U) into irreducible components, corresponding to 
irreducible subrepresentations of U. More generally, 
if we consider only the Abelian subalgebra of 'U,' 

generated by the Casimir operators (which belong to 
the center of &; and are self-adjoint according to 
Segal's results18), we have a decomposition of Je and 
U into primary components. But a primary representa­
tion of G (which is of type I) is a direct sum of copies 
of the same irreducible representation, labeled by the 
values of the Casimir operators corresponding to that 
component (Schur's lemma). If G is compact, the 
Casimir operators have a discrete spectrum, and U 
decomposes into a direct sum of irreducible repre­
sentations (each of them might appear several times). 
If G is noncompact, each component U(A.) in the direct 
integral is a unitary representation in the correspond­
ing space Je(A), and a direct sum of copies of a single 
irreducible representation.35 Similarly, the elements of 
9 are decomposed and the commutation relations 
defining 9 hold in each Je(A) separately. 

IV. APPLICATION TO INDUCED REPRESENTA­
TIONS 

A. General Induced Representations 

The method described in the preceding section was 
designed to cope with those 1.0. which do not stem 
from the symmetry group. But it may also be used for 
studying the representations of'11(g) or &'(G) them­
selves. In particular, we shall now consider in more 
detail the case of an induced representation in the 
sense of Wigner, 6 Mackey, 9 and Bruhat.10 It is indeed 
well known that most of the physically interesting 
representations are of that kind. 

We shall not reproduce here the well-known theory 
of induced representations,9 but only recall the basic 
definitions following the notation of a recent paper by 
Guillot and Petit.36 Let G be a Lie group which we will 
suppose unimodular37 for simplicity. (The general case 
can be treated in exactly the same way, but the equa­
tions are much heavier! This includes already all 
compact or semisimple Lie groups, plus the Euclidean, 
the Galilei, and the Poincare groups.) Let K be a 
closed subgroup of G, L a unitary representation of K 
in a Hilbert space JeL . The representation U = UL of 
G induced by L is then defined as follows. The repre­
sentation space Je =: Je UL is the set of functions 
h: G --* JeL which satisfy the following three condi­
tions: 

35 F. Mautner, Ann. Math. 52, 528 (1950); Proc. Am. Math. Soc. 
2,490 (195\). 

36 J.-C. Guillot and J.-L. Petit, Helv. Phys. Acta 39, 281 (1966). 
31 A locally compact group is called unimodular if its Haar measure 

is both left- and right-invariant. 
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For any v E JeL , the function 

g -+ (h(g), v) is measurable; (Ila) 

covariance : 

h(gk) = L+(k)h(g), for all k E K, g E G; (Ub) 

IIhl1 2 = ( d",(x) Ilh(g)II~L' (Uc) 
JGIK 

In condition (l1c), '" is the invariant measure on the 
coset space G/K (it is unique up to a constant), and 
the integrand is the squared norm of h in Je L' The 
covariance condition (11 b) ensures that this squared 
norm is constant on the co sets gK, i.e., is a function on 
GIK. 

The space Je is then a separable Hilbert space, with 
the scalar product 

(hI' h2) = ( d",(x)(hlg), h2(g)heL • 

JGIK 

In this space, the induced representation UL == U is 
defined by left translations and is obviously unitary: 

(UL(go)h)(g) = h(golg). (12) 

A second (and more common) form of this repre­
sentation can be given. Je is indeed isomorphic to the 
Hilbert space L!(G/K, JeL ) of ",-square-integrable 
functions on G / K with values in Je L' The isomorphism 
is given by the following correspondence: 

h(g) = L+(A;/g)fz(x), fz E L!(G/K, JeL ), hE Je; 

(13) 

and the representation U in the new space is given by 

(UL(g)fz)(x) = L(A~lgAg-lx)Jl(g-IX). (14) 

In these equations, x = gK is the class of gin G/K and 
Ax is an arbitrary element of that class, such that Ax 

transforms Xo == eK into x: 

Ax:xo-+ x; 
thus, by definition, 

A;lg EK. 

According to the general scheme outlined in Sec. 
III, we need a nuclear space'Y dense in the representa­
tion space of UL . Let us take first the space Je defined 
by (11). A natural candidate for'¥ would be the set of 
infinitely differentiable functions on G with compact 
support, satisfying (11). However, such functions will 
satisfy condition (11 b) only if 

(i) L is a differentiable representation, i.e., the 
function k -+ L(k)h is a COO mapping of K into JeL 

for any h E JeL ; 

(ii) K is compact, for the support of any function 
satisfying (11 b) must contain at least one coset (if 

L == I, for instance, a function can be constant on the 
co sets only if its support is the union of a certain 
number of cosets). 

Since K is not necessarily compact (indeed, in the 
most important examples of Sec. V, it is not), we 
cannot limit ourselves to functions of compact support. 
Instead, we will require that supp f be contained in a 
set of the form AK, where A is a compact subset of G. 
More precisely, '¥ will be the space ~(L)(G, JeL ) of 
Coo functions h: G -+ JeL , whose support has a com­
pact canonical image in GIK and which satisfy con­
dition (11 b). This space has been introduced by 
BruhatlO and can be endowed with a topology in the 
usual way (see Appendix B). It is nuclear if and only if 
JeL is nuclear. 

Passing now to the second form (14) of UL , in 
L!(G/K; JeL ), we see immediately that (13) is a topo­
logical isomorphism of~(L)(G, JeL ) onto ~(G/K, JeL ), 

the space of Coo functionsf:GIK -+ JeL with compact 
support, provided that 

(i) L is differentiable; 
(ii) the function x -+ Ax is also C 

From now on we shall suppose that L is a differentiable 
representation (we will discuss the implications of this 
later). But condition (ii) on Ax is nontrivial and will 
bring difficulties in the case of the Poincare and the 
Galilei groups. When the condition is fulfilled, we can 
use indifferently either of the two forms of UL and 
take '¥ = ~(L)(G, JeL ) or'¥ = ~(G/K, JeL ). If it is 
not, only the first form is allowed. However, 
~(L)(G, JeL) is always isomorphic to the quotient of 
~(G, JeL ) by a closed subspace10 (see Appendix B). 

In order to go further, we must now distinguish two 
cases, according to whether L is finite-dimensional or 
not. 

Case 1: dim L < 00. This case is straightforward: 
If L is finite-dimensional and continuous, it is 
obviously differentiable (even analytic!)31 and JeL is 
trivially nuclear. Therefore, both ~(L)(G, JeL) and 
~(G/K, JeL ) are nuclear spaces. We may now construct 
the corresponding space <D as indicated in Sec. III. 

Taking first the general form of UL , we find 
immediately, for any IE ~(G), 
[O(f)'If](g) = [f * 'If](g), for all 'If E ~(L)(G, JeL )· 

(15) 

It follows that O(j)'If E ~(L)(G, JeL ) and furthermore, 
O(f)'If can vanish identically only if either lor 'If does; 
in other words, <I> is a subset of~(L)(G, JeL ).3S It will 

38 More precisely, <ll is the (dense) subset of:l)IL)(G, JeL ) spanned 
by the elements f * 1p, fE :I)(G), 1p E :l)IL)(G, JeL), with the topology 
of'D(G) ®IT :l)IL)(G, JeL). 
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therefore be simpler to take for <P the whole space 
~CL)(G, JeL) itself. On the latter space, we have 
indeed the usual representation of &'(G) by continuous 
operators: 

[O(T)cp ](g) = [T * cp leg), 

T E &'(G), cp E ~(L)(G, JeL ), (16) 

and all the results of Propositions 1-4 are valid, 
including the essentially self-adjoint character of the 
relevant operators. In particular, for any T E &;, OCT) 
is a right-invariant differential operator on G. 

If the function x - A", is Coo, the second form of 
UL is available; ~CL)(G, XL) is then topologically 
isomorphic to ~(G/K, XL), which we will take as our 
space $ as before. In that case, for any T E &;, OCT) 
will be a right-invariant differential operator on G/K. 

In either case, the corresponding dual space $' will 
be a space of vector-valued distributions.1o.39 More 
precisely, as ~(L)(G, JeL ) is the quotient of ~(G, JeL ) 

by a closed subspace, say :FLo its dual is the closed 
subspace of [~(G, XL)]' orthogonal to :FL' Further­
more, [~(G, JeL )]' can be identified10 with 

the space of distributions on G with values in JeL . 

Thus, $' is in general a closed subspace of~'(G, XL)' 
Similarly,if$ = ~(G/K, JeL ), then $' = ~'(G/K, JeL ), 

the space of distributions on G/K with values in JeL . 

We shall see in the examples that the latter space, 
despite its complicated appearance, is nothing but the 
vector space spanned by the "improper basis vectors" 
commonly used in representation theory. 

Case 2: dim L = 00. 

(a) If L is an infinite direct sum of finite-dimensional 
representations, then, because of Proposition 3, we 
are in the same situation as in Case 1. 

(b) In any other case, e.g., L irreducible, or L equal 
to a direct integral of (in)finite-dimensional representa­
tions, we are in trouble. Indeed, the representation L 
will usually not be differentiable, and the space 
~CL)(G, JeL ) is no longer nuclear. This is, in fact, 
exactly the situation we started with; we will therefore 
proceed in the same way. We restrict ourselves to a 
dense subspace lJ!' L of XL' consisting of differentiable 
vectors for L (i.e., 'Y L S; JeZ) and provided with a 
nuclear topology (such a space lJ!' L can be obtained 
just as before if L is itself an induced representation). 
Then we take 'Y = j)CL)(G, 'YL ) and once more, 
$ = 'Y, the operators D(f), D(T) of Eqs. (15), (16) 

30 L. Schwartz, Ann. Inst. Fourier (Grenoble) 7, 1 (1957); 8, 1 
(1959). 

acting again by convolution. Similarly, if a Coo 
function x - Aa: is available, we may also take 
$ = 'Y = j)(G/K, lJ!' L)' In fact, the whole analysis of 
Case I can be repeated here, replacing XL by 'Y L' In 
particular, the dual space $' will consist again of 
vector-valued distributions, this time distributions 
defined on G or G/K, with values in lJ!'~, the dual of 
'Y L' Further details may be found in the work of 
BruhaUo 

For the sake of completeness, we note finally that 
Land UL have always the same decomposition into 
primary constituents9

: the decomposition 

L = fBdV(a)LCO') (17a) 

implies 
rG) C ) 

UL = J1: dV(C1)UL 
0' ; (17b) 

in these formulas, ~ is a set of primary representations 
of K (i.e., a subset of K, the dual of K); v is an arbitrary 
measure on ~, necessarily discrete if K is compact 
(since K and thus also ~ are then discrete sets). The 
preceding discussion can be adapted to this case, and 
Eqs. (11)-(16) are now valid in each component {C1} 
separately [convolution commutes with the decom­
position (17)]. 

B. The Case of a Semidirect Product G = T t><l ~, 
T Abelian 

This case has a particular importance for physical 
applications; all the examples of Sec. V are of this 
form. When G = T t><l ~, a semi direct product of an 
Abelian invariant subgroup T and a subgroup 
~ c::::: G/T, the original method of Wigner6 can be 
applied, and it yields9 all the unitary irreducible 
representations of G as induced representations 
(provided G satisfies a mild regularity condition, 
which is known to be true in most interesting cases; 
we take it for granted here). Equation (17) then gives 
the most general unitary representation of G. 

Thus, we consider first unitary irreducible repre­
sentations (VIR) of G. T is an Abelian group; there­
fore it has only I-dimensional VIR's (characters). 
Then, under the action of G (defined by duality), the 
space of characters t decomposes into disjoint orbits 
12m (labeled by m), on each of which G acts transitively. 
Following Wigner,6 we pick a character Po E 12m and 
consider the subgroup K of G which leaves this vector 
invariant; K has the following form: 

K=TIZl~vo' 

where ~vo' the little group of PO' is a closed subgroup 
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of fl. We have then 
G T I8J fl fl 
-= ~-~.om· 
K T [2J flpo flpo 

If we pick now an UIR D().) of flpo' we obtain the most 
general UIR of G, denoted by v(m.A), in the following 
standard form, which corresponds to Eq. (14). The 
representation space is L!(.om, Je ])(A», where.u is the 
unique invariant measure on .om' and the action of 
V(m.A) is given by 

[u(m').)(a, A)h](p) = (p, a)D()"(A;lAA.,rlp)h(A-1p), 

where a E T, A E fl, p E .om £ t. (18) 

This representation v(m.A) is thus induced by the 
UIR L(m.A) == (p, . )D(A) of K, and the latter has 
the same dimension as the UIR DO) of flpo == flm 
(the little groups flp are isomorphic for all p E .om). 

From the VIR V(m.).), the most general unitary 
representation of G is then obtained according to Eq. 
(7): 

(19a) 

with 

(19b) 

In these equations, 11m is an arbitrary measure on the 
set ~m of all UIR's of the little group fl m • The most 
general unitary representation corresponding to (or 
carried by) the orbit .om thus is Vim) == VL(m), where 

J
ffi 

L(m) = d1l ()')L(m,).) 
A m 
~m 

is the most general unitary representation of fl m • p is 
an arbitrary measure on the set of all orbits. Equations 
(19) allow us to sharpen the discussion of Sec. IV.A, 
about the dimension of L. 

1. A Single Orbit .omo 
(i) flmo compact: Then 11m. is a discrete measure and 

all the UIR D(A) are finite-dimensional; we are thus 
in the favorable cases I or 2a; 

(ii) ~m. noncom pact : All the D(A) are infinite­
dimensional, except the identity representation D(O). 
Then: 

a. If 1Imo().) = nb()') (i.e., D(A) is the direct sum of 
n copies of D(O): DO.) == nD(O», we are again in cases 
I or 2a; 

b. For any other 11m.' we are in case 2b. 

2. A Discrete Set of Orbits .omi' i = 1,2, ... , 
(p Discrete) 

Obviously, V == EEli V(m,) will be in the favorable 
case if and only if each Vim;) is. 

3. A Continuum of Orbits (p Continuous) 

Then we are always in case 2b. 

V. SOME PHYSICAL EXAMPLES 

A. The Euclidean Group E(3) 

By E(3) we mean the universal covering group of the 
group of all rotations and translations in Ra, which 
has the following structure: 

E(3) = Ta I8J SV(2), Ta == Ra. 

This group has been studied extensively by Wight­
man40 in his celebrated paper on localizability. We 
have only to see how his results fit into the general 
scheme. 

The representations of E(3) may be induced by two 
different subgroups, SV(2) and Ta [2J SO(2). 

1. K = SV(2) 

This corresponds to the {x} representation, with 

G = Ta [2J SU(2) '" T. = Ra 
K SU(2) - a - , 

and E(3) acts transitively on Ra (unique orbit). The 
unitary representations of E(3) have the standard 
form: 

i 
[U(a, A)f]m(x) = ! D~~.(A)fm.(A-l(x - a», 

m'~-i 

a E Ta, A E SU(2), f E iJ(Ra, Je2i+1)' (20) 

where D<il is the (2j + I)-dimensional representation 
of SV(2), acting in Je2i+l' The general scheme of Sec. 
IV would yield cP = ~(Ra, Je2i+l)' But here we see 
that other solutions are possible. We could start, for 
example, with 'Y = S(Ra, Je2H1) and obtain cP = 'Y 
as an acceptable solution41 (the space of fast-decreasing 
Coo functions on Ra with values in Je2i+1)' In this case, 
of course, we would just be studying rotation and 
translation properties of tempered distributions! 

2. K = Ta I8J SO(2) 

This corresponds to the general method outlined 
above, since SO(2) is indeed the little group of any 
nonzero vector of Ra == fa. Thus, we have 

Q = Ta [2J SV(2) ~ S the unit sphere in R3. 
K Ta [2J SO(2) 2, 

This choice of K corresponds (as in the general case) 
to the {p} representation (the translation subgroup is 
diagonalized). The orbits are all the spheres centered 

00 A. S. Wightman, Rev. Mod. Phys. 34, 845 (1962). 
U This is a general feature: For any admissible space'Y which is 

invariant under convolution with ~(G), we may take «II = 'Y, as we 
did above with ~(L)(G, XL) and ~(GIK, XL). 
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at the origin, and they are compact, i.e., ~(nm) = 
S(nm) is a Frechet space. For further details, we refer 
to Wightman's article.40 

B. The Galilei Group 

The representations of the Galilei group have been 
studied by numerous authors7

•
42

; we must recall only 
the main points of the analysis. 

(i) G, as well as its extensions G M (see Sec. II), 43 

has the structure of a semidirect product: 

G = T [2J~, 

where T is the invariant Abelian subgroup of space­
time translations, ~ the subgroup of rotations and 
pure Galilei transformations. 

(ii) In the dual space t (with variables E, p), the 
orbits are the paraboloids nEo: 

labeled by the parameter Eo; the invariant measure 
on nEo is 

daEo(E, p) = dE dpo(E - Eo - p2/2M). 

(iii) For any orbit, the little group is SU(2); thus, 
we take K = T [2J SU(2), and the general theory of 
Mackey ensures that any VIR of G (M ¥: 0), denoted 
[M I Eo, s], is fixed by the choice of the orbit nEo and 
the (2s + I)-dimensional VIR D(s) of SU(2): 

8 

[U(a, r)f]ip) = ei<Eb-p.a) L D;~!(R)fAr-lp), (21) 
a'=-8 

where 

p===(E,p)EnEo ' 

a === (b, a) E T, space-time translation, 
r === (v, R) E~, Galilei acceleration and rotation. 

(iv) The most general (projective) representation of 
G corresponding to the value M of the mass is given 
by 

(B 

U = J dp(Eo) E¥ vEo(s)[M I Eo, s], (22) 

where p is an arbitrary measure on Rand VEo(S) is the 
multiplicity ofthe representation D(s). In Eqs. (21) and 
(22), the variables have the obvious physical significance 
when those equations are taken to describe a single, 

C2 1.-M. Levy-Leblond, 1. Math. Phys. 4, 776 (1963); 1. Voisin, 1. 
Math. Phys. 6, 1519, 1822 (1965). 

43 G M is an extension of G by the one-parameter group of the 
reals (see Ref. 7); the parameter M, corresponding to the factor WM 
of G, is identified with the total mass of the system and gives rise to 
Bargmann's superselection rule. 

isolated, Galilei invariant system: 

M = total mass, 
p = total momentum (or momentum of the center 

of mass), 
Eo = total rest energy (or internal energy), 
E = total energy, 
s = total intrinsic (or internal) angular momentum, 

i.e., spin. 

The corresponding observables44 are denoted M, P, 
Ho, Hand S, respectively. 

Let us go back to our construction: The. orbits 
nE are noncompact, but the little groups ~E are all 
iso~orphic to SU(2) and are thus compact. Fr~m this, 
it follows that no complication arises if we consider 
only a single orbit or a discrete set of orbits: The 
general theory gives us <I> = ~(s)( G M' Je2S+1) or 
~(nE ,Je2s+1), or a direct sum of such spaces, which 
are alt nuclear. Here again we see that other solutions 
are available, such as the space S(nE ,Je28+1) con­
sidered by Guillot.19 If, however, we w~nt to include 
a continuum of orbits, then we need a more refined 
space: Its elements are functions of Eo, and we must 
add some requirement on this dependence (such as 
compact support and infinite differentiability; this 
may depend on the problem at hand). 

In any case, Eq. (22) is the (unique) decomposition 
of U into primary components, i.e., its decomposition 
with respect to the Casimir operators Ho and 8 2

• 

According to the general discussion at the end of Sec. 
III, the complete (spectral) decomposition of Je 
implies the choice of a complete system of commuting 
labeled observables, including Ho and 82• The other 
1.0. are of two types: 

(1) those 1.0. which fix the particular realization of 
the VIR [M I Eo, s]; this includes: 

(i) the generators P, H of the Abelian translation 
subgroup, whose diagonalization is the essence of the 
general method outlined in Sec. IVB; 

(ii) the 1.0. (call it B), implied by the choice of a 
particular function p -+ Ap defined in Sec. IVA. We 
will come back to this problem in a moment. 

(2) the supplementary observables Ai which lift the 
degeneracy in the case vE (s) > I; we can say at once • that these operators must have a purely discrete 
spectrum. Indeed, as G is a type I group, the primary 
representation U(E •. s) can be at most a direct sum of 
copies of the VIR [M I Eo, s]. In most situations, as 

44 We do not study here the implications of the symmetry on the 
choice of the labeled observables of the system. Clearly, all the 
observables mentioned here are l.o.-all contained in the Lie algebra 
or its enveloping algebra. We shall come back to this very important 
point in another publication. 
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for instance in a 3-body problem, those 1.0. Ai are 
relative angular momenta. 45 

To sum up, the decomposition performed so far is the 
spectral decomposition of Je with respect to the com­
plete set of commuting 1.0. {Ho, S2; P, H; B; Ai}' 
According to the general theory of Part I, there 
exists in the dual space <1>' a complete orthonormal set 
of eigenfunctionals {(Eo, s; p, E; b; ail}: this is the 
so-called "improper basis" used in many instances 
(see for instance the work of Voisin42). The theory 
developed so far tells us that it is the same to study 
the representation U in <I> or the contragredient 

representation U in <1>', more specifically, the trans­
formation properties of those "improper basis vectors" 

under U. This latter procedure, which is most com­
monly used, is especially convenient also for discussing 
tensor products of representations and their Clebsch­
Gordan decomposition42; clearly a CG coefficient is a 
particular functional over the product space <1>1 ® <1>2 
(with an adequate topology); this point of view has 
been considered by Rideau46 and Guillot.19 

Finally, let us discuss the choices of the function 
p ---+ Ap; this problem has been studied in considerable 
detail by Voisin42 and Guillot and Petit. 19.36 These 
authors consider the following cases: 

(i) The canonical formalism: Ap is the pure Galilei 
transformation (0, 0, p/M, 1); clearly this Ap depends 
analytically on p and all the conditions discussed in 
Sec. IVA are fulfilled; in the canonical formalism, 
we may thus use either of the two forms (12) or (14) 
for the representation. In this case, B == S z. [Equation 
(21) is written in this formalism.] 

(ii) The helicity formalism: Ap is the composite 
transformation (0,0, p/M, R), where R is the p p 

smallest rotation bringing p onto a fixed vector k; but 
this rotation is undefined for p = 0 or p = ~ k. 
Consequently, with this choice, Ap does not even 
depend continuously on p, so that the second form of 
the representation breaks down. This is linked to the 
difficulties encountered by GUillot19 in defining cor­
rectly the helicity operator ~ = p • S/lpl. The name of 
the formalism stems from the fact that B == ~ in this 
case. 

C. The Poincare Group 

This last group, with its well-known structure 
~ = TIS] L (T, translation group; L, Lorentz group), 
has been studied in so many places that it is hardly 
necessary to add any comment. We will, therefore, be 
content to mention the following few points: 

U A. Dragt, J. Math. Phys. 6, 533 (1965); J.-M. Levy-Leblond 
and F. Lur~at, ibid. 6, 1564 (1965). 

•• G. Rideau, Ann. Inst. Henri Poincare 3,339 (1965). 

(i) The structure of ~ and of its VIR's is exactly the 
same as that of the Galilei group; we note, however, 
that only the orbits .om (m2 > 0) have a compact 
little group SU(2); all other orbits have noncom pact 
little groups and so the difficulties outlined in Sec. 
VB are to be expected. We might also mention that the 
systematic use of "a continuum of orbits" has been 
suggested recently by Lur~at47: This author describes 
unstable particles by a multiplicityfree representation 
of ~, i.e., a representation with a continuous measure 
p(m) and no multiplicity, 'l'm(s) = (jss • [Here, m plays 
the role of Eo in G M, in Eq. (22).] 0 

(ii) The "improper bases" are used in the case of 
~ exactly as for G M; they can be justified in the present 
context in the same way, by constructing a suitable 
space <I> and taking its dual <1>'. The same is true for the 
CG coefficients, as studied for instance by Moussa 
and Stora.48 

(iii) The same choices of the function p ---+ Ap may be 
done here, leading again to the canonical and helicity 
formalisms, respectively, and the same difficulty 
appears with the latter. Another difficulty already 
appears in this case with the spin operato,s,19 because 
here they have more complicated transformation 
properties (see the Remark after Proposition 4); the 
helicity operator behaves as badly in ~ as it does 
in GM • 
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APPENDIX A: THE DUALITY U _ U AND 
PARITY NONCONSERVATION 

Given the representation U in <1>, the contragredient 

representation U in <1>' was defined in Sec. II by the 
relation 

(U(g)q/ I U(g)cp) = (cp' I cp), 

for all cp E <1>, cp' E <1>'. (AI) 

47 F. Lur~at, Phys. Rev. 173, 1461 (1968). 
4. P. M~)\~ssa and R. Stora, in Lectures in Theoretical Physics, 

W. E. Bnttm and A. O. Barut, Eds. (University of Colorado 
Press, Boulder, Colo., 1965), Vol. VILA. 
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It was emphasized that this relation is a mere definition, 
and it is therefore independent of the invariance or 
noninvariance of a particular process under G. 
Equation (AI) always holds. 

As an illustration, we will consider here the {3 decay 
of a polarized nucleus, .N' ---,>-.N" + e- + 'ii. For sim­
plicity, we take the nucleus .N' at rest at the origin, 
with its spin completely aligned on the negative z 
axis. Let 'P- E <I> be the state vector of the nucleus. 
The final state, after the decay, is then Sp_, where S 
is the appropriate "s matrix" describing the decay. 
Clearly, this vector must belong to <1>, since the final 
state is actually realized; in other words, S must map 
~ continuously onto itself in order to have a consistent 
theory. 

Let 0 be the angle between the positive z axis and the 
momentum of the emitted electron. Then the angular 
distribution of the electron is given by the following 
amplitude: 

where C9 E <1>' represents an "elementary" (or ideal­
ized) counter placed at an angle O. 

Consider now the operation of space reflection, 
represented in Je by the unitary operator Up. Accord­
ing to the general scheme, <I> is invariant under Up 
and (AI) defines the contragredient operator Up in 
<1>'. Thus, we have 

f-(O) = (C9 1 Sp_> 

= (UpC9 1 UpSp_> 

= (Cl1_ 9 1 UpSp_>. 

If parity is conserved in the decay , Up commutes with 
S, and since U P'P- = p_, we obtain, as usual, 

But if parity is not conserved, [Up, S] ¥: 0, then we 
get 

i.e., the familiar up-down asymmetry characteristic of 
parity-nonconserving decays. Thus we see that relation 
(AI) does not contradict the violation of parity in this 
particular process. 

APPENDIX B: DISTRIBUTIONS OVER A LIE 
GROUP 

1. Functional Spaces 

Let G be a unimodular Lie group, dg its Haar 
measure, which is both left- and right-invariant, and 
unique up to normalization. Thus, G is an analytic 
manifold, which we suppose countable at infinity, i.e., 
G is the union of a countable number of compact 

subsets. This property allows us to build a theory of 
distributions over G with all usual properties.28 

The following spaces can be defined: 

~(G): space of Coo functions on G with compact 
support; 

e( G): space of Coo functions on G; 
~'(G): space of distributions on G: 
e' (G): space of distributions on G with compact 

support. 

These spaces are endowed with their usual Schwartz 
topologies28 : for e(G), uniform convergence of the 
functions and all their derivatives on any compact 
subset; ~(G) is the (countable) inductive limit of the 
~ .A(G), where ~ .A (G) is the space of Coo functions on 
G, with support in a fixed compact set A, provided 
with the topology induced by e(G); ~'(G) and e'(G), 
the strong duals of~(G) and e(G), respectively. These 
four spaces are nuclear, because of the countability of 
G at CX); e( G) is a Frechet space, but ~(G) is not 
metrizable if G is noncompact. Identifying the func­
tion f E ~(G) with the distribution f(g) dg, one has the 
usual inclusions (algebraically and topologically): 

:neG) c e'(G) c ~'(G), 

:neG) c V(G, dg) c ~'(G). 

In a similar way, for any locally convex, complete, 
Hausdorff topological vector space E,3 the following 
spaces can be defined: 

~(G, E): space of COO functions with compact 
support on G, with values in E; 

e( G, E): space of Coo functions on G, with values 
in E. 

These two spaces are endowed with topologies 
analogous to those of ~(G) and e( G); :n( G, E) is again 
the inductive limit of the spaces ~.A(G, E).49 One has 
the following resuWo: 

e(G, E) = e(G) @11 E, 

where the right-hand side is the completed projective 
tensor product. 3 It follows from this that both e( G, E) 
and ~(G, E) are nuclear if and only if E is nuclear (in 
particular, finite dimensional); this excludes the case 
of an infinite-dimensional Banach or Hilbert space. 

Two kinds of dual spaces can be introduced: 
(i) the space of distributions on G, with values in E: 

LCD(G), E) == 'J)'(G, E) 

(these are the vector-valued distributions of Schwartz39); 

(ii) the space of E-distributions: ['J)(G, E)]'. 

•• This topology, introduced by Grothendieck [Produits tensoriels 
topologiques et espaces nuc/eaires, Memoirs Am. Math. Soc. 16, 
(1955)], and used by Bruhat (see Ref. 10), is not the one adopted by 
Schwartz in Ref. 39. 
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One has in general the following inclusion: 

[~(G, E»)' £ ~'(G, E'), (Bl) 

where E' is the strong dual of E. The equality sign 
holds if E is a Frechet space. In particular, for a 
Hilbert space H, one may identify [~(G, H)]' and 
~'(G, H). 

Convolution may be defined as usual. The mapping 
(T,f) -- T * f, defined by the relation 

(T * f)(go) = f/(g-lgO) dT(g), (B2) 

is a separately continuous mapping of~' (G) x ~(G, E) 
into B(G, E); the same is true for the convolutions 
B(G) x B(G, E) -- B(G, E) and B'(G) x ~(G, E)-­
'IJ(G, E). 

Similar results are valid with G replaced by any Coo 
manifold, countable at infinity-in particular, the 
quotient G/K of G by a closed subgroup. 

Closely related to the preceding ones is the space 
~(L)(G, E) introduced by BruhatlO (L is a unitary 
differentiable representation in E of the subgroup K of 
G). ~(L)(G, E) is the space of Coo functionsj: G -- E, 
such that: 

(i) the canonical image in G/K of supp f is compact; 
(ii)f(gk) = L+(k)/(g), for all g E G, k E K. 

The topology of ~(L) is defined as follows: Let A 
be a compact subset of G and ~~) the space of those 
f E ~(L) which have their support in AK, with the 
topology induced by B(G, E). ~(L) is then the inductive 
limit of all the spaces ~~f>. If L == I, ~(L) reduces to 
~(G/K). Let] E ~(G, E) and define 

I(g) = fKL(k)](gk) dk. (B3) 

Thenlo the mapping] --f is a topological homo­
morphism from ~(G, E) onto ~(L)(G, E). Let:F L be 
its kernel, which is closed in ~(G, E). Thus, we have 

~(L)(G, E) = ~(G, E)/:F L' (B4) 

It follows from this that the induced representation 
UL, defined in ~(L) by left translations (see Sec. IV), 
is the quotient by the closed subspace :F L of the left 
regular representation of G in ~(G, E), since the 
mapping J --f commutes with left translations. And 
this implies that UL restricted to ~(L) is a differentiable 
representation. Because of (B4), the dual of1>(L) is the 
orthogonal complement of :F L, i.e., the closed sub­
space of [1>(G, E)], consisting of those functionals 
which vanish on :F L' [The latter space was discussed 
before, in connection with Eq. (BI).] Finally, the 

convolution (B2) is again a separately continuous 
mapping from B'(G) x ~(L)(G, E) into 1>(L)(G, E) 
[and- a fortiori with B'(G) replaced by ~(G)]. 

2. Invariant Ditferential Operators10•24 

A differential operator on a Coo manifold V is a 
continuous mapping D of ~(V) into itself, such that 

supp Df£ suppf, for all fE ~(V). (B5) 

This (purely local) operator can be extended by con­
tinuity to the whole space &(V). A condition equiv­
alent to (B5) is the following: In any local coordinate 
system {Xl' •• X n}, D can be expressed as afinite sum 
of partial differential operators: 

(Df)(x) = ~ aix) oIP~(x), (B6) 
P OXfl . .. oxp

" 

where Ipl = PI + ... + Pn and ap E &(V); the order 
of D is the highest integer Ipl occurring in the sum. 

A differential operator D on the Lie group G is 
right-invariant (left-invariant) under G if D commutes 
with right (left) translations under G. Thus a differ­
ential operator on G/K (the space of left cosetsgK) can 
be identified with a differential operator on G, right­
invariant under K. Left-invariant differential operators 
on G/K (or more generally on any Coo manifold on 
which G acts by left translations) can be defined 
similarly: They are restrictions to G/K of differential 
operators on G which are both left-invariant under G 
and right-invariant under K. 

The Lie algebra g of G can be identified with the 
vector space of all first-order right-invariant differ­
ential operators on G. The universal enveloping algebra 
'\.1(g) is the quotient b(g)/J, where beg) is the tensor 
algebra on g and J is the ideal consisting of all the 
elements of the form T ® S - S ® T - [T, S], 
T, S E g. It is an associative algebra composed of 
polynomials in the elements of g; g itself is a sub,.. 
algebra of '\.1(g) (first-order monomials). The follow­
ing theorems then hold: 

a. '\.1(g) is isomorphic to the algebra of all right­
invariant differential operators on G; 

b. 'U,(g) is isomorphic to the algebra B; of distri­
butions with support {e} (with respect to convolution). 

Indeed, for any TEB;,fE 1> (G) , the mappingf -- T*f 
is a right-invariant differential operator (I --f * T 
would be left-invariant); this follows from (B6) and 
the fact that any T E &; is afinite linear combination of 
derivatives of the distribution b, with Coo coefficients.3 

Conversely, all right-invariant differential operators 
can be obtained in this way. 
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Geometrical optics fails to account for the phenomenon of diffraction, i.e., the existence of nonzero 
fields in the geometrical shadow. Keller's geometrical theory of diffraction accounts for this phenomenon 
by providing correction terms to the geometrical optics field, in the form of a high-frequency asymptotic 
expansion. In problems involving screens with apertures, this asymptotic expansion fails at the edge of the 
screen and on shadow boundaries where the expansion has singularities. The uniform asymptotic theory 
presented here provides a new asymptotic solution of the diffraction problem which is uniformly valid 
near edges and shadow boundaries. Away from these regions the solution reduces to that of Keller's 
theory. However, singularities at any caustics other than the edge are not corrected. 

1. INTRODUCTION 

Geometrical optics fails to accpunt for the phenom­
enon of diffraction, i.e., the existence of nonzero 
fields in the geometrical shadow. It is now known that 
the geometrical-optics field corresponds to the leading 
term of a high-frequency asymptotic expansion of the 
solution of a boundary-value problem for the reduced 
wave equation or Maxwell's equations, and that higher­
order terms account for diffraction. Keller's "geo­
metrical theory of diffraction" 1.2 provides a systematic 
means for computing these terms. 

In this paper we consider problems of diffraction 
by screens. The screens may be portions of planes or 
other smooth surfaces bounded by smooth curves, 
and the prescribed incident wave may be arbitrary. 
We consider here only scalar problems for the reduced 
wave equation with boundary conditions of the first 
or second kind (u = 0 or au/an = 0) on the screen. 
In Sec. 2 we present a brief but self-contained treat­
ment of Keller's geometrical theory for such problems. 
This theory depends on a "diffraction coefficient" the 
value of which is obtained from a special ("canonical") 
problem, the problem of diffraction of a plane wave 
by a half plane. Sommerfeld's solution of this problem 
is discussed in Sec. 3 and there the diffraction coeffi­
cient is evaluated. 

The geometrical theory has several shortcomings. 
It fails at the shadow boundaries of the incident and 
reflected waves as well as at the edge of the screen 
where the "diffracted wave" becomes infinite. Further­
more, it is difficult to justify the determination of the 

• The research in this paper was supported by the Air Force 
Cambridge Research Laboratories, Office of Aerospace Research, 
under Contract No. AF 19(628)3868. Reproduction in whole or in 
part is permitted for any purpose of the U.S. Government. 

t R. M. Lewis died on 7 November 1968. 
1 J. B. Keller, J. Opt. Soc. Am. 52,116 (1962). 
• R. M. Lewis and J. B. Keller, New York University Research 

Report EM-194, 1964. 

diffraction coefficient by comparison with the solution 
of the canonical problem, and this procedure cannot 
be generalized to yield higher-order terms in the 
diffracted field. These shortcomings are overcome by 
the method presented in Secs. 4 and 5 of this paper. 
Other shortcomings of the geometrical theory (the 
failure at caustics of the problem) remain. Like 
Keller's theory, ours is formal in the sense that we do 
not rigorously prove the asymptotic nature of the 
solution obtained. 

Our approach is motivated by a new representation 
of the solution of the half-plane problem. By using 
simple concepts of the geometrical theory such as 
incident-, reflected-, and diffracted-phase functions, 
we show in Sec. 3 that Sommerfeld's solution can be 
expressed in a remarkably simple and suggestive form. 
This representation involves a special function/which 
is discussed briefly in Appendix A. It is closely related 
to the Fresnel integral functions. 

The geometrical theory of diffraction is based on an 
"ansatz" in the form of an asymptotic series involving 
certain "phase" and "amplitude" functions. By 
inserting the series into the reduced wave equation, 
one obtains the eikonal equation for the phase 
function sex) and a sequence of transport equations 
for the amplitude functions zm(x). These equations 
can be solved by introducing lines in x-space called 
"rays." Our approach is based on a new ansatz that 
involves the function f Away from the edge of the 
screen and the &hadow boundaries, the new expression 
reduces to one of the same form as Keller used. 
Therefore the phase and amplitude functions which 
appear in the new ansatz also satisfy the eikonal and 
transport equations. In Keller's theory there is an 
undetermined "initial condition" for the transport 
equation of order zero. This leads to the diffraction 
coefficient. In our approach the initial condition is 

2291 
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uniquely determined by imposing the "edge condition," 
which is a part of the rigorous formulation of the 
boundary-value problem. Away from the edge and 
shadow boundaries, the leading term of our result 
reduces to Keller's, and we verify his expression for 
the diffraction coefficient. 

By construction our solution is continuous and 
finite at the edge of the screen because the edge 
condition demands this. It is not immediately obvious 
that it is also continuous at the shadow boundaries. 
However, in Sec. 4 we compute the leading term of our 
expansion and prove that it is continuous at the 
shadow boundaries as well as at the edge. (For this 
reason we call our asymptotic solution "uniform.") 
The generalization of this theorem to higher-order 
terms has not yet been proved. In Sec. 5 we compute 
the next term of our expansion. In order to simplify 
the calculations we restrict the problem at this point 
to screens which are portions of planes. The com­
putation requires an expression for the Laplacian in 
"ray coordinates" which are not orthogonal. This 
expression is derived in Appendix C. When our 
result is evaluated away from the edge and shadow 
boundaries, it again reduces to an expression of the 
form used in the geometrical theory, but now the first 
two terms of the diffracted wave are given. The second 
term can be expressed in a form that involves Keller's 
diffraction coefficient and a new coefficient. There is a 
special problem (grazing incidence with boundary 
condition au/an = 0) in which Keller's diffraction 
coefficient vanishes and the second term becomes 
important. For this. case Keller has obtained a special 
diffraction coefficient by using a special canonical 
problem. In this case our new coefficient reduces to 
his. 

In several respects our theory is incomplete. We 
have already mentioned the unproved conjecture that 
all terms are continuous at the shadow boundary. 
There is a second unproved conjecture: We have 
obtained the first two terms of the expansion, at least 
for plane screens. (This is probably not an essential 
restriction.) It seems likely that the procedure can be 
continued to yield higher-order terms. But this too is 
not obvious and has not yet been proved. [Note added 
in proof Both conjectures were proved recently; see 
D. S. Ahluwalia, R. M. Lewis, and J. Boersma, 
SIAM J. Appl. Math. 16, 703 (1968).] Furthermore, 
as we have mentioned, our theory also fails at caustics 
of the incident and reflected waves and caustic points 
of the diffracted wave other than those on the edge. 

Our theory is also incomplete in another sense. 
For nonplanar screens, diffracted rays emanating from 
the edge may strike another portion of the screen 

giving rise to secondary reflected waves or creeping 
waves. Such waves are not included in our theory. 
(See the remarks at the end of Sec. 4.) 

Uniform expansions which are valid at caustics 
have recently been obtained by Kravtsov3 and 
Ludwig.4 In fact, their work partially motivated our 
approach to the problem of diffraction by screens. A 
second motivation came from the work of Lewis5 on 
the uniform transition from the "forerunner" to the 
"main signal" of a transient wave propagating into a 
dispersive medium. 

The main motivation, however, came from the 
recent work of Wolfe. 6 Wolfe considered some special 
cases of the problems treated here, involving plane 
and spherical waves incident on a screen which is a 
portion of a plane. For these problems he obtained 
uniform asymptotic solutions by means of an ansatz 
involving Fresnel integrals. This ansatz, which was 
given in terms of ray coordinates, was substituted 
into the reduced wave equation which had to be 
transformed to these same coordinates. This obscures 
several important features of the method. For ex­
ample, one does not see that the ansatz involves 
functions that are identical to the phase and amplitude 
functions of the geometrical theory. As a consequence 
Wolfe's method is more complicated than ours. In 
addition, Wolfe relies on the use of the canonical 
half-plane problem, since the Fresnel-integral part of 
his ansatz is derived from the uniform asymptotic 
expansion of the solution of the half-plane problem 
for the same incident wave. Since this problem has 
been solved only for special incident waves (plane, 
cylindrical, and spherical), this restricts the generality 
of his method. Nevertheless the essential features of 
our approach are contained in Wolfe's work and we 
are very much indebted to him. We are of course also 
greatly indebted to Keller, not only for his geometrical 
theory of diffraction, but also for his continuing 
interest and advice in the course of Wolfe's work and 
our own. 

In closing this introduction we wish to mention 
some problems closely related to the one treated here. 
The problem of diffraction by a screen is a special 
case of diffraction by objects which are locally wedge­
shaped. (Along the edge the screen is locally a zero­
angled wedge.) Such problems can be treated by 
Keller's theory. The generalization of our method to 
these problems is currently under consideration. There 

3 Yu. A. Kravtsov, Radiofiz. 7, 664 (1964). 
4 D. Ludwig, Commun. Pure Appl. Math. 19,215 (1966). 
• R. M. Lewis, Proceedings of the U.R.S.I. Symposium on Electro­

magnetic Wave Theory (Delft, The Netherlands, 1965). 
6 P. Wolfe, "Diffraction of a Scalar Wave by a Plane Screen," 

Ph.D. thesis, New York University, 1965. 
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is also a fairly obvious generalization of our approach 
to problems of diffraction by screens in inhomogeneous 
media. We have not included a treatment of such 
problems because the added complications are not 
justified by the practical importance of the generaliza­
tion. In addition it is fairly clear that the method 
presented here can be applied to Maxwell's equations 
and other linear partial-differential equations, but this 
has not yet been done. Many diffraction problems 
(e.g., diffraction by a slit or by a circular aperture in a 
plane screen) involve "multiple diffraction" (waves 
produced at one edge are incident on another). Such 
problems have been treated by Keller and will be 
treated by our method in a forthcoming sequel to this 
paper. Finally there is a whole class of problems of 
diffraction by smooth objects that can be treated by 
another part of Keller's theory. Recently uniform 
asymptotic solutions of these problems have been 
obtained.7 •8 These solutions improve on Keller's 
theory in much the same way as the method presented 
here improves on his theory of edge diffraction. 

2. KELLER'S GEOMETRICAL THEORY OF 
DIFFRACTION 

In this section we present a summary of that part 
of Keller's theory which relates to diffraction by an 
edge of a screen. Further details are given in References 
1 and 2. It is important for us to summarize Keller's 
theory not only because our work was motivated by it, 
but because we make heavy use of his results. In 
Secs. 4 and 5, we use almost all the equations derived 
here. 

We consider asymptotic solutions of the reduced 
wave equation 

(2.1) 
of the form 

00 

u,-.; eikS(x) 2 (ik)-mzm(x), k -- 00. (2.2) 
m=O 

By inserting (2.2) into (2.1), we find that the phase 
function sex) satisfies the eikonal equation of geo­
metrical optics 

(Vs)2 = 1, (2.3) 

while the amplitude functions zm(x) satisfy the recursive 
system of transport equations 

2Vs· VZm + zm~s = -~Zm_1; m = 0,1,2,'" , 

Z_l == O. (2.4) 

Solution of (2.3) may be described as follows: Given 
a surface (wavefront) on which s has the constant value 

, R. M. Lewis, N. Bleistein, and D. Ludwig, Commun. Pure Appl. 
Math. 20,295 (1967). 

8 D. Ludwig, Commun. Pure Appl. Math. 20, 103 (1967). 

so' we introduce the two-parameter family of straight 
lines (rays) orthogonal to the surface. If a denotes 
distance along the rays from the wavefront (measured 
positively in the direction of increasing s), then on each 
ray 

s = So + a. (2.5) 

It is then clear that (2.5) satisfies (2.3). 
Let a2 and aa be the two parameters that label the 

rays and let us describe a ray parametrically in the 
form 

x = x(a) = x(a, a2 , aa). (2.6) 

If we set a = aI, then (2.6) defines a transformation 
from (aI' a2 , aa)-space to (Xl> X 2 , xa)-space and the 
Jacobian of the transformation is 

j = j(a) = j(a, a2 , ( 3) = det (OXi) , i,j = 1,2,3 . oa j 

(2.7) 

For given Zm-l it is easy to see that (2.4) is an ordinary 
differential equation for Zm along a ray. The solution 
can be expressed in the form 

zm(a) = Ij(ao) I!Zm(ao) -! f" Ij(a') 1!~Zm_l(a') da', 
j(a) 2 )"0 j(a) 

m = 0, 1,2, .. '. (2.8) 

Here zm(a) = zm[x(a, a2 , aa)] is the value of Zm at a 
point a on a given ray. The solution (2.8) is given in 
terms of an "initial value" Zm (ao) at some fixed point 
on each ray. For m = 0 we note that the second term 
of (2.8) is absent because Z_l == O. Two alternative 
expressions for the ratio of Jacobians are sometimes 
useful: 

j( ao) da( ao) (P2 + ao)(Pa + ao) --= --= 
j( a) da( a) (P2 + a)(P3 + a) 

(2.9) 

Here da( a) is the cross-sectional area of an infinites­
imal tube of rays, while P2( a2 , ( 3) and PaC a2 , ( 3) are 
the principal radii of curvature of the wavefront 
a = O. 

At the two points a = - P2 and a = - P3 on each 
ray, we see from (2.9) that Zm becomes infinite and the 
integral in (2.8) will, in general, diverge. Such points 
are called caustic points. They lie on the caustic, which 
is, in general, a two-sheeted surface forming the 
envelope of the family of rays (the rays are tangent to 
the caustic). We shall require an alternative form of 
(2.8) which remains valid when ao = 0 is a caustic 
point. First we rewrite (2.8) in the form 

ll(a)l! zm(a) = U(ao)l! zm(ao) 

- t r"ll(a')I~ ~Zm_l(a') da'. (2.10) 
)"0 
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Then we express the integral in (2.10) in the form 

(2.11) 

Here the dash denotes the "finite part" 9 of a divergent 
integral. (The ordinary integrals would diverge at 
a' = 0.) Now (2.10) becomes 

li(a)l! zm(a) + t£' = Ii(ao)I! zm(ao) + i£'o. (2.12) 

The right side of (2.12) is independent of a. If we 
denote its value by ~m' then we obtain 

zin(a) = ~ -! [" \j(a') \!Azm_1(a') da', 
Ii( a)l! 2 Jo j( a) 

m = 0, 1,2, ' . '. (2.13) 

This is the required modification of (2.S). The "initial 
value" ~m(a2' as) has first to be determined before 
(2.13) is useful. We will see in Sec. 5 that the finite­
part integrals are a useful computational tool. For 
m = 0, the integral in (2.13) is again absent. 

We now consider the problem of diffraction by a 
screen S. The screen is a portion of a smooth surface. 
It is bounded by an edge E consisting of a smooth 
curve 

(2.14) 

Here 'fJ is an arclength parameter. For example, S 
might be an infinite plane with a circular aperture or it 
could be the complementary disk. Alternatively the 
aperture may have any smooth shape. In general, S 
need not be a portion of a plane. We consider an 
incident wave, 

00 

u~ '"'-' e ikSI I (ik)-mz~, (2.15) 
m=O 

which is an asymptotic solution of (2.1). Then si and 
the z~ satisfy the equations derived above. The total 
field u is a solution of (2.1) and satisfies a boundary 
condition on the screen. We shall consider simultane­
ously the two conditions 

and 
u = 0 on S 

au 
- = N . Vu = ° on S. on 

(2.16a) 

(2. 16b) 

Here N is a unit normal vector on S. In addition, 
u - u~ is required to be "outgoing." 

To solve the diffraction problem, we first set 

9 Let!(E) = S~ g(x) dx have an asymptotic expansion in (perhaps 
fractional) powers of E for E ->- O. The coefficient of EO = 1 in the 
expansion is called the finite part of the integral and will be denoted 
by fo g(x) dx. 

u = ~ + u~. We assume that the reflected wave u~ 
has an asymptotic expansion 

Then (2.16) will be satisfied, provided 

sr = Si on S 

and, for the boundary condition u = 0, 

(2.17) 

(2.1S) 

z~ = -z~ on S; m = 0, 1,2, .. '. (2.19) 

For the case aulon = 0, (2.19) is replaced by 

::l i ::l r ::l i ::l r 
Zi ~ + zr ~ + UZm_l + uZm_l = 0 on S, 
man m an an an 

m = 0, 1,2, .. '. (2.20) 

It can be shown that (2.1S) implies that the inc;.dent 
and reflected rays (which have the direction VSI and 
Vsr, respectively) satisfy the law of reflection of 
geometrical optics. If "p is the angle of incidence 
(= angle of reflection), then asrlan = cos "p = -asilan 
and (2.20) becomes 

Z~ = z~ __ 1_(aZ~_l + aZ~_l) on S, 
cOS"p an an 

m = 0, 1,2, .. '. (2.21) 

Thus sr is determined on the reflected rays by (2.1S) 
and (2.5), while the functions z~ are given by (2.S) 
with zm(ao) determined by (2.19) or (2.21). We note 
that both u~ and u~ are zero in their respective "shadow 
regions," i.e., where there are no incident or reflected 
rays. Thus each has an "illuminated region" separated 
from the corresponding shadow region by a shadow 
boundary surface. 

The leading term u = u~ + lfo '"'-' z~ exp (iksi) + 
z~ exp (iksr) is the geometrical-optics solution of the 
problem, which of course fails to account for diffrac­
tion phenomena (nonzero fields in the shadows). The 
full solution (2.15) + (2.17) is correct only to first 
order because, according to Keller's theory, there is an 
additional diffracted wave U. Then 

u = u~ + u~ + u, (2.22) 
where 

, k-! iks ~ ('k)-m' u'"'-' e 4. I Zm' (2.23) 
m=O 

Of course s and the 2m satisfy the equations derived 
earlier for phase and amplitude functions. The 
diffracted rays associated with s emanate from the 
edge E of the screen and 

s = Si on E. (2.24) 
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Let us introduce the unit tangent, normal, and bi­
normal vectors t, D, and b of E. Then t = xo(11), 
b = t x D, and the equations of Frenet, 

i = KD, it = -Kt + Tb, b = -TD, (2.25) 

are satisfied. Here K is the curvature and T is the 
torsion of E. If we differentiate (2.24) with respect to 
1], we obtain 

Vs· t = VSi. t. (2.26) 

This implies the law of edge diffraction: The diffracted 
rays make the same angle with the tangent t to the 
edge as the incident ray at the point of diffraction. 
Let {J = (J( 1]) be this angle. Then, from each point 
xo(1J) of the edge, the diffracted rays emanating from 
the point generate a cone of semiangle {J. Thus we 
have a two-parameter family of diffracted rays 

(2.27) 

where U is a unit vector given by 

U = cos {Jt + sin {J cos exD + sin {J sin exb. (2.28) 

We may calculate the Jacobian 

and 

(2.35) 

The factor of proportionality D is called a diffraction 
coefficient. In Keller's theory it is determined by 
comparison with the solution of the problem of 
diffraction by a half-plane; the motivation is that 
diffraction is a local phenomenon and locally the 
screen can be approximated by a half-plane. In the 
next section we discuss the solution of the half-plane 
problem and derive the diffraction coefficient. The 
value of D is given by (3.16). It depends on the angles 
(J, rp, and rpo. The angles rp and rpo are illustrated in 
Fig. 1. 

In closing this section we state and prove two 
lemmas which will be useful in Sec. 4. 

Lemma 1: Let si.r be the phase function of the 
incident (reflected) wave and s the phase function of 
the diffracted wave. Then 

(2.36) 

.().( ) 0(x 1 , x 2 , x 3) ] a = ] a, ex, 1] = 
o( a, ex, 1]) 

and si.r(x) = sex) if and only if x is a point on the 
(2.29) shadow boundary of the incident (reflected) wave. 

of the transformation defined by (2.27), using (2.25). 
We find that 

] = - . - x - = sm a 1 + - , . ox ox ox (. 2{J) ( a) 
oa oex 01] p 

(2.30) 

where 
sin {J 

p = - -:-----'---
(3(1]) + K cos ex (3 sin {J + K cos <5 ' 

(2.31) 
and 

cos <5 = sin (J cos ex = U . D. (2.32) 

Then, if we set <5m(ex, 1]) = 'm/sin (J, (2.13) yields 

m = 0, 1,2, .. '. (2.33) 
In particular, 

(2.34) 

The undetermined factor <50 is assumed to be 
proportional to the amplitude z~ of the incident wave 
at the point of diffraction xo(1]). Then <50 = Dz~[xo(1])] 

Proof: Let So be the common value of Si, sr, and s 
at a point Q on the edge. Let P be any point on a 
diffracted ray emanating from Q in the direction of 
the unit vector U; and let ao be the distance from Q 
to P. Since jVsi.rj = 1, 

si.r(p) = So + J: Vs i
•
r • U da ~ So + ao = S(P). 

(2.37) 

Equality holds in (2.37) if and only if Vsi.r == U, i.e., 
if and only if the diffracted ray coincides with an 
incident (reflected) ray. But this occurs if and only if 

FIG. I. Angles at the edge of a 
screen. The unit vectors t. and t. 
are orthogonal to the unit vector 
t J , which is tangent to the edge. 
t2 lies in the tangent plane and 
points away from the screen. 
t3 = tJ X t2 is orthogonal to the 
tangent plane and points toward 
the illuminated side. Projections 
of the incident ray and the 
diffracted ray into the plane 
orthogonal to the edge are 
shown. The directions of the 
projections are determined by 
the angles CPo (0 :::;; CPo :::;; 1T) and 
cP (-1T :::;; cP :::;; 1T). For purposes 
of Sec. 3 the y and z axes are 
shown. For purposes of Secs. 3 
and 5 the screen coincides with 
the tangent plane. 

projection of 
diffracted ray-

projection of 
incident ray 
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P is on the shadow boundary of the incident (reflected) 
wave. 

Lemma 2: (See Fig. 2.) Let t be a unit vector tangent 
to the edge at Q, and UI a unit vector in the direction 
of the incident (reflected) ray at Q. Let Ua be a unit 
vector in the plane T spanned by t and U I . Ua is 
chosen so that it is perpendicular to U I and 

t = cos PUI + sin pUa • (2.38) 

Let Po be the radius of curvature of the normal section 
of the incident (reflected) wavefront at Q in the direc­
tion of Ua • Then for the diffracted ray emanating from 
Q which lies on the shadow boundary of the incident 
(reflected) wave, the quantity p defined by (2.31) has 
the value 

p = Po· (2.39) 

Proof: Let S be the shadow-boundary surface of the 
incident (reflected) wave, W(x) the incident (reflected) 
wavefront and W(x) the diffracted wavefront that 
passes through the point x. On S, the incident 
(reflected) and diffracted rays coincide. (See Fig. 2.) 
Let Q denote a point on the edge x = xo(1]) and P a 
point on the ray through Q at a distance (1 from Q. 
From (2.9) and (2.30), we see that the principal radii 
at P of W(P) are (1 and p + (1. The cone of diffracted 
rays emanating from Q intersects W(P) in a circle. 
The axis of the cone has the direction of the vector t. 
From the "formula of Rodrigues" it can easily be 
shown that the circle is a line of curvature on W(P) 
corresponding to the principal radius of curvature (1. 

Therefore one of the principal directions atP is 
tangent to the circle, hence perpendicular to t. Thus 
it is perpendicular to the plane T spanned by t and 
UI . The other principal direction corresponding to the 
principal radius of curvature p + (1 is given by the 
vector Ua which lies in the plane T and is perpendicular 
to U I . Since W(Q) and W(P) are parallel surfaces, 
their principal directions are the same. If we take 
(1 = 0, we see that the principal radius of curvature of 
W(Q) in the direction Ua is p. 

edge 

FIG. 2 The shadow 
boundary surface S 
(proof of Lemma 2). 

Let C be the curve of intersection of Sand W(Q). 
According to Lemma 1, S = s on S; hence C also lies 
on W(Q). The rays of S are orthogonal to both W(Q) 
and W(Q) along C; hence W(Q) and W(Q) are tangent 
along C. From this it can easily be shown that the 
radii of curvature of the normal section of W(Q) and 
W(Q) at any point of C in the direction of the tangent 
to C are equal. But at Q the tangent to C has the 
direction Ua. Hence Po = p. 

3. SOMMERFELD'S SOLUTION OF THE 
PROBLEM OF DIFFRACTION BY A 

HALF-PLANE 

In this section we shall express Sommerfeld's well­
known solution of the half-plane ~i~raction problem 
in a new form. This expression partially motivated our 
work in this paper. From Sommerfeld's solution we 
shall also derive Keller's diffraction coefficient. 

Let x, y, and z be rectangular coordinates and let 
a half-plane be given by z = 0, y ~ 0, as in Fig. l. 
We introduce polar coordinates p, f{J (0 ~ p; -7T :5; 
f{J :5; 7T) defined by the equations y = p cos f{J, z = 
p sin f{J; and an incident plane wave u~ = exp (iksi), 
where 

Si = x cos p - y sin p cos f{Jo + z sin p sin f{Jo 

= x cos p - p sin p cos (f{J + f{Jo). (3.1) 

For p = 7T/2, the solution of the diffraction problem 
with boundary conditions (2.16) was first derived by 
Sommerfeld. A simple derivation appears in Ref. 
10,11 For arbitrary p the transformation 

u = exp (ikx cos P)u'(y, z) 

reduces the general problem to the special one 
(P = 7T/2), with k replaced by k sin p. Thus it is not 
difficult to obtain the solution of the diffraction 
problem for the incident plane wave given above. We 
find that the total field is given by 

u = exp {ik [ - p sin p cos (f{J + f{Jo) + x cos P]} 
x h[(2kp sin P)! cos Hf{J + f{Jo)] 

1= exp {ik[ - P sin p cos (f{J - f{Jo) + x cos P]} 
x h[ -(2kp sin p)l cos t(f{J - f{Jo)], (3.2) 

where 

hex) = 7T-le-ilTI4j:oo eit2 dt. (3.3) 

In (3.2) the upper (lower) sign is valid for the bound­
ary condition u = 0 (au/an = 0) on the half-plane. 

10 C. J. Bouwkamp, New York University Research Report 
EM· 50, 1953. 

11 To obtain our notation from Ref. 10, it is necessary to replace 
by 1r - qi, 80 by qio, and y by -yo 
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The above result can be greatly simplified by intro­
ducing the reflected and diffracted phase functions sr 
and s discussed in Sec. 2. It is easily seen that 

sr = x cos {3 - y sin {3 cos lPo - z sin {3 sin lPo 

= x cos {3 - p sin {3 cos (lP - lPo). (3.4) 

The diffracted rays may be expressed in the form 

x = (x,y, z) = (1],0,0) 

+ (J'(cos {3, sin {3 cos lP, sin (3 sin lP) (3.S) 

and on each ray 

s = Si(1], 0, 0) + (J' = 1] cos {3 + (J'. (3.6) 

Since 1] = x - (J' cos {3 and p = (J' sin {3, we see that 

S = x cos {3 + p sin {3. (3.7) 

We note that 

and 

We set 

and 

S - Si = 2p sin (3 cos2 Hcp + CPo) (3.8) 

S - sr = 2p sin (3 cos2 HlP - lPo)· 

ei = sgn [cos HlP + lPo)], 

er = -sgn [cos HlP - lPo)], 

(3.9) 

(3.10) 

f(x) = e-i",'h(x) = 7T-ie-i1T/4e-i",2L"oo eit' dt. (3.11) 

Then (3.2) can be written as 

u = u i + u', (3.12) 
where 

(3.13) 

and z~ and z~ are the geometrical incident and reflected 
amplitudes. Thus 

zi=l, z~==F1. (3.14) 

The geometric structure of the exact solution [(3.12) 
and (3.13)] becomes even more striking when we recog­
nize that ei

•
r = + 1 in the region illuminated by the 

incident (reflected) field and ei,r = -1 in the shadow 
region of the incident (reflected) field. 

On the shadow boundary of the incident (reflected) 
field, s = si.r and the argument of the function / in 
(3.13) is zero. For points not on a shadow boundary, 
and for k -4- 00, we may introduce the asymptotic 
expansion of/given in Appendix A. Then we find that 

u '"'-''r/(ei)eikS!z~ + 'r/(e')eikSrz~ + eik§(ka)-i D + O(k-!), 

(3.1S) 

where 'r/(x) is the unit-step function (see Appendix A) 

and 
ei1T /4 

D = - i [sec HlP + lPo) ± sect(lP -lPo)]' 
2(27T) sin (3 

(3.16) 

The factor 'r/( eLr) is one in the illuminated region of 
the incident (reflected) field and zero in the shadow 
region. Thus the first two terms in (3.1S) are just the 
geometrical-optics solution. If we remember that the 
angle {3 is constant on the edge and the curvature K of 
the edge is zero, we see that (2.31) yields p = 00 and 
(2.3S) becomes 

20 = (J'-i Dzi = (J'-i D. (3.17) 

Thus we recognize that the third term in (3.1S) is the 
leading term of Keller's diffracted wave (2.23) and D 
is the diffraction coefficient. Now, however, (3.16) 
provides a formula12 for D. In Keller's theory it is 
assumed that D is given by (3.16) for an arbitrary 
screen, with the angle {3, lP, and lPo defined at each 
point on the edge as in Fig. 1. 

4. DIFFRACTION BY A SCREEN 

In this section we reconsider the diffraction problem 
discussed in Sec, 2: The wave u~ given by (2.1S) is 
incident on an arbitrary smooth screen with either 
boundary condition (2.16). The total field u is a 
solution of the reduced wave equation (2.1) and the 
boundary condition; and the scattered field u - u~ 
must be outgoing. In addition u must satisfy an 
"edge condition," 13 which we shall introduce shortly. 

As we have seen in Sec. 2, Keller's approach to this 
problem is based on the ansatz (2.2). Motivated by the 
representation (3.12) of the exact solution of the 
Sommerfeld problem, we shall introduce a new 
ansatz for the general diffraction problem. We will 
find that, away from the shadow boundaries, our 
results will reduce to those of Sec. 2, but we shall be 
able to obtain more than just the leading term of the 
diffracted wave. (In this section we obtain the leading 
term, In Sec. S we obtain the next term, and pre­
sumably the process can be continued,) Moreover, 
we shall not resort to the Sommerfeld solution for the 
determination of the diffraction coefficient. Instead, 
we shall find that the coefficient and its generalization 
for higher-order terms arise as a consequence of 

I. If we introduce Keller's angles, IX = 17/2 - 'Po, () = 17/2 + 'P, 
we see that (3.16) agrees with the result given in Ref. I or Ref. 2. In 
these references the factor k-i is included in the diffraction coefficient. 
We prefer to define D so that it is dimensionless. 

13 It is well known that an edge condition is necessary for the 
solution to be unique. [See C. J. Bouwkamp, Rept. Progr. Phys. 17, 
35 (1954).J The Sommerfeld solution in Sec. 3 satisfies this condition. 
The condition also enters indirectly into the method of Sec. 2 because 
Keller's diffraction coefficient is obtained from the Sommerfeld 
solution. 
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imposing the edge condition on our asymptotic 
solution. We will also see that the asymptotic solution 
obtained in this section will be continuous at the 
shadow boundaries as well as at the edge. For this 
reason we call it "uniform." 

Our asymptotic solution is based on the ansatz 

u = ui + uf
, (4.1) 

where 

ui.r I"-..J eik§(f{€i.r[k(S - si.r)]t} io(ik)-mz~r 

+ k-t io(ik)-mw~r). (4.2) 

The function/is given by (3.11). The second term in 
(4.2) is not present in (3.13), but such a term appears 
in the uniform asymptotic expansion of the solution of 
the problem of diffraction of a cylindrical wave by a 
half-plane. It is also suggested by the work of Wolfe.6 

In (4.2) we take ei .f = 1 in the illuminated region of 
the incident (reflected) wave and €I.r = -1 in the 
shadow region. For s - si.r > 0, we may introduce 
the asymptotic expansion of/which is given in Appen­
dix A. Then we find that 

ui,r I"-..J 1J(€i.r)eikSI ., i (ik)-mz~r 
m~O 

+ k-teik§ i (ik)-mz~r, (4.3) 
m~O 

where Z~f is determined by 
i,r m zi.r 

wi.r=zi.r+_€_ei1T/4!(1'-) m-n . (4.4) 
m m 27Tt n~O 2 n (S _ si.ry,+l 

In (4.3), 1J(€i.f) is one in the illuminated region of the 
incident (reflected) wave and is zero in the shadow. 
By inserting (4.2) into the reduced wave equation,. one 
can obtain equations for the determination of S, s\ Sf, 

Zi Zf, Wi , wf 
• It is, however, much simpler to use 

m' m m m . 

(4.3) and then use (4.4) to obtain w~. 
It is clear from our work in Sec. 2 that (4.3) will 

satisfy the reduced wave equation, provided Sl.f and 
s satisfy the eikonal equation; and both z:;,r, Sl.f 

together, and z:;,r, s together satisfy the transport 
equations (2.4). 

We now impose the boundary conditions (2.16). 
If we insert (4.1, 4.3) into the first boundary condition 
(u = 0), we obtain (2.18), (2.19), and the additional 
equations 

2;' = -2!., on S, m = 0, 1,2, .. '. (4.5a) 

If we use the second boundary condition, we again 
obtain (2.18), (2.20), and the additional equations 

os [Ai + Ar] + 02!.,_1 + 02;'_1 ° - Z Z -- --= 
on m m on on 

on S, 

m = 0, 1,2, .. '. (4.5b) 

Since the functions Sf and z:;. satisfy exactly the 
same equations as those of Sec. 2, these functions are 
identical to those of Keller's theory and may be 
computed by the method of Sec. 2. The functions Sl 

and z~ are, of course, given. As in Sec. 2, we assume 
that the diffracted rays emanate from the edge and that 
s = Si on the edge. It follows that s is identical to the 
diffracted-phase function of Sec. 2. Furthermore, 
since z:;,r and s together satisfy the transport equations, 
z:;,r is given along the diffracted rays by (2.33) with 
15 m replaced by 15~. These coefficients will be deter­
mined shortly by the edge condition: u must have a 
finite limit at the edge.14 

Once all of the functions in (4.3) are determined, 
(4.2) follows from (4.4). Since sand Sl.f have been 
identified as the phase functions of Sec. 2, it follows 
from Lemma 1 that s - si.r ~ ° and s = si.r only on 
the shadow boundary. We take the radical in (4.2) to 
mean the nonnegative square root. 

We may assume that the functions si and z~ are 
defined everywhere. However, the functions Sf and z!n 
are so far defined only in the illuminated region of the 
reflected wave. In order for (4.2) to be defined 
everywhere, we must continue the reflected wave into 
its shadow region, i.e., we must continue the functions 
Sf and z!n. We require that these continuations be 
smooth (i.e., the functions must have sufficiently 
many derivatives). This smooth continuation can eas­
ily be constructed by continuing the screen smoothly 
past the edge and extending the reflected rays 
backward through the screen. Then Sf and z!n are 
defined along these extended rays by the formulas of 
Sec. 2. As a consequence they will satisfy the eikonal 
and transport equations in the shadow region. (If the 
screen has an analytic representation, we can use its 
analytic continuation.) It can be shown that, to any 
given order in k-I , the asymptotic expansion (4.2) for 
uf is independent of the continuation of Sf and z!n, 
provided it is sufficiently smooth.15 In fact, if 
k(s - Sf) » 1, it is clear from (4.3) that ur does not 
depend on values of Sf and z!n in the shadow, for there 
1J(e f

) = 0. For points so close to the shadow boundary 
that k(s - Sf) is finite, it can be shown that the distance 
to the shadow boundary is of order k-l. Then, if 
(4.2) is sufficiently smooth, its values in the shadow 
are given by a Taylor expansion in the distance, hence 

14 This condition is sufficient to ensure uniqueness of the solution 
of the diffraction problem. See C. J. Bouwkamp. Rept. Progr. Phys. 
17, 35 (1954); L. M. Levine. Commun. Pure Appl. Math. 17, 147 
(1964). 

15 This assertion depends on the assumption that the smoothness 
of s' and z:;' implies the smoothness of w:;' at the shadow boundary. 
We will prove (Lemma 3) that w~ is continuous at the shadow 
boundary. Further smoothness properties have not yet been proved. 
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an expansion in powers of k-t. The coefficients of the 
expansion up to any order depend only on derivatives 
at the shadow boundary, therefore are independent of 
the continuation provided it is sufficiently smooth. 
Thus any two continuations differ by a term of 
arbitrarily high order in k-t , provided they are 
sufficiently smooth. 

Since f(x) is regular at x = 0 and the functions 
z~ are regular at the edge, we see from (4.2) that the 
edge condition is satisfied provided the equivalent edge 
condition, Ilim w~rl < 00, m = 0, 1, 2, ... , on each 

a-O 
diffracted ray, is satisfied. For m = 0 we see that 

Lr 1 ZJ·r 
W~·r = z~,r + ~ Tr-'J:ei1T

/
4 (4.6) 

2 (& - sl.r)t . 

In order to apply the edge condition we now expand 
the functions that appear in (4.6) for small a. From 
(2.34) 

z~·r = b~·ra-! + O(at ). (4.7) 

Since the functions z~r are regular at the edge x = 
xo(rJ), 

z~,r = z~,r[xo(rJ)] + O( a). (4.8) 

In order to expand sLr near the edge, we introduce the 
unit vectors tl = t = xo(rJ), t2, and t3 = tl X t2 as 
illustrated in Fig. 1. Since V Si is a unit vector, we may 
set [at x = xo(fj)] 

V Sl = cos {3tl - sin {3 cos 91ot2 - sin {3 sin 91ot3' 

(4.9) 

This equation defines the angles {3 (0 ::;; {3 ::;; Tr) and 
910 (0 ::;; 910 ::;; Tr). From the law of reflection it follows 
that 

V sr = cos {3tl - sin {3 cos 910t2 

+ sin {3 sin 91ot3' (4.10) 

and by the law of edge diffraction, the diffracted rays 
are given by 

(4.11) 
where 

U = cos {3tl + sin {3 cos 91t2 - sin {3 sin 91t3 

(-Tr ::;; 91 ::;; Tr). (4.12) 

On a diffracted ray, 

sl.r = sLr[xo(rJ)] + aU. VsLr + 0(a2) 

= Si[xo(rJ)] + a [cos2 {3 - sin2 {3 cos (91 ± 910)] 

Hence, since & = SI[xo(rJ)] + a, 
eLr(s _ sl.r)t 

+ 0(a2
). (4.13) 

= ±(2a)! sin {3 cos H91 ± CPo) + O(ai ). (4.14) 

Here we have set 

e l
.
r = ±sgn [cos H91 ± 910)], (4.15) 

and it can be easily verified that eLr is indeed + I in 
the illuminated region of the incident (reflected) wave 
and -1 in the shadow. By inserting (4.7), (4.8), and 
(4.14) into (4.6), we find that (for m = 0) the edge 
condition is satisfied provided 

i11/4 zl.r[x ('Yl)] 
b"r-=F 0 0'/ (416) 

o - 2(2Tr)t sin {3 cos H 91 ± 910) . . 

We may now express z~[xo(fj)] in terms of z~[xo(fj)] by 
using (2.19) or (2.21). (For m = 0, the latter becomes 
simply z~ = z~.) Then from (2.34) we have, for the 
boundary condition u = 0 (au/an = 0) on S, 

zo(a) = - -- a 1 + -AI ei11
/
4 

zJ[Xo(fj)] I ( a) I-I 
2(2Tr)t sin {3 cos H cP + 910) P 

(4.17) 
and 

zo(a) = -- a 1 + - . Ar ei11
/
4 

z~[Xo(fj)] I ( a) I-t 
2(2Tr)t sin {3 cos t( 91 - 910) p' 

z~[xo(fj)] = =FzJ[xo(rJ)]. (4.18) 

Thus we have found the terms of (4.3) and (4.2) for 
which m = O. The leading term of the nonuniform 
expansion (4.1, 4.3) is just the geometrical-optics 
(incident and reflected) field. The second term is given 
by 

A k-t ik§ A u,...., e zo, (4.19) 
where 

Zo = z~ + z~ = DzMxo(rJ)] I a( 1 + ~) I-t
, (4.20) 

and, for the boundary condition u = 0 (au/an = 0), 

ei1T /4 

D = - t. [sec Hcp + CPo) ± sec t(cp - 910)]. 
2(2Tr) sm {3 

(4.21) 

From (3.16) we see that D is Keller's diffraction 
coefficient, and, by comparing (4.20) with (2.35) and 
(4.19) with (2.23), we see that away from the shadow 
boundary our result reduces to the solution obtained 
by the geometrical theory of diffraction. 

The terms of the uniform expansion [(4.1) and (4.2)] 
obtained so far are given by (4.1) and 

u l •r ,...., eikS(f {eLr[k(& - sl.r)]I}zkr -+- k-1wk r ). (4.22) 

Here w~r is given by (4.6), (4.17), and (4.18). Let us 
compare the present solution (4.22) with Keller's 
solution. By construction, the solution (4.22) is finite 
at the edge because we have satisfied the edge con­
dition, whereas Keller's geometrical theory fails at the 
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edge. However, at all other caustic points of the 
diffracted wave, as well as caustic points of the incident 
and reflected waves, both our solution and Keller's 
solution will fail. At the shadow boundary, the 
geometrical theory breaks down because the geo­
metrical-optics field is discontinuous and the diffrac­
tion coefficient becomes infinite. We will now verify 
that the uniform solution (4.22) is continuous at the 
shadow boundary. Since f(x) is regular at x = 0 and 
z~· is smooth, it is sufficient to examine only the 
second term of (4.22) which is given by (4.6). At the 
shadow boundary of the incident (reflected) wave, 
s - Si,. = 0 and cos H <p ± <Po) = 0; hence both 
terms in (4.6) become infinite and we must evaluate 
the limit of the sum carefully. This is done in Appendix 
D, where we prove the following: 

orthogonal. In order to simplify this and other parts of 
our work, we specialize our problem and consider 
only plane screens in this section. 

The screen lies in the plane Xa = 0 and is bounded 
by a smooth curve x = xo(-r/) = (x~, x~, 0). 'YJ denotes 
arclength on the edge; hence tl = Xo is a unit tangent 
vector. A dot denotes differentiation with respect to 
'YJ. We assume that the incident wave comes from the 
region Xa < O. Then the Xa axis coincides with the 
z axis of Fig. 1 and ta = (0,0, -1). The parameter 'YJ 
is chosen in such a way that the vector t2 = ta x tl 
points away from the screen as in Fig. 1. If n denotes 
the unit normal to the edge, then t2 = ±n and the 
upper (lower) sign holds when the screen is locally 
concave (convex). In either case the curvature K is 
given by 

Lemma 3: w~' is continuous at the shadow bound- where 
ary of the incident (reflected) wave. 

K = n· tl = =fIC, (5.1) 

(5.2) 

It follows that the leading term [(4.1), (4.2)] of our 
solution [(4.1), (4.2)] is continuous everywhere except at 
caustics of the incident and reflected waves and any 
caustic of the diffracted wave other than the edge. 

We have not yet examined Eqs. (4.5a) and (4.5b), 
which must be satisfied if (4.1) is to satisfy the bound­
ary condition (2.16a) and (2.16b). We find in the next 
section that these equations are indeed satisfied if the 
screen is a portion of a plane, provided none of the dif­
fracted rays strike another part of the edge. If that 
occurs, it is necessary to introduce additional terms into 
(4.1). Examples of such problems of multiple diffraction 
will be treated by our method in a forthcoming paper. 
They are treated by Keller's method in Refs. 1 and 2. If 
the screen is curved, still more terms must be introduced 
into (4.1) if the boundary condition is to be satisfied. 
These terms correspond to secondary reflected waves 
which are produced when reflected or diffracted rays 
strike the screen at an angle of incidence less than 
77/2, and creeping waves7 which are excited when 
incident, reflected, or diffracted rays are tangent to a 
convex portion of the screen. The existence of such 
terms was suggested by earlier experience with 
asymptotic methods in other problems but has not 
yet been verified for our problem. 

5. DIFFRACTION BY A PLANE SCREEN 

In order to compute higher-order terms in our 
expansion (4.1) and (4.2) or (4.1) and (4.3), we may use 
(2.33) for i;:-. Thus to determine i~' it is necessary to 
find Lli~'. But i~' is given by (4.17) and (4.18) as a 
function of a, <p, 'YJ. Thus it is necessary to transform 
the Laplacian to these coordinates which are not 

is the "signed curvature." Then 

t1 =Kn=-Kt2, i 2 =Kt1, ta=O. (5.3) 

From (4.11) and (4.12) the diffracted rays are given 
by 

(5.4) 
where 

u = cos {Jtl + sin {J cos <Pt2 - sin {J sin <pta, (5.5) 

and {J = (J('YJ). By comparing (5.5) with (2.29), we see 
that cos IX = ±cos <p; hence (2.31) yields 

p = sin (JI(K cos <p - (1). (5.6) 

By using (5.3), (5.6), and standard formulas,16 the 
Laplacian can be computed in a, <p, 'YJ coordinates. 
This is done in Appendix C. We will soon make use of 
the final result of that appendix, which is an expansion 
of the Laplacian for small a. 

For the case of a plane screen considered here, we 
can give a simplified representation of the reflected 
wave. It is easy to show that now 

S'(Xl,X2,Xa) =Si(Xl,X2, -xa), (5.7) 

and, for the two boundary conditions u = 0 and 
ou/on = ou/oxa = 0, 

(5.8) 

To verify (5.7) and (5.8) we note that s· satisfies the 
eikonal equation (2.3) because Si does. Furthermore, 
s· and z:" satisfy the system of transport equations 
(2.4) because Si and z!,. satisfy the same system. 

'6 J. A. Stratton, Electromagnetic Theory (McGraw·Hill Book Co .• 
New York, 1964). 
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Finally, for the boundary condition u = 0, (2.19) is 
clearly satisfied, and for the boundary condition 
au/an = 0, (2.21) is satisfied because (O/OX3)Zr.,. + 
(O/OX3)Z~ = ° on the screen. For both boundary 
conditions (2.18) is satisfied. 

The functions z~r are given by (2.33) for m = 1 once 
the coefficients <5~r are determined. As in the evalua­
tion of <5~r, the values of <5~r are uniquely determined 
by the edge condition. To apply this condition it is 
necessary to compute [cf. (4.4)] 

for small values of a. Then the edge condition, 
Ilim w~rl < 00, will determine the value of <5~r. The 
,,~o 

first step is to find z~r for small a and this requires the 
determination of tlz~r for small a. Therefore we apply 
(CI6) to the first two terms of the expansion of 
(4.17) and (4.18) for small values of a. The computa­
tion, although somewhat long, is straightforward and 
the surprisingly simple result is 

T 1 Zol·.r[xo('Yl)] A _I.r i1T/4 ___ ...::.....::.......::.-"'.,:.::...::... __ uZo = --e 
4(2rr)! sin3 f3 COS

3 H!p ± !po) 

x [a-i - 2~ a-! + o(a-!)} (5.10) 

The functions z~r are now given by [cf. (2.33)] 

z~·r = [a( 1 + ;) r!{<5p - tf" gi.r(t) dt}, (5.11) 

where, from (5.10), 

gi.r(t) = [t( 1 + ;) rtlzkr(t) 

= T _1_ ei1T/4 zkr[xo(fJ)] 
4(2rr)! sin3 f3 cos3 H!p ± !Po) 

X [t-2 + 0(1)]. (5.12) 

The finite part integral in (5.11) is now easily evaluated. 
(We need only ignore the infinite contribution from 
the lower limit of integration.) Thus we obtain 

z~.r = <51. ra-! T _1_ ei1T/4 zkr[xo(fJ)] 
8(2rr)! sin3 f3 cos3 !(!p ± !Po) 

r -tJ x L a-! - ~p + O(at ). (5.13) 

It is interesting to note that the term of order t-1 in 
(5.12) is missing. Such a term would have led to a term 
involving log a in (5.13) and then the edge condition 
could not have been satisfied. 

In order to compute the remaining terms in (5.9) 
for small a, we note that z~r and z~r are regular in a 
neighborhood of the edge; hence 

(5.14) 
and 

(5.15) 
where 

(5.16) 

Then, by extending (4.13) to one more term, we obtain 

si.r = Si[xo(fJ)] 

+ a[cos2 f3 - sin2 f3 cos (!p ± !Po)] + bi•ra2 + O( ( 3), 

(5.17) 
where 

2H·r = (U • V)(U • V)si.r = (U • V)2si.r. (5.18) 

Since s = Si[xo(fJ)] + a, we find that 

s - si.r = 2a sin2 f3 cos2 H!p ± !Po) 

- bi
•r a2 + 0(a3). (5.19) 

It is now an easy matter to compute (s - si.r)-t and 
(s - si.r)-!. Then we may evaluate (5.9) for small a. 
In so doing we must use (4.15). It is clear that the 
result will be of the form 

w~·r = p1· ra-! + p~.ra-~ + O(a!), 

but it is remarkable that the calculation yields 

p~.r = 0. 

(5.20) 

(5.21) 

Then the edge condition will be satisfied if and only if 
p~r = 0, and this condition uniquely determines <5~r. 
The result is 

bl.r _ 1 0 . Tei1T /
4 

{ zi.r(x) 

1 - 2(2rr)t sin f3 cos t(!p ± !Po) 

+ a l
•
r + - zl.r(x) 1 [ . 1. ] 

4 sin2 f3 cos3 H!p ± !Po) 2p 0 0 

+ 0 0 • 
3b l

.
rzi.r(X) } 

16 sin4 f3 coss H!p ± !Po) 
(5.22) 

With this value of b~r, z~r is given by (2.33) for m = 1. 
We note from (5.20) that the expansion for small 

a of w~r has two terms which become infinite at a = 0. 
One of them automatically vanishes, and the vanishing 
of the other term, which is required by the edge 
condition, uniquely determines b~r. In general it can 
be seen that the expansion of w:;; for small a will be 
of the form 

w~r = p~.ra-m-! + pkra-m+! 

+ ... + p~~la-t + O(a!). (5.20') 
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We conjecture that the first m terms will vanish auto­
matically, i.e., p~" = ° for j = I, 2, ... , m. Then the 
vanishing of the remaining term, i.e., the requirement 
pi;:.+l = 0, will uniquely determine b~. But this con­
jecture has not yet been proved. 

While in the realm of conjecture, we should also 
consider the behavior of our asymptotic solution 
(4.1, 4.2) in the neighborhood of the shadow bound­
aries. At the end of Sec. 4 we proved that the leading 
term (4.1, 4.22) is continuous at the shadow bound­
aries as well as at the edge. We also conjecture that to 
every order (4.1, 4.2) is not only continuous but 
smooth at the shadow boundaries. This conjecture 
also has not yet been verified. (Note added in proof: As 
mentioned in Sec. I, both conjectures have recently 
been proven.) (At the edge, derivatives of the asymp­
totic solution may become singular, but the exact 
solution has the same property.) 

Our nonuniform expansion [(4.1) and (4.3)] may be 
written in the form 

U = 1](Ei)U~ + 1](Er)U~ + u, (5.23) 
where 

«> 

uk',-..; eikSI.r ~ (ik)-mz!;,', (5.24) 
m=O 

" k-i ik§ ~ ('k)-m" U'" e 4.. I Zm' (5.25) 
m=O 

and 
(5.26) 

By comparing (5.23)-(5.25) with the results of Sec. 2, 
we find that they are identical. In Sec. 4 we showed 
that the leading. term of the diffracted wave (5.25) 
agrees exactly with Keller's formula. The geometrical 
theory of diffraction (Sec. 2) is not capable of deter­
mining higher-order terms in (5.25), but our theory 
yields these terms as wellY 

Since z~ and z~ both satisfy (2.33) with bm replaced 
by b~ and b~, it is clear from (5.26) that zm satisfies 
(2.33) with 

bm = b~ + b!'". (5.27) 

Since we have determined b~ and b~, we can give the 
value of b1 • First, however, we simplify the terms 
d· r and bi.r that appear in (5.22). We introduce the 
tangential- and normal-gradient operators defined by 

Vn=NN.V, Vt=V-Vn, 

N = (0, 0, 1) = -t3' 

Then (5.7) and (5.8) yield 

(5.28) 

17 The determination of the terms Zm for m = 2, 3, ... depends on 
the validity of our first conjecture. 

and from (5.5), (5.16), and (5.18) we obtain 

and 

ar = =fV· Vz~ ± 2 sin (3 sin rp ozJ , on 
(5.30) 

b i = teu . V)2si, 

br = tev . V)2Si - 2(V • Vt)(V • V n)si. (5.31) 

It now follows from (5.22) and (5.27) that 

_ei1T/' 
b1 = ------,,.---

2(21T)! sin {3 

x {[sec t( rp + rpo) ± sec !( rp - !Po)]zl(xo) 

+ ! csc2 (3[sec3 
H!p + !Po) ± sec3 t( rp - !Po)] 

[ 
. 1· ] xU· Vz~(xo) + 2p z~(xo) 

+ 1'2 csc4 (3[sec5 
t(!p + !Po) ± sec5 t(!p - !Po)] 

X [(V· V)2Si]zi(xo) 

az i 

=f 1 csc (3 sin !P sec3 H rp - !Po) _0 (xo) an 
=f i csc' (3 sec5 H!p - !Po) 

x [(u. Vt)(U • V n)Si]Z~(Xo)}. (5.32) 

From (4.21) we see that (5.32) can be written in the 
form 

(5.33) 

where D is the "zero-order diffraction coefficient" 
(Keller's diffraction coefficient) and the "first-order 
diffraction coefficient" Dl is a linear differential 
operator defined by (5.32). 

It may happen that the incident rays are tangent to 
the screen. In this case of "grazing incidence," our 
results have some special features of interest. There 
are two cases to consider, depending on whether 
!Po = ° or !Po = 1T. (See Fig. 1.) For !Po = 1T, the 
diffraction problem is pathological. This case will be 
treated in a sequel to the present paper. 

If !Po = 0, the whole region is in the shadow of the 
reflected wave and illuminated by the incident wave, 
i.e., e i == 1 and e' == -1, and the shadow boundary 
coincides with the screen. As pointed out in Sec. 4, 
our results are independent of the values of the func­
tions z~ and Sf, provided those functions are suffi­
ciently smooth. Therefore we may continue to define 
z~ and s' by (5.7) and (5.8). For the boundary condi­
tion au/an = 0, we see from (4.21) that D = ° and 
from (4.20) that zo == 0. In this case, the leading term 
of the diffracted field (5.25) is given by 

(5.34) 
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and it is important to compute Zl' This can easily be 
done now because V nsi == ° on S, and therefore (5.32) 
becomes 

_ei1f
/
4

• 3 'P az~ 
151 = t sm 'P sec - - (xo). (S.3S) 

4(21T) sin2 (3 2 an 

Furthermore, since Zo == 0, the integral term in (2.33) 
is absent for m = 1. It follows that 

II"" k-!eikS D' ~:~(xo) I 0'( 1 + ;) rt
, (S.36) 

where D' is a special diffraction coefficient given by 

I e-i1f
/
4 sin ('P/2) 

D = - . (S.37) 
2(21T)t sin2 (3 cos2 ('P/2) 

This result was also obtained by Keller by expanding 
the exact solution of a special half-plane diffraction 
problem. It is easily seen that our results agree with 
those given by Keller in Ref. 1.18 

In order to complete our general treatment of 
diffraction by a plane screen, it is necessary to verify 
that the conditions (4.Sa) and (4.Sb) are satisfied. These 
conditions result from imposing the boundary con­
dition (2.16a) and (2.16b) on the asymptotic solution 
[(4.1) and (4.3)]. First we show that 

Z~(Xl' X2, x3) = ±Z~(Xl' X 2 , -x3), 

m = 0, 1,2, .. '. (S.38) 

From (5.4) and (5.5) it is clear that the points with rec­
tangular coordinates (Xl' X 2 , ±x3) will have ray co­
ordinates (0', ± 'P, 1]). Hence it follows from (4.17) and 
(4.18) that (5.3S) is valid for m = 0. The validity of 
(S.38) for arbitrary m can then be established by an 
induction argument. Secondly we state that 

Z~(Xl' X 2 , +0) = -Z~(Xl' X 2 , -0), 
a- i a- i 

Zm (Xl' X2' +0) = - ...!.!!!: (Xl' X 2 , -0). (5.39) 
an an 

To prove this we extend the domain of definition of 
the functions z~(O', 'P, 1]) to arbitrary values of 'P. 
(Only the interval -1T ~ 'P ~ 1T corresponds to 
physical space.) Then it follows from (4.l7) that 

z~(O', 'P + 21T,1]) = -z~(O', 'P, 1]) (5.40) 

for m = 0, and (5.40) can be established for m = 0, 
1, 2, ... , by another induction argument. If we now 
take 'P = -1T, we find that 

z~( 0', 1T,1]) = - z~( 0', -1T, 1]), 

a- i a- i 

zm(O', 1T,1]) = - ...!.!!!:(O', -1T,1]), (S.41) 
arp arp 

18 We must first correct an error in the last part of Eq. (12) of 
Ref. I which has the wrong sign. Then the results agree because 
q; = (j - rr/2. Note that here D' has been defined so that it is 
dimensionless. 

which is equivalent to (5.39). Finally (5.38) and (5.39) 
imply (4.5a) and (4.5b) because as/an vanishes on the 
screen. 

APPENDIX A: A SPECIAL FUNCTION 

Let 

f(x) = 1T-te-i1T/4e-i"'J:oo eil' dt. (AI) 

This is an entire function. It is closely related to the 
Fresnel integral functions. For large real values of X, 

its asymptotic expansion is 

f(x) "" e-i""1](x) - t1T-tei1T/4x-l f (t)n(ix2)-n, 
n=O 

X ---+ ± ex) , (A2) 
where 

Wo = 1, Wn = tel + 1) ... (l + n - 1), 

n = 1,2,3, ... , (A3) 

and 1](x) is the unit step function. Thus 1](x) = I for 
X > ° and 1](x) = ° for X < O. 

APPENDIX B: PROOF OF LEMMA 3 

From (4.9) and (4.10) we see that the unit vector in 
the direction of the incident (reflected) ray is 

VI = Vsi,r = cos {3tl - sin {3 cos 'POt2 

=f sin {3 sin 'POt3 . (B 1) 
Let 

and 

V3 = VI X V 2 = sin {3tl + cos {3 cos 'POt2 

± cos {3 sin 'POt3 . (B3) 

From (4.l2) we have the unit vector in the direction 
of the diffracted ray: 

V = cos {3tl + sin {3 cos rpt2 - sin (3 sin rpt3 . (B4) 

Let 'P = =f rpo ± 1T =f ~. Then, for small ~, 

cos'P = -cos 'Po + ~ sin 'Po + E2 cos 'Po + Oa3), 

(BS) 

sin rp = ±(sin 'Po + ~ cos 'Po - E2 sin rpo) + Oa3), 

(B6) 
and 

V = VI ± , sin PV2 

+ E2 sin {3[ -sin PVI + cos (3V3] + O(~3). (B7) 

Let Q be a point on the edge and let P and P be 
points on the incident (reflected) and diffracted rays 
emanating from Q at a distance 0' from Q. Then 

P = Q + O'VI , P = Q + O'V. CBS) 
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In a Cartesian coordinate system with basis vectors 
UI , U2, Us, 

h = :it - P = a(U - UI ) 

= a( _g2 sin2 p, ±, sin p, +E2 sin p cos P) 
+ O( '3). (B9) 

Hence, for S = si.r, 

s(P) = s(P + h) = s(P) + h· Vs(P) 

+ t ! h;hjsij(P) + .. " (BI0) 
i. j 

where sij = a2slaxi ax j • But s(P) = Si(Q) + a = s(P). 
Therefore, since Vs = (1,0,0), 

s(P) - sCP) = E 2a sin2 p [I - as22(P)] + 0('3). 

(B11) 

Let Xl = f(x2 , xa) be the equation of the incident 
(reflected) wavefront passing through P. Then 
s(f, X2' xs) = const. Therefore 

sd. + s. = 0, Y = 2, 3 .' (BI2) 
and 

sId,./. + SI,./. + sd.,. + St.f,. + s./l = 0, 
Y, /-' = 2, 3. (BI3) 

Since (V S)2 = si + s~ + s~ = I, 

SISI. + S2S2. + S3SS. = 0, Y = I, 2, 3. (BI4) 

The wavefront can be represented parametrically with 
parameters X 2 , X3 in the form x = [f(x2 , X3), X 2 , xa]. 
Then X2 = (f2' 1,0), Xa = (fs, 0, I), and x.,. = 
(f./l' 0, 0). At P, since Vs = (SI' S2' sa) = (1,0,0), 
we see thatf2 = fa = 0, Sll = S12 = Sl3 = 0, s.,. = -f.,. 
(Y,/-, =2,3), x2 =(0,1,0)=U2, xa=(O,O,I)= 
Us, g./l = X •• x/l = tJ./l' Xl = X3 X X2 = (-1,0,0) = 
- UI , and L./l = Xl • x.1i = - f./l = s./l' It follows 
that P* = I/S22 = llL22 is the radius of curvature of 
the normal section in the direction ofU2 of the incident 
(reflected) wavefront at P. 

In Fig. 3 we illustrate the vectors U2 and Ua which 
are tangent to the incident (reflected) wavefront at 
Q. We also show the angle (j between these vectors and 
the principal directions 2 and 3 corresponding to the 
principal radii of curvature P2 and Pa of the wavefront 
at Q. Since the wavefronts are parallel (i.e., orthog-

principal direction 3 

0. 

__ ~~:=.LlLU~a prinCipal direction 2 
U1 

FIG. 3. Principal 
directions of the inci­
dent (reflected) wave­
front at Q (proof of 
Lemma 3). 

onal to the same 2-parameter family of rays), the 
principal radii of curvature of the incident (reflected) 
wavefront at Pare (P2 + a) and (Pa + a). Further­
more, the principal directions are the same as those 
at Q. Therefore, according to Euler's formula, 

S22 = .!.. = cos
2 

(j + sin
2 

(j (B15) 
P * P2 + a Ps + a . 

From (BI) and (B3) we see that the unit tangent 
vector to the edge is given by 

t = tl = sin PUa + cos pUI . (BI6) 

In Lemma 2 (Sec. 2) we introduced the radius of 
curvature Po of the normal section of the incident 
(reflected) wavefront at Q in the direction of Us and 
found that it was equal to p. Now we see that 

1. = 1.. = sin
2 

(j + cos
2 

(j . (B17) 
P Po P2 Pa 

If we eliminate (j from (BI5) and (BI7), we find that 

(P2 + a)(P3 + a)s22 

= (Pa + a) cos2 
(j + (P2 + a) sin2 

(j 

= a + P2 + Pa - (P2 cos2 
(j + Pa sin2 

(j) 

= a + P2 + Pa - (P2P31 p). (B18) 
Hence (B 11) becomes 

s(P) - s(P) = H2 sin2 P ap2Pa(P + a) + Oa3). 

P(P2 + a)(p3 + a) 
(B19) 

Since z~r is regular at P, we see from (2.8) and 
(2.9) that 

z~r(p) = z~r(p) + O(n 

= z~r(Q) I P2P3 It + Om; (B20) 
(P2 + a)(P3 + a) 

hence 

"I.r 1. zi.r(p) 
_ 1T -'lie'" / 4 ----;==;::=0 ===,===;;= 
2 .j s(l» - s(l» 

= - + 0(1). ei1T
/
4 ,,1.rz~·r(Q) I P It 

(21T)t '" sin P a(p + a) 
(B21) 

Since ffJ = =r ffJo ± 1T =r " 
cos HffJ ± ffJo) = E + Oa3

). (B22) 

Therefore (4.17) and (4.18) yield 

ikrCp) = =r e
i1T

/
4 

z~r(Q) I P It + Om. (B23) 
(21T)t ,sin p a(p + a) 

Now "i,r = ±sgn ,. Therefore "I,r/'" = ±ll'. Ac­
cording to (4.6), w~r(p) is the sum of (B23) and 
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(B21); hence wkr(P) has a finite limit as ~ __ 0, i.e., as If we set 

P -- P. It follows that wior(p) is continuous at the aH = (g)tgii, (Cll) 

shadow boundary of the incident (reflected) wave. then (C2) becomes 

APPENDIX C: THE LAPLACIAN IN RAY 
COORDINATES 

We shall transform the Laplacian to the coordinates 

(Yl,Y2,Y3) = (0', cp, 'YJ), (CI) 

which are defined by the transformation (5.4) and 
(5.5). According to Ref. 16, p. 47, 

Af= _1 ± ± ~(g)tgi1 Of), (C2) 
(g)ti~li~l 0Yi oY; 

where 

and 

From (5.4), 

ax ax 
gij = oY; • oY; , 

(gil) = (gij)-I, 

g = det (gij)' 

(C3) 

(C4) 

(C5) 

ax _ U ax = aU ax = tl + aV. (C6) 
OYI - 'OY2 '1" 0Y3 

Hence 

gu = 1, g12 = g2l = 0, g13 = g3l = cos {3, 

g22 = a2U;, g23 = g32 = aU'P • tl + a2U'P • V, (C7) 

g33 = 1 + 2atl • V + a2V2. 

By using (5.5) and (5.3), we may easily obtain V and 
U'I" Then, by using (5.6), we find that 

g22 = 0'2 sin2 {3, g23 = 0'2;( sin {3 cos {3 sin cp, 

g33 = 1 + 20' s:n2 {3 + a2[ Ci
: {3r + (K cos {3 sin CP)J 

(C8) 

The determinant (C5) and inverse matrix (C4) may 
now be computed by standard methods. We find that 

and 

U 2' 2 {3(1 20' sin
2 (3 0'2 sin

2 (3) gg = 0' sm + + , 
p p2 

gg12 = a2K sin {3 cos2 {3 sin cp, 
gg13 = _0'2 sin2 {3 cos {3, 

gg22 = sin2 {3( 1 + ;r + 0'2;(2 cos 2 {3 sin2 cp, 

(ClO) 

gg23 = -a2K sin fJ cos fJ sin cp, gg33 = 0'2 sin2 fJ. 

Af = _1 ± i [a ii 0'1 + oa
H 

OfJ. (C12) 
(g)ti~l;~l oY;CJY; 0Yi oY; 

Since the ai
; are given by (C9)-(CII), (CI2) provides 

a formula for the Laplacian in the coordinates (CI). 
In Sec. 5 we require an expansion of (CI2) for 

small 0'. This is easily obtained from our results. We 
find that 

-=-- 1--+0(~) . 1 1 [0' J 
(g)t 0' sin2 {3 p , 

(C13) 

and 

all = 0'[1 + ;(2Sin2 (3 - l)J + 0(0'3), 

12 aK cos2 (3 sin cp O( 2 
a = . + 0' ), 

sm {3 (CI4) 

a13 = -0' cos (3 + 0(0'2), 

a22 
= ~(1 + ;) + 0(0'), a23 

= 0(0'), a33 = 0(0'); 

and 

'" (oa
il

) 1 [3 sin
2 

(3 - 1 fJ J O( 2) £. - = +0' +-- + 0', 
i 0Yi p sin {3 

I - = -K sm (3 sm cp + 0(0'), (
oai2) _. . 

i 0Yi 

I - = -cos (3 + 0(0'). (
oa

i3
) 

i 0Yi 

By inserting (C13)-(CI5) in (CI2), we find that 

Af = . 12 {3[1 - 2 cos
2 

{3 0' + 0(a2)JI(1u 
sm p 

[
2;( cos 

2 
{3 sin cp O()J 1. + . 3 {3 + 0' (1'1' sm 

+ [ 2 ~ 2 {3 + O(l)Jf'P'I' 0' sm 

+ [ - ~i:~s: + O(a)Jf(1~ 
+ [O(I)]f'P~ + [O(l)]f~~ 

(CI5) 

+ [ 
1 K cos cp 3 cos

2 fJ O()J --+ - + 0' 1. 
0' sin2 fJ sin3 fJ p sin2 fJ (1 

+ [_ K s~n cp + O(1)Jf'P 
0' sm fJ 

[
COS (3 J + - -'-2- + 0(1) f~· 

0' sm fJ 
(C16) 
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Analytic Properties of a Class of Nonlocal Interactions. 11* 
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(Received 25 November 1968) 

A definition is given for the function Sz(k) in the complex / plane for a class of nonlocal interactions, 
called F, which has been considered in a previous paper [J., Math. Phys. 9, 588 (1968)]. The definition 
is obtained by means of a new class of non local interactions, called G, for which the definition of Sz(k) 
in the / plane can be determined by a "dynamical interpolation." The analytic properties of potentials 
of class G are studied. Then a suitable approximation is defined which allows us to apprJximate any 
potential of class F by means of potentials of class G. Comparing the analytic properties of potentials of 
class G which sufficiently approximate any given potential of class F, it is shown that their total scattering 
amplitudes can be made as near as we please to each other and that there exist Regge trajectories which 
can be made as near as we please to each other. With the given definition, S,(k) turns out to be an analytic 
function in the complex I plane, but for a finite number of poles. Some general properties of the Regge 
trajectories are discussed and some examples are given. 

1. INTRODUCTION 

The Watson-Regge method, which has been such a 
useful tool in the quantum scattering theory, is far 
from having reached, for nonlocal potentials, the 
extension of results it has reached for local potentials. 

In fact, among the several recent papersl - 9 devoted 
to the study of nonlocal potentials, there are only a 
few2,3 of those in which the analytic properties of SI(k) 
in the complex 1 plane are studied. 

The present paper deals with such a study, for a 
class of potentials indicated as F, for which in a 
preceding paper,10 hereafter referred to as I, the 
analytic properties in the k plane were studied. 

Let V be a potential of class F defined by 
r L I, I 

(pi V Ip/) = -47T - L L L gi/(p) 
M 1=0 i=1 m='--I 

X gi!(P') Y?'(p) y?,*(p/). (Ll) 

If we want to study the analytic properties of SI(k) 
in the complex 1 plane, Eq. (1.1) alone does not allow 
us to give any sense to an interpolation of a dynamical 
type analogous to that made for local potentials. 

This depends on the fact that while the SchrOdinger 
equation for local potentials, 

'I"~(x) + [k2 _ ;'2;; ! _ V(X)]'Y;,(X) = 0, 

J. = 1 + t, 
• This work has been supported in part by CSFN e SM. 
1 Y. Yamaguchi, Phys. Rev. 95, 1628 (1954). 
2 J. T. Cushing, Nuovo Cimento 28, 819 (1963). 
3 A. N. Mitra and J. D. Anand, Phys. Rev. 130,2117 (1963). 
4 G. C. Ghirardi and A. Rimini, J. Math. Phys. S, 722 (1964). 
5 S. Tani, Ann. Phys. 37, 411 (1966). 
6 S. Tani, Ann. Phys. 37, 451 (1966). 
7 F. Catara and M. Di Toro, J. Math. Phys. 6,1720 (1965). 
8 M. Bertero, G. Talenti, and G. A. Viano, Nuovo Cimento 46, 

337 (1966). 
• M. Bertero, G. Talenti, and G. A. Viano, Commun. Math. 

Phys. 6, 128 (1967). 
10 D: Gutkowski and A. Scalia, J. Math. Phys. 9, 588 (1968). 

makes sense also for complex J., the integral Schro­
dinger equation, which for potentials of class F is given 
by 

'I"!(p) = 47Tr LX)dP'pp' i~ gi~~~iI~!,/)'I"/(PI)' 

makes sense only for natural I, because its kernel is 
defined only for natural/. 

One might think of getting an analytic interpolation 
starting from the knowledge of the partial amplitudes 
which are known for any natural I (in particular, 
al = (l/2ik)[SI(k) - 1] = o identically in kforl > L). 
The problem of an analytic interpolation, which is 
constructed starting from the knowledge of partial 
amplitudes for any natural I, has been studied by 
several authors.u,12 

If we attempt to solve the problem in this way, 
however, we are faced with great difficulties. The 
following difficulty is given as an example. Let us 
suppose that there exists an interpolation of az(k) 
which is analytic in Re I ;;:: 0 apart from a finite 
number of poles. By multiplying a,(k) by a convenient 
polynomial in I, and having fixed k arbitrarily, one 
obtains a function f(l) analytic in Re I;;:: 0 and 
vanishing for any natural I > L. Since this function 
does not vanish identically, from the Carlson theo­
rem13 one has that 1/(1)1 4::: exp (hi) for any h < 7T 
and sufficiently large III. It would in consequence be 
impossible, in the previous conditions for al(k), to 
perform the Sommerfeld-Watson transform.14 

We have chosen a different formulation of the 
problem. First, instead of a potential of class F defined 

11 R. G. Newton, The Complex j-Plane (W. A. Benjamin, Inc., 
New York, 1964), Chap. XV. 

12 A. Gersten, Ann. Phys. 44, 112 (1967). 
13 E. C. Titchmarsh, The Theory of Functions (Clarendon Press, 

Oxford, 1960), 2nd ed., p. 185. 
14 Ref. 11, p. 4. 
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by Eq. (1.1), let us consider the following potential: 

r 00 I 1 
(pi Vip') = -4rr- ! ! ! c~(l) 

M 1=0 i=l m=-I 

X glp)gi(P') Y;"(p) y;,,'(p'), (1.2) 

where the gi(P) (1 :::;; i :::;; I) satisfy all the conditions 
imposed for potentials of class F to the gi/(p) of Eq. 
(1.1), and the ci(l) are functions of l (1 :::;; i :::;; I) defined 
for complex I apart from a finite number of exceptional 
points, having real values for any naturall and satis­
fying further conditions we shall specify later. 

Let G be the class of these potentials. Repeating 
step by step for a potential of class G the proofs given 
in I for a potential of class F, one has to replace Eq. 
(3.11) of! with the following equation: 

f, . . (-k) = 4rrc.(I)c .(1)]00 dk k~glk2)glk2) 
I,i.! I, 2 k2 k2 , 

o - 2 

Imk>O; 

/t,;:!( -k) is defined, as in I, in the whole complex 
k plane, by analytic continuation. Equations (3.14) 
and (3.16) of! retain the same form. 

So one obtains that SiCk), a!(k) for arbitrarily fixed 
k, apart from exceptional points in the complex k 
plane, are functions defined in the complex l plane, 
apart from exceptional points. 

We impose on the ci (/) (1 :::;; i :::;; I) as functions of l 
such conditions that it is possible to perform the 
Sommerfeld-Watson transform on the total scattering 
amplitude: 

1 00 

A(k, cos 0) = -. .2 (21 + 1)[SI(k) - 1]p!(cos 0) 
21k!=0 

(1.3) 
for 0 :::;; 0 :::;; rr. 

Consequently,14 the expression 

A(k, cos 0) = (2k)-lJoo d).' ).'[S(i).', k) -: 1] 
-00 cosh rr). 

x Po.'-!( -cos 0) + irrk-1 

X ! (ocn + !)(3nPan(-cos O)/sin rrocn 

n (1.4) 

[where SeA, k) = SiCk); OCn + ! is a pole of SeA, k) in 
the A plane, {3n is the residue relative to the pole 
OCn + t]' for arbitrarily fixed k, apart from exceptional 
points, is an analytic function in the cos 0 plane apart 
from a branch point. 

As a second step, we have to find some connection 
between potentials of class F and those of class G. 

This connection is established by showing that for any 
potential V in F (in G) having total scattering ampli­
tude A(k, cos 0) and for any £ > 0 there exists a 
(not unique) potential V1 in G (in F) having total 
scattering amplitude A1(k, cos 0) such that, for 
physical values of k and cos 0, 

IA(k, cos 0) - A1(k, cos 0)1 < £. 

Thus we can find potentials V1 E G whose total 
scattering amplitudes approximate, as we please, the 
total scattering amplitude of any potential V E F for 
physical values of k and cos O. 

Let us remark that the choice of V1 can be made in 
such a way as to ma!~c 

11V1 - VII = (f1V1(P, p') - V(p, p')1 dp, dP't 

as small as we please (see Sec. 4, Theorem 4.1). 
What about objects which are defined for a po­

tential in G but not for a potential in F? Let, e.g., such 
an object be a Regge trajectory. Let 

be the subset of G such that II V - V1a, II < E. We can 
assign by definition a Regge trajectory /(k) to a 
potential V E F, in such a way that l(k) , for sufficiently 
small £, approximates as we please a trajectory 
lla.(k) relative to any V1a, , for oc E J" iff for any 
b > 0 there exists £1 > 0 such that 

1l1a,.(k) - 11a",(k)1 < b) for any E < £1; oc', OC" E I,. 

We shall see that for any V E F the above condition 
can be satisfied for at least one trajectory. 

In Sec. 2 of this paper the choice of conditions on the 
ci(l) is explained. 

In Sec. 3 we derive some general properties and 
discuss some examples relative to potentials of class G. 

In Sec. 4, the "approximation problem" is studied. 
Under this name we understand roughly the following: 

(i) For any potential V E F and any £ > 0 does there 
exist a potential V1 E G such that the modulus of the 
difference between the total scattering amplitudes 
relative to Vand V1 for physical values of k and cos 0 
is less than E? 

The answer is affirmative, Theorem 4.1; there are 
infinite potentials V1 satisfying the above conditions. 

(ii) Given two potentials V' and V" of class G whose 
total scattering amplitudes, for physical values of k 
and cos 0, are sufficiently near to each other, are 
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"corresponding objects" that one can define starting 
from them, like the analytic continuation of the total 
scattering amplitudes in k and cos (), the Regge 
trajectories and so on, to be found near to each other? 

The answer is affirmative for m Regge trajectories 
(see Theorem 4.2) where m = min (m', mil), and 
m' (mil) is the number of trajectories relative to V' (V"). 
For the total scattering amplitudes we have been able 
to give an affirmative answer only if m = m' = mil. 

In Appendix A it is shown that results of I can be 
extended to the case of interactions having both an 
attractive and a repulsive part. 

In Appendix B we consider some mathematical 
features connected with our interactions and the 
Sommerfeld-Watson transform. 

2. PROPERTIES OF THE ci(l) 

In this section we present the reasons for selecting 
the following hypotheses for the ci(l) of Eq. (1.2). 
The starting point is given by the conditions which the 
Sz(k) have to fulfil as functions of I. We want the total 
scattering amplitude A(k, z) to exist for physical values 
of k and z; that is, for real and positive k and for 
-1 :::;;z~ 1, 

00 

(2ik)-1 L (21 + 1)[Sz(k) - 1]PzCz) 
z=o 

must exist and be finite. 
If A(k, z) is a continuous function for physical 

values of its arguments, the convergence of the above 
series is equivalent by the Riesz-Fischer15 theorem to 
the condition that, for real positive k, 

00 

(4k2)-1 L (21 + 1) ISz(k) - 112 < 00. (2.1) 
z=o 

We therefore impose, as the first condition, that Eq. 
(2.1) hold true. 

Moreover, we want to perform the Sommerfeld­
Watson transform. Therefore we impose the asymp­
totic properties of SeA, k) so that the integral appear­
ing on the rhs of Eq. 0.4) exists. To achieve this 
result it will be enough to suppose (see Appendix B) 
that there are a natural number n and a real positive 
number Ao, such that, for IAI > Ao (Re A ~ 0) and for 
any complex k, save at most a finite number of values, 
the equation 

IS(A, k) - 11 < lAin (2.2) 
holds true. 

We could impose more general asymptotic con­
ditions than that given by Eq. (2.2) (see Appendix B). 
One can, however, see that in so doing we shall not 

16 F. Smithies, Integral Equations (Cambridge University Press, 
Cambridge, 1962), p. 59. 

attain more general results.16 We assume therefore, as 
the second condition, that Eq. (2.2) holds true. 

We impose, as a third condition, that SeA, k) is 
analytic apart from a finite number of polesI7 in the 
complex half A plane (Re A ~ 0), for any complex k, 
apart from a finite number of values. 

It is well known that under these hypotheses the 
right-hand sides of (1.3) and (1.4) are equal to each 
other. We recall, however, that this equality does not 
necessarily hold if the series (1.3) diverges. In this case 
it could indeed happen (see Appendix B) that the 
rhs of Eq. 0.4) exists as a finite function of k and z. 
For that reason we have imposed the first condition 
quite independently from the second and the third 
ones. 

We still want, for Hermitian Hamiltonians with 
local interactions, the following fourth condition to 
holdl8 : 

[SeA, k)]* = S-1(A *, k*). (2.3) 

Taking into account that seA, k) has to satisfy the 
four conditions we have postulated, we can analyze 
the conditions to impose on ci(l). 

From (1.1) and (3.13), and (3.15) of I, one gets 

SzCk) - 1 = {47T2irk f cm(l)cj(l)gm(k)g;(k) d(n:)} 
m,1=l } Z 

X [ ± (~{bm; + 27T2
ircm(l)c;(l) 

m,1=1 I 

X [2JI k~;!" + 2pt k~~~P - I gm(k) 

X kg;Ck)]}) d(7)J-I

. (2.4) 

Let us now suppose that ci(l) satisfy the following 
conditions: 

(a) They are analytic functions in the right half plane 
I (Re I ~ 0), apart from isolated not essential singu­
larities; 

(b) they do not have an essential singularity at 
infinity; 

(c) they are real for real I. 

The possibility of essential singularities in the finite 
right half plane or at infinity will be considered later. 

18 This depends on the generality of our conditions. We could 
not state that" ... we shall not attain more general results" if the 
possibility of an essential singularity for SO" k) in A. = 00 were 
allowed. But then, in order for it to be possible to perform the 
Sommerfeld-Watson transform, we had to impose further 
conditions. 

17 We make this hypothesis in order to warrant the unicity of 
the S(A., k) taking given values for physical values of A.. The argu­
ment allowing us to prove the unicity is that of Ref. 11, p. 116. 

18 V. De Alfaro and T. Regge, Potential Scattering (North­
Holland Pub!. Co., Amsterdam, 1965), p. 39. 
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From hypothesis (b) it follows that 

lim c;(l), 1 ~ i ~ I, 
III .... 00 

must exist finite or not. 
Then the following possibilities may happen: 

(i) For any i, 1 ~ i ~ I, lim ci(l) = 0; 
IZI-oo 

(ii) there exist some ci(l) for which limlll_oo c;(/) is 
not vanishing. 

In case (i), since the numerator of (2.4) converges to 
zero, while the denominator converges to one, as I goes 
to infinity, we can have consistency with Eqs. (2.1) and 
(2.2). In case (ii), we cannot exclude, under the 
hypotheses made in I for the gi(P) , that 

lim SI(k) - 1 ¢ O. 
III .... 00 

This would lead to a contradiction with Eq. (2.1). 
Therefore as the fourth condition on the e;(l) we 
assume the following: 

(d) for any i, I ~ i ~ I, lim ei (/) = O. 
1/1_00 

It will be seen that condition (d) together with (a) and 
(b) implies Eq. (2.1). 

From hypothesis (a) and Eq. (2.4), it is easy to 
deduce the third condition on S/(k). The singularities 
of the latter would be in general the zeros of the 
denominator of the rhs of Eq. (2.4) (which depend on 
k), because, apart from exceptional values of k, the 
poles of the numerator due to poles of the ci (/) also 
appear at the denominator as poles of the same order. 

From hypothesis (c), by applying the Riemann­
Schwarz reflection principle,l9 one gets Eq. (2.3). 

Let us now consider the case where, keeping hy­
potheses (a) and (c) and suppressing hypothesis (d), 
hypothesis (b) is substituted by the following: 

(b/) There exist some ei(l) having an essential 
singularity at infinity. 

If em(l) is one of these, from the Picard theorem2o 

for any complex am (save at most one value) and for 
any neighborhood of the infinity (Ill > H, H arbitrary 
real positive number), it is possible to satisfy the 
equation 

cmCI) = am' 

From Eq. (2.4) it follows that SICk), for III > H, 
takes values whose modulus of the difference cannot 
be made arbitrarily small for a convenient choice of H. 
Since from hypotheses (a), (b/), (c), and Eq. (2.4), 

,. Ref. 13, p. 155. 
20 Ref. 13, p. 183. 

S/(k) can have in the I plane only isolated singularities, 
for the fact that 

lim S/(k) 
III .... 00 

does not exist, one deduces that I = 00 is for Sl(k) an 
essential singularity. 

Therefore S/(k) is not bounded in a neighborhood 
of the infinity, and, in general, conditions for per­
forming the Sommerfeld-Watson transform are not 
satisfied. 

Obviously, under further hypotheses for ei(l) one 
could manage that S/(k) would be bounded on every 
contour of a convenient class, in such a way that the 
Sommerfeld-Watson transform could be performed, 
but, at the level of generality we propose, we shall not 
deal with this case any further. 

Let us now consider the case where we substitute 
for (a): 

(a/) The e;(l) are analytic functions in the right half 
I plane (Re I ~ 0), apart from isolated singularities, 
one of which at least is an essential one; we keep 
conditions (b), (c), and (d). 

Repeating the reasoning of the preceding case, one 
can deduce that also S/(k) has, in the finite plane, an 
essential singularity, against the third condition. 

As a result of the analysis we have made we assume 
for the ci(l) conditions (a), (b), (c), and (d). The class 
of potentials described by Eq. (1.2) with these con­
ditions will be named G. 

Let us remark that from conditions (a), (b), and (d) 
one can deduce21 the possibility of expressing the 
c;(l) (1 ~ i ~ I) in partial fractions, and precisely in a 
form like 

e;Cl) = ~ [(I ~~t.)Pii + ... + I ~~~ .. J, 
'-1 jt " 

where ni , {Jii (1 ~ j ~ ni ) are positive integers, A~Pji' 
Iji are complex numbers. 

By substituting this expression into (2.4) it is easy 
to see that Eq. (2.1) is satisfied. 

3. REGGE TRAJECTORIES-GENERAL 
PROPERTIES AND EXAMPLES 

In this section we deal with some general properties 
of the Regge trajectories for potentials of class G. As 
is well known, Regge trajectories are given by the 
functions A(k), for real positive or positive imaginary 
k such that D[A(k), -k] = 0, where D(A, -k) = 
D;.-i( -k) (A = 1+ !). We shall deal also with some 
examples with specified potentials of class G. 

21 A. I. Markuschevich, The Theory of Analytic Functions 
(Hindustan Publ. Co., Delhi 6, 1963), p. 239. 
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A. Zeros of D I( -k) 

From Eq. (3.14) ofI, one gets 

D(A, -k) = det l<5i1 + rci(l)cj(l)j;i( -k)1 

(i,j = 1,' .. ,I). (3.1) 

Then D(A, -k) can be expressed as the sum of deter­
minants of the matrices obtained from the matrices 
l<5ii l and 1 rci(l)ci(/)j;;C -k)1 by combining in all the 
possible ways the columns of the one with the columns 
of the other; after some easy calculations one gets 

I 

D(A, -k) = 1 + L c~(l)Foo"'i ... oo(-k) 
i=l 

I I 

+ L L c~(l)c~(l)F 00'" i'" i'" oo( - k) 
i=l i=i+1 

+ ... + ci(l)c~(l) ... C~(l)F1 2··· i - k), (3.2) 

where the functions F. .. ( -k) are determinants of 
convenient minors of order ~ I, having all the elements 
in rhj( -k), extracted from I x I matrices having a 
number of columns (from 0 to 1- 1) in <5ii and the 
other in rc;(/)c;(/)j;;C -k). 

Let us recall (see Sec. 2) that from the conditions 
(a), (b), and (d) on the c;(/), it is possible to express 
these functions in the form 

From (3.2) and (3.3) one can write 

D (-k) = P;:'(l) 
I Q;:'(l) , 

(3.4) 

with P;:'(/) and Q;:'(/) polynomials of degree m in I, 
with complex coefficients depending on k. The integer 
m is given by 

1 ni 

m = 2 L L (Jri' (3.5) 
i=l r=l 

Zeros in 1 of P;:'(/) are functions of k. The dependence 
of Q;:'(/) on k can be expressed by means of a multi­
plicative factor, viz., 

(3.6) 

with Qm(/) polynomial of degree m in 1 and L(k) 
function of the only k. The statement that,in general, 
P;:(l) and QZ'(1) have no common zeros in 1 follows 
from the fact that zeros of Q;:'(/) in 1 do not depend on 
k. Zeros of D I ( -k) in I, which are zeros of P;:'(l) in I, 
are thus functions of k, their number m is the number 
of trajectories .1.= A(k) in the complex A plane, provided 
they are not zeros of the same or greatest order of 
DI(k). 

B. Hermiticity's Consequences 

From the Hermiticity relationship 

D,.( -k*) = Dt(k) (3.7) 

that we proved in Sec. 2, one sees that for purely 
imaginary k (k = ik', k' Re), if DIJ-ik') = 0, then 
D I1.( -ik') = O. That is, for purely imaginary k, 
trajectories are either real or complex conjugate. 

C. Allowed Regions in the I Plane 

Let us remark: As will be demonstrated in the 
examples, for potentials of class G there are no limita­
tions in the region of the 1 plane where poles can be 
found, contrary to what happens for local potentials.22 

Besides, it is not necessary, as it is for local po­
tentials,23 that if a trajectory leaves the real axis at a 
point .1.0> t (or 10> 0), it does so towards the right. 

In fact the vanishing of the centrifugal potential 
term in the Schrodinger equation cannot have any 
~pecial significance for potentials of class G, since they 
explicitly depend on I. 

D. Resonance Conditions in I Plane 

For potentials of class G, as well as for local po­
tentials, it is possible, from the behavior of the trajec­
tories in the 1 plane, to get information on poles of 
SI(k) in the k plane for physical/. 

In fact, if for purely imaginary k the trajectory 
passes through physical values of I, for those values 
there are bound states whose energies correspond to 
values of k for which I(k) has physical values. 

From the behavior of the trajectories for real k, one 
can deduce the existence of poles in the k plane for 
physical I, having a small imaginary part with respect 
to the real part. 

Let the function 1 = I(k) indeed be analytic in a 
region Q of the k plane, including on the positive real 
semiaxis, and let dl(k)/dk :F 0 in Q. Then I(k) gives a 
conformal mapping of Q into a region Q' of the 1 
plane. Let A = k1 - flk and B = k1 + flk (see Fig. 1) 
be two real points in the region Q, and A' and B' their 
images in Q'; let 14 = l(k4 ) be an integer belonging to 
Q', included between Re B' and Re A'. Let 6k be small 
enough in order that 14 be the only integer satisfying 
the above condition and such that flk« k 1 • If for 
such a flk it is possible to satisfy the condition 

Re A' - Re B' » 1m l(k1), (3.8) 

then, for a small rotation of the point B' around A', 
the segment of trajectory A'B' will meet the real axis 
at the point 14 , Then, owing to the conformal mapping, 

22 Ref. 18, p. 79. 
23 Ref. 11, Chap. IX. 
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FIG. 1. Mapping of the 
region Q into the region 
Q' by means of the 
analytic functions l(k). 
A', B', I, are, respectively, 
the corresponding points 
of A, B, k,. 

1m I< 

Q 

k4 lies on the segment AB rounded by the same small 
angle. 

From (3.8) one gets 

1 -2[~ Re I(k)] ~k \ » 11m1(k1)1. (3.9) 
dk k=kl 

In order to produce resonances in I in the examples, 
we have chosen parameters in such a way as to satisfy 
Eq. (3.9). 

E. Examples 

In the two following examples we study two po­
tentials satisfying 

r 00 Z 

(pi V Ip') = -47T - L L e2(1) 
MZ=Om=-1 

X g(p)g(pl)y;"(p)y;"*(pl), (3.10) 

where e(l) and g(p) are given by 

1 1 
e(l) = 1 + bl' g(p) = p2 + p2 ; 

(3.11) 

{3 and b are real parameters. The strength r is positive 

1m I(K) 

c 

Iml 

ReK Re I 

0: 

(attractive potential) in the first example and negative 
(repulsive potential) in the second one. 

First example: We have imposed a bound state of 
energy -oc2JM at 1= O. With this choice we obtain for 
the strength 

(3.12) 

where oc and p are the positive square roots of oc2 

and {32. 
From (3.1), (3.10), (3.11), and (3.12), we get 

1 (k) = !(i(OC + P) - 1) 
1 b k + iP , 

1 (k) = !(-i(OC + P) - 1) (k:F -i R 1:F - !). 
2 b k + iP , 1', b 

(3.13) 

For positive (or negative) b we get trajectories as in 
Fig. 2(a) and 2(b). 

It is possible to verify statements of 3A, 3B, 3C, and 
3D. In what concerns 3B, let us remark that for purely 

1m IlK) 

FIG. 2. Example of the 
behavior of the Regge tra­
jectories for an attractive 
potential of class G, with 
different choice of the con­
ditions on parameters. 

Re I (K) Re I (K) 

, oj (b) 
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-14 -12 -10 -4 -2 

imaginary k, II(k) and 12(k), are real. In what concerns 
3D, only conditions for bound states are verified. 

In Fig. 3 trajectories II(k) and /2(k) are drawn for the 
choice of parameters we have made. There are bound 
states for I = 0, 1. The behavior of the partial cross 
section /jo(k) given in Fig. 4 confirms, as can be seen 
from the trajectory, that there are no resonances. 

Second Example: We have put r = - ro into 
(3.10). One gets 

I (k) = _ ! + ! 1T(ro)!(k - i{J) , 
3 b b (k2 + (J2)({J)! 

I (k) = _ ! _ ! 1T(ro)!(k - i{J) 
4 b b (k2 + (J2)({J)! 

k ~ - i{J, I ~ - ! . 
b 

(3.14) 

1m I(K) 
4 

-2 

3 

-4 

5 

2 4 
ReJ(K) 

FIG. 3. Regge trajectories 
for an attractive potential of 
class G, with specified pa­
rameters. There are bound 
states for I = 0, I. 

Let us suppose that for I = 0, 1, ... , L the follow­
ing condition holds: 

(4.2) 

2500 

For positive (negative) b we get trajectories as in 1500 

Fig. 5(a) and 5(b). 
In Fig. 6, 13(k) is given for a certain choice of r 0' 

b. From its form one foresees the existence of reso­
nances. This fact is confirmed by Fig. 7, where /j,(k) 
and !S/(k) are given for various I. 1000 

4. THE "APPROXIMATION PROBLEM" 

Let us now consider the "approximation problem" 
we have sketched il1 the Introduction. We introduce 
the following notations. Let VI and V2 be two po­
tentials of class G defined by equations 
(pi Vllp') 

r 00 I I 

= -41T M I~ i~Im~/c;ll)gi(p)gi(p')Y;"(P)Y;"'(P')' 
(pi V2 Ip') 

r 00 I I 

= - 41T - ~ ~ ~ c:i(l) g;(p )gi(P') Y;"(p) Y;'" (p'). 
M l=O i=I m=-I 

(4.1) 

500 

o 0.1 0.20 0.30 0.40 0.50 .60 0.70 
K Arbitrary \lib 

FIG. 4. Partial cross section G/(k) for 1= 0 vs the wavenumber k 
for attractive potential of class G. 
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1m 1(1<) ml(K) 

--~",,",""-+------ Re I(K) Re I(K) 

lJK} 

ar(1< 
Q.6 

1=0 
o.s 

.l!! 
'§ 0.4 

{OJ 
c::s: 

Q.2 

0.1 

0 

61~ 6 10 

1.6 

0 10 

(0) ( bl 

Iml(K) 

2 4 5 
Re I(K) 

FIG. 6. Part of a Regge trajectory for a repulsive potential of class 
G, with specified parameters. 

1=4 

1=5 

14 18 22 26 
I I AI I 

KI 90 94 98 102 

I 

[, 
14 18 22 26 90 94 98 10? K 

Arbitrary Units 

2313 

FIG. 5. Example of the 
behavior of the Regge 
trajectories for a repul­
sive potential of class G. 
with different choice of 
the conditions on param­
eters. 

FIG. 7. Partial phase 
shifts in radians and 
partial cross sections 
vs the wavenumber k, 
for various I, relative 
to the same potential 
referred to in Fig. 6. 
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L is a natural number, eventually depending on one 
or more parameters. 

All the objects related to VI and V2 will be marked 
by a lower index 1 and 2, respectively, which will be at 
the first place in the case of several indices. 

VIL = V2L is the potential of class F obtained by 
cutting the sum over I at L in (4.1). All the objects 
related to it will be marked by a second lower 
index L. 

The total scattering amplitudes will be named A ... , 
the Regge trajectories and their analytic continuation 
will be named A.. .. (k), their number will be named m., 
where the dots indicate possible indices. 

T is a natural number, {kp T} is a set of T points 
kt (1 ~ t ~ T) of the k plane, {kp PI' T} is a set of 
points which is the complement in the k plane of the 
union of T open circles having centers at the points k t 
and radius Pt. Now let us prove the following existence 
theorem: 

Theorem 4.1: For any potential V of class F defined 
by (Ll) and for any E > 0, there exists a potential VI 
of class G defined by (4.1) and such that 

(4.3) 

and for any physical k and z, 

IAI(k, z) - AIL(k, z)1 < E. (4.4) 

Proof" We shall first construct a potential VI of 
class G satisfying (4.3) [not necessarily (4.4)]. 

Let us order the linearly independent gil(P) appear­
ing in the definition of V and let I be their number. 
From our assumptions, clll) can be written as follows: 

for i = 1, 2, ... ,L. If the equality holds in (4.6), 
the solution is unique for given iIi and Sli' apart from 
a multiplicative constant. 

We must have 
(4.7) 

by conditions (a), (b), and (d) of Sec. 2. 
As the total scattering amplitude 

1 00 

..lI(k, z) = -. ~ (21 + l)[Su(k) - l]PI(Z) 
2lkz=o 

relative to VI converges for physical values of k and 
z, for any E/2 there exists L(E/2, k) such that, for 
physical k and z, 

I.lI(k, z) - AIL(k, z)1 < E/2. 

We can make L independent on k since AI(k, z) 
andAIL(k, z) are bounded and continuous functions for 
-1 ~ z ~ 1, 0 ~ k ~ 00 and tend to zero as k _ 00 

(see Ref. 25). 
Suppose L > L (otherwise the theorem would be 

proved). Let us put 

clil) = cli(l) 1 + b{l(l - :) ... (1- L)} 

with b > O. We get 

Cli(/) = Cli(l) for natural I ~ L 
and 

!cli(/) I < ICli(I)1 for natural I> L. 

By choosing b conveniently, we can satisfy the 
condition 

I ~ I (21 + l)[Su(k) - l]PI(z) I < ~ , 
21k 1=L+I 2 

C .(1) = P1i(I) 
10 iJli(l) , 

so that potential VI' corresponding to the cli(/), has 
(4.5) a total scattering amplitude satisfying both (4.3) and 

where Pli(/), iJli(l) are polynomials in I. 
Taking into account Eq. (4.5), we can set a linear 

system in the generally complex24 coefficients of poly­
nomials Pli(l), iJu(/) by equating the corresponding 
factors in the equations defining V and V1L for 
1 = 0, 1, ... ,L. 

If the degrees of Pli(l) , iJli(l) are i li , Sli' respectively, 
for the system to have a solution we must choose 

(4.6) 

84 Hypothesis (c) of Sec. 2 does not imply the reality of coefficients 
of polynomials Pt«l), qH(l) as the following example shows: 

Plm(l) = (1 + i) + [(1 + v'2)(1 + i) - 1/(1 + v'2)]/, 

qtm(l) = (1 + i) + [(1 + i)v'8 - 1/(1 + v'2)]1 

+ [(1 + i) - v'8/(1 + v'2) + 1]/2. 

(4.4). Q.E.D. 

The main result concerning the "approximation 
problem" for the Regge trajectories is given by the 
following theorem: 

Theorem 4.2: If for physical values of k and z the 
following conditions hold: 

(i) IAI(k, z) - A1L(k, z)1 < E, 

(ii) 

IAI(k, z) - A2(k, z)1 < E, for any E> El; 
(4.8) 

25 The possible existence of a bound state for k 2 = kf > 0 is 
not a difficulty since lim SI(k) = I from the Hermiticity rela-
tionship (3. 7). '~kl 
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then there exists a set {kt, T} such that for any choice 

of PI, P2' ... , PT, for any k E {kp Pp T}, for any 
~ > 0, it is possible to satisfy the condition 

(4.9) 

for i = 1, 2, ... , m l , provided we choose a small 
enough £1. 

Proof: The existence of AI(k, z), A 2(k, z) satisfying 
(i) for arbitrary £1 > ° is insured by Theorem 4.1. 
From our assumptions, the Cli(J) and C2i(J) can be 
written as follows: 

C .(1) = Pu(l) 
11 qu(l) , 

_ 1(1 - 1)(1 - 2) ... (1 - L)P2ll) + Pli(l) 
C2i(l) - d q2i(l) qli(l) , 

(4.10) 

where Pli(l), qli(/), P2i(/)' q2i(/) are polynomials in I, 
the degree of qli(l) is greater than the degree of Pli(/), 
the degree of q2i(l) is greater than (L + 1) + degree of 
P2i(/), and d is a real parameter we have introduced 
for convenience. 

Taking into account Eqs. (3.2), (3.4), and (4.1), we 
get the equations of the Regge trajectories for po­
tentials VI and V2 by solving respectively the following 
algebraic equations in I: 

pf;/(l) = 0, 
J 

p;;'2(1) = II (Q2i(l»2p'{;/(l) + dp';,;(I) = 0, (4.11) 
i=1 

where pr;J.2(/) is a polynomial of degree m2 in I, whose 
coefficients are of degree from zero to 2/ - 1 in d. 
For any k, apart from Texceptional points kt, given by 
the zeros of L(k) of Eq. (3.6), and for any ~ > 0, 
there exists 'YJ(k,~) > 0, such that for d < 'YJ(k, ~), 

IAIi(k) - A2i(k)1 < ~ (i = 1,2, ... , ml )· 

The above equation follows from the properties 
of roots of polynomials satisfying an equation like 
(4.11). 

We can make 'YJ independent on k by choosing 
arbitrarily Treal positive numbers Pt (t = 1, 2, ... , T) 

and letting k take values in {k p pp T}. This follows 
from the fact that, by hypothesis (c) of gi/(p) of I, the 
F ... ( -k) ofEq. (3.2) tend to zero as Ikl ~ 00, and then 
the coefficients of polynomials pfNl) , pr;J.·(I) divided by 
L(k) are continuous and bounded functions of k in the 
closed set {kp pp T}. 

In order to achieve the proof we want to show that, 
by choosing £1 conveniently in (i), we can make d as 
small as we please. As for any £ > ° satisfying the 
first Eq. (4.8), there exists d > ° satisfying the second 
one, it will be enough to prove that, for any fixed 
d > 0, one can choose £ in such a way that if the first 
Eq. (4.8) holds, the second one does not hold. 

Indeed, if A1(k, z) = A2(k, z) identically in z for 
physical values of z, it will be, for any natural I, 
SH = Su· 

But, according to analytic and asymptotic properties 
in I of SlI and S21' this would imply, by the Carlson 
theorem, SlI = S21 identically for complex I. But this 
identity for d > ° is absurd. Then there exist physical 
z and k, E > 0, such that IA1(k, z) - A2(k, z)1 > E. If 
the first Eq. (4.8) holds for £ < E, it is thus proved that 
the second one does not hold. 

The analysis of the construction of VI in Theorem 
4.1 shows that the minimum number m1 min of 
trajectories, relative to VI as ili and Sli vary, satisfying 
(4.6) have the upper bound /(L + 2). In fact, /(L + 2) 
is greater or equal to the number of trajectories of a 
potential VI for which iii + 1 = Sli = (L + 1)/2 for 
odd L, Sli = iL + 1 for even L. 

As the potential VI constructed in Theorem 4.1 has 
at most 2/(L + 1) trajectories more than those of VI, 
we can state that the minimum number m1 min of 
trajectories of potential VI' as VI varies in the set of 
potentials satisfying (4.3) and (4.4), satisfies the 
condition 

m I min:::::; /(3L + 4). 

By Theorem 4.2, every potential VI satisfying (4.3) 
and (4.4) for small enough £ must have mi min Regge 
trajectories as near as we please to certain Regge 
trajectories, save the exception in k that we have 
seen earlier. 

If we want to associate to potentials of class F, 
which does not possess any analytic property in I, all 
the "common" properties ("common" in the sense of 
the approximation problem), it is thus reasonable 
to choose the properties of the class of potentials VI 
satisfying (4.3) and (4.4) and having, for small enough 
£, m1 min trajectories. 

It turns out that, by restricting oneself to the above 
class of potentials, we can prove the following state­
ment for the total scattering amplitudes: Given a 
potential V of class F, there exists a set {kt, T} such 
that for any choice of PI' P2' ... , PT' for any R > 0, 
for any k E {kp pp T}, for any z such that Izl < R, 
for any ~ > 0, we can satisfy the equation 
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provided VI and V2 are chosen so that: 
(a) VIL = V2L = V; 
(b) VI and V2 have only mi min Regge trajectories; 
(c) for small enough E and for physical values of 

k and z, 
IAI(k, z) - AIL(k, z)1 < E, 

IAI(k, z) - A2(k, z)1 < E. 

This result is achieved by remembering Theorems 4.1 
and 4.2 and Eq. (1.4). 
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APPENDIX A 

It is easy to remove the restriction we have made in 
Ref. 11 of I, by proving that all the results we have 
obtained there hold also for a potential having both 
attractive and repUlsive parts. 

In this case we may substitute the following equation 
for Eq. (2.1) of I: 

(pi V Ip') 

I,+J, } 
+ i=t+/g;z(P)igi/(P')Y;"(P) Y[,,*(p') , (Al) 

where the gi'(P) (j = I, 2, ... , II + J,) satisfy the 
conditions we have imposed in 1. 

One gets 

D,( -k) = det I~mn + r/m,n;'( -k)1 ; 

m, n = 1, 2, ... , I, + J, , where if m, n = 1, 2, ... , 
I, or 

m, n = I, + 1, I, + 2, ... , I, + J" 

then 

f . (-k) = ±47T (""dk k:gm,(k2)gn,(k2) 
m,n.! Jo 2 k2 - k; , 

1m k > 0, 

and it is given by analytic continuation in the whole 
complex k plane. Therefore, in this case,lm,n;'( -k) is 
real for purely imaginary k. 

If m = 1, 2, ... , I,; n = I, + 1, It + 2, ... ,I, + J, 
or m = I, + 1, I, + 2, ... ,I, + J,; It = 1,2, '" ,I" 
then 

f (-k) = 4 'foo dk k;gmtCk2)gnl(k2) 1m k > 0 
m,n;1 7Tt 2 k2 k2 ' , 

o - 2 

and it is given by analytic continuation in the whole 
complex k plane. Therefore, in this case,fm,n;l( -k) is 
purely imaginary for purely imaginary k. 

We want to show that for purely imaginary k, 
D l ( -k) is real, since starting from this point we can 
repeat what we said in I. 

The determinant of the matrix A', obtained by 
multiplying by i all the elements of the matrix 
(~mn + r/m,n;l( -k» whose row indices are greater than 
I" and then all the elements whose column indices 
are greater than I, is given by 

detA' = i2J'D,(_k) = ±D,(-k). 

A' is a real matrix for purely imaginary k; therefore 
Dl ( -k) would also be real for purely imaginary k. 

Q.E.D. 
APPENDIX B 

In the choice of the conditions on the c;(l) of Eq. 
(1.2), we have to take into account some differences 
for the Sommerfeld-Watson transform with respect to 
the case of local potentials. 

In order to make the comparison we briefly recall 
first how the Sommerfeld-Watson transform works 
for a Yukawa potential, and then we show the main 
differences we have for a potential described by Eq. 
(I.2). 

Let us consider in the complex A = I + i plane the 
contour shown in Fig. 8; it is composed of the 
following: 

0) of two arcs of circle 

Cab(AO, e): A = AoeiB
, 0 < e ::;; () ~ 7Tj2, 

CeiAo, e): A = Aoei8
, -7T/2::;; () ~ -e; 

1m A 

a 

Re A 

Ii 

FIG. 8. Contour in the..1. plane, relative to the Sommerfeld­
Watson transform. 
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(ii) of the curve Cbc(Ao, E, IX), where IX denotes a set 
of parameters, which in addition to .1.0 and E determine 
such a curve; 

(iii) of the segment Cda(AO) on the imaginary axis. 

We shall call such a curve C(Ao, E, IX). 
The curve which is dashed in Fig. S will be called 

CiAo, E): .1.= Aoe
i6

, E ~ () ~ -E. 

For a generalized Yukawa potential 

VCr) = roodf.-tIX(f.-t)e-l'rJr, -1::::;; z ::::;; 1, 
JI'O 

the sum of the series 

00 

(2ik)-1 I (21 + 1)[SI(k) - 1]PI(z) 
1~0 

converges to the function A(k, z). For Sl(k) (defined 
for natural /) there exists an analytic interpolation in 
the complex I plane such that S,(k) is, for fixed real k, 
an analytic function in the right half plane, but for a 
finite number of poles, none of which lies on the real 
axis. 26 

.1.0, E, and IX can be determined in such a way that in 
the inner region of the curve Cbc(Ao, E, IX) there are no 
poles of SI(k). Taking into account the analytic prop­
erties of p;.J -z), cos '7TA, if n1 < .1.0 < n1 + I, where 
nl is a natural number, one gets 

nl 

(2ik)-1 I (21 + 1)[SI(k) - 1]PtCz) 
1~0 

= (2k)-1 r dAA[S(A, k) _ 1] P;.-l( -z) , 
J O'b'().O.£,«)+O'l(,lO,E) cos '7TA 

A(k, z) = lim (2k)-1 r dA 
;'0-+ 00 J O'bc()'O,E,«)+O'l (,lo,£) 

X A[S(A, k) - 1] P;.-l(-Z). 
cos '7TA 

Let us now remember that27 

SeA, k) - 1 = O(A-1e-2;.a) for Re .1.-+ 00, (B1) 

where 

a = In[f.-tO + (1 + f.-t~ )lJ. 
2k 4k2

' 

IP;'-I( -z)Jcos '7TAI < IAI-I exp (-Re 0 11m Al)f(z) 

(B2) 

for Z2 < I, Re A > 0,1.1.1 -+ 00, wheref(z) is a function 
of the only z = cos 0 (Ref. 2S). 

•• Ref. 18, Chap. VIII. 
• 7 Ref. 11, p. 44. 
'8 Ref. 18, p. 99. 

From (BI) and (B2), one deduces 

lim r dAA[S(A, k) - 1] P;.-l( -z) = 0, (B3) 
.. 0 .... 00 JO'l(;'o,E) cos '7TA 

Moreover, if the Yukawian potential satisfies the 
condition I V(iy) I < N«ly«, with! < IX < 2 (see Ref. 
29), then 

SeA, k) - 1 = O(Af-«) for 1.1.1-+ 00. (B4) 

From (Bl), (B2), and (B4), one gets 

lim r dAA[S(A, k) _ 1] P;.-l( -z) 
AO-+OO JO'ab(;'o,E) cos 7TA 

= lim r dAA[S(A, k) - 1] P;.-l( -z) = O. (BS) 
;'0-+00 JU'd(AO,E) COS'7TA 

Moreover, for Z2 < 1, A' -+ ±oo (see Ref. 30), 

Pi).'-l( -z) ~ 2(iA' - t)-t exp {21A'1 g(z)}f(z), (B6) 

where g(z) = arc tan (1 + z/l - z)l, and then g(z) < 
'7T/2. 

By applying the theorem of residue to the contour 
C(Ao, E, IX) and taking into account (B3) and (BS), 
one gets 

A(k, z) = (2k)-lj'" dAA S(iA, k) - 1 Pi;.-l( -z) 
-00 cosh '7TA 

+ i'7Tk-1 I(lXn + t)f3nP«n(-z)/sin '7TlXn, (B7) 
n 

where IXn (n = I, 2, ... , N) are the N poles of Sl(k) in 
the right half I plane and fln are their residues. 

The integral in (B7) exists by (B4) and (B6). 
The following equation holds true in the z plane cut 

from 1 to 00 for A -+ ± 00 (Ref. 30): 

iPo,-t( -z)1 ~ 2(2'7T)-1IiA - tl- Iz2 - II-t 

where 

x lexp (2iA In IAI) exp (-2.1. arg A) 

+ i exp (2i.? In IBI) exp (-2.1. arg B)I, 

(BS) 

A = (-z + 1)1 + (-z - 1)1, 

B = (-z + 1)1 - (-z - 1)1. 

From (BS) and (B4) one deduces that the rhs of 
Eq. (B7) has a meaning also for complex z, and is an 
analytic function of z apart from a branch point. 

Let us now consider how a method of this kind 
can be carried over a potential defined by Eq. (1.2). 
We get rid of the conditions (BI) and (B4) which 

•• Ref. 18, p. 90 . 
30 R. G. Newton, Scattering Theory of Waves and Particles 

(McGraw-Hill Book Co., New York, 1966), p. 402. 
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belong to Yukawian potentials. From (B2) and (B6), 
it is easy to deduce that if for Z2 < 1, IAI --+ 00, 

A[S(A, k) - l]P,l_!( -z)jcos ?TA = O(AP), (B9) 

with fJ = -(1 + IX) and arbitrary IX> 0, then a 
necessary and sufficient condition for (B3), (BS), and 
(B7) to hold is that for IAI- 00, Re A ~ 0, there 
exists a positive number C such that 

IS(A, k) - 11 ~ C IAr<!+a) exp (0 11m ADf(z). 

From Eq. (BS) it is easy to deduce that if, for z 
belonging to the complex plane cut from 1 to 00, Eq. 
(B9) holds, then a necessary and sufficient condition 
for the convergence of the integral in (B7) is that there 
exists a positive number D such that 

IS(A, k) - 11 ~ D IAI-<!+al Iz2 - 11-~ [eXp?TA 

+ exp (-?TA)]/Iexp (2iA In IAI) exp (-2A arg A) 

+ i exp (2iA In IBD exp (-2A arg B)I. 

Under these conditions, (B7) gives the analytic con­
tinuation in z of A(k, z) defined as the sum of the 
series. 

We shall see that it is possible to choose the et(l) in 
such a way that (BS) holds and the integral appearing 
in (B7) exists and is finite, while 

00 

A(k, z) = (2ik)-11 (21 + 1)[S!(k) - I]Pb) 
!~O 

diverges. 
If we choose ei(l) = Pi(l)jqi(l), where Pt(l) and qi(l) 

are polynomials in I and the degree of Pi(/) is greater 
or equal to the degree of qi(l), then this fact is imme­
diately verified. There is no contradiction since the 
rhs of Eq. (B7) does not give the sum of the series 
because Eq. (B3) does not hold. 

It is also easy to verify that hypotheses (a), (b), (c), 
and (d) of Sec. 2 are sufficient (but not necessary) 
conditions for Eqs. (B3), (BS), and (B7) to hold for 
physical values of z and the rhs of Eq. (B7) gives the 
analytic continuation in the z plane cut from 1 to 00. 

APPENDIX C 

Let A be the statement "A(k, z) is a continuous 
function for physical values of its arguments"; let B be 
the statement "the series 

(2ik)-1 ! (21 + 1)[S,(k) - l]P!(z) 
!~O 

is convergent" (punctually); let C be the statement 
00 

"(4k2)-11 (21 + 1) IS/(k) - 1/2 < 00." 
!~O 

We have to prove that A=> (B <=> C). Let us first 
prove that A => (B => C). Indeed if A and B are true, 
A(k, z) is a continuous function of z; by the properties 
of the Legendre polynomials we get 

(4k2)-\~ (21 + 1) IS/(k) - 1/2 = flIA(k, z)12 dz < 00. 

Now we have to prove that A=> (C => B). Indeed, 
if A and C are true, the series 

00 

(2ik)-11 (21 + 1)[S/(k) - I]Pb) 
,~O 

converges in the mean to the continuous function 
A(k, z) by the theorem of Riesz and Fischer.15 That is, 
having defined 

fL(k, z) = I A(k, z) - (2ikr\~ (21 + 1) 

x [S/(k) - l]Pz{z) r 
and 

151 = J~/L(k, z) dz, 

and having arbitrarily fixed E' > 0, there exists a 
positive integer L' (E') such that 

(Cl) 

for any L > L' (E'). The proof follows from the follow­
ing argument. 

Let us suppose that B is false; then there exists 
Z E (-1, 1) such that, having fixed E> 0 and a 
corresponding L( E), 

fL(k, z) ~ E, for any L> L(E). 

ButfL(k, z) is a continuous function of z, because it 
is the sum of continuous functions; therefore, having 
fixed El such that 0 < El < E, a corresponding ~(El) > 
o can be determined for which 

fL(k, z) > E1 , for any z E (z - ~, Z + ~), 
L > L(E), -1 ~ Z - ~ < Z + ~ ~ 1. 

But it is 

l
i+A 

151 ~ h(k, z) dz ~ 2~El' 
i-A 

and for E' = 2~El the last relation contradicts Eq. 
(Cl). Q.E.D. 
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